

Using Class Imbalance Learning for Cross-Company

Defect Prediction

Xiao Yu1, Mingsong Zhou2, Xu Chen1*, Lijun Deng3, Lu Wang4
1State Key Lab. of Software Engineering, Computer School, Wuhan University, Wuhan, China

2Department of Information Science and Technology, Beijing Normal University, Beijing, China
3College of Business, City University of Hong Kong, Kowloon Tong, China

4School of Computer Science and Information Engineering, HuBei University, Wuhan, China

*Corresponding author email: xuchen@whu.edu.cn

Abstract—Cross-company defect prediction (CCDP) is a

practical way that trains a prediction model by exploiting one or

multiple projects of a source company and then applies the model

to target company. Unfortunately, the performance of such CCDP

models is susceptible to the high imbalanced nature between the

defect-prone and non-defect classes of CC data. Class imbalance

learning is applied to alleviate this issue. Because many class

imbalance learning methods have been proposed, there is an

imperative need to analyze and compare the performance of these

methods for CCDP. Although prior empirical studies have proven

AdaBoost.NC algorithm achieves the best performance for defect

prediction. This observation leads us to conduct a careful

empirical study the issues of if and how class imbalance learning

methods can benefit cross-company defect prediction. We

investigate different types of class imbalance learning methods,

including under-sampling technique, over-sampling technique

and over sampling followed by under-sampling technique on the

cross-company defect prediction performance over 15 publicly

available datasets. Experimental results show that under-sampling

technique achieves the best overall performance in terms of the g-

measure among those methods we studied.1

Keywords—software defect prediction;cross-company defect

prediction; class imbalance learning

I. INTRODUCTION

Software defect prediction is one of the most important
software quality assurance techniques. It aims to detect the
defect proneness of new software modules via learning from
defect data. With the advent of big data era and the development
of machine learning techniques [1], many machine learning
algorithms are applied to solve the practical problems in life [2-
4]. Similarly, many efficient software defect prediction
approaches [5-11] using machine learning techniques have been
proposed, but they are usually confined to within company
defect prediction (WCDP). WCDP works well if sufficient data
is available to train a defect prediction model. However, it is
difficult for a new company to perform WCDP if there is limited
historical data. Cross-company defect prediction (CCDP) is a
practical approach to solve the problem. It trains a prediction
model by exploiting one or multiple projects of a source
company and then applies the model to target company [12].

Due to the increased prevalence of machine learning and
transfer learning techniques, a number of CCDP models have

1 DOI reference number: 10.18293/SEKE2017-035

been proposed during the past decade [13-21]. Nevertheless, a
challenge that threatens the performance of such CCDP models
is the high imbalanced nature between the defect-prone and non-
defect classes of CC data, i.e., defect datasets with much more
non-defect instances (majority) than defect-prone instances
(minority). Existing studies [22-23] have shown that the class
imbalance problem may cause difficulties for learning, as most
classification algorithms only perform optimally when the
number of instances of each class is roughly the same. When
these algorithms are trained by a highly skewed dataset in which
the minority class is heavily outnumbered by the majority class,
these classifiers tend to favor the majority class and have less
ability to classify the minority class.

Class imbalance learning is applied to alleviate this issue.
Because many class imbalance learning methods have been
proposed, there is an imperative need to analyze and compare
the performance of these methods for CCDP. Although prior
empirical studies have proven AdaBoost.NC algorithm achieves
the best performance for defect prediction [23]. This observation
leads us to conduct a careful empirical study the issues of if and
how class imbalance learning methods can benefit cross-
company defect prediction.

Therefore, several data sampling works should be done
before building the CCDP model. For example, Lin et al. [19]
introduced a novel CCDP approach named Double Transfer
Boosting (DTB). DTB firstly uses NN filter to filter out
irrelevant CC data, and then uses SMOTE algorithm [24] to re-
sample the CC data before building the CCDP model.

As the first effort of an in-depth study of class imbalance
learning methods in CCDP, this paper explores their potential by
focusing on research questions

RQ1: How effective are class imbalance learning methods?

RQ2: Do different class imbalance learning methods have
significantly distinct effectiveness on CCDP?

For the two questions, we conduct a large scale empirical
study on six class imbalance learning methods and compare
them with CCDP models without involving any class imbalance
learning method. The six class imbalance learning methods are
Random under-sampling (RUS) [25], Near Miss (NM) [26],
Synthetic Minority Oversampling Technique (SMOTE) [24]

and ADASYN [27], SMOTE Tomek links (STOME) [28] and
SMOTE ENN (SENN) [29], covering three major types of
solutions to learning from imbalanced data, i.e., under sampling
technique, over sampling technique and over sampling followed
by under-sampling technique. In the experiments, we choose the
Naïve Bayes (NB), random forest (RF) and logistic regression
(LR) as the CCDP models and pd, pf and g-measure as the
evaluation measures. Experimental results over 15 publicly
available datasets show that under-sampling technique achieves
the best overall performance in terms of the g-measure among
those methods we studied.

The remainder of this paper is organized as follows. Section
2 presents the background knowledge about cross-company
defect prediction. Section 3 describes the class imbalance
learning methods studied in this work. Section 4 presents the
data sets, performance measures and the experimental results.
Section 5 describes the treats to validity. Finally, Section 6
addresses the conclusion and points out the future work.

II. RELATED WORK

In this section, we briefly review the existing cross-company
and cross-company defect prediction approaches.

Briand et al. [12] used logistic regression and MARS models
to learn a defect predictor, which is also the earliest work on
CCDP. Zimmermann et al. [13] studied CCDP models on 12
real-world applications datasets. Their results indicate that
CCDP is still a serious challenge. Turhan et al. [14] investigated
the applicability of CC data for building localized defect
predictors using 10 projects collected from two different
companies including NASA and SOFTLAB. And they have
proposed a nearest neighbor (NN) filter to select CC data. He et
al. [15] investigates defect predictions in the cross-project
context focusing on the selection of training data. Furthermore,
they proposed an approach to automatically select suitable
training data for projects without historical data so that the
results of their experiments are comparable with WCDP, which
indicated that some approach of CCDP can comparable to
WCDP. They noted that learning predictors using the data from
other projects can be a potential way to defect prediction without
any historical data. In order to find data for quality prediction,
Peters et al. [16] introduced the Peters filter to select training
data via the structure of other projects. They compared the filter
with two other approaches for quality prediction to assess the
performance of the Peters filter, and found that 1) WCDP are
weak for small data sets; 2) the Peters filter + CCDP builds better
and more useful predictors. Zhang et al. [17] proposed sample-
based methods for software defect prediction. For a large
software system, they could select and test a small percentage of
modules, and then built a defect prediction model to predict
defect-proneness of the rest of the modules. They described
three methods for selecting a sample and proposed a novel active
semi-supervised learning method ACoForest to facilitate the
active sampling. The results showed that the proposed methods
are effective and have potential to be applied to industrial
practice. Ma et al. [18] proposed a novel algorithm called
Transfer Naive Bayes (TNB) to transfer cross-company data
information into the weights of the training data and then build
the predictor based on re-weighted CC data. The results

indicated that TNB is more accurate in terms of AUC, within
less runtime than the state of the art methods and can effectively
achieve the CCDP task. The heterogeneous CCDP (HCCDP)
task is that the source and target company data is heterogeneous.
Jing et al. [11] provided an effective solution for HCCDP. They
proposed a unified metric representation (UMR) for the data of
source and target companies and introduced canonical
correlation analysis (CCA), an effective transfer learning
method, into CCDP to make the data distributions of source and
target companies similar. Results showed that their approach
significantly outperforms state-of-the-art CCDP methods for
HCCDP with partially different metrics and for HCCDP with
totally different metrics, their approach is also effective.

Turhan et al. [20] introduced a mixed model of within and
cross data for CCDP to investigate the merits of using mixed
project data for binary defect prediction. Results showed that
when there is limited project history, mixed model for CCDP
can achieve good performance which can be comparable to
WCDP. It provided a new idea to CCDP that the use of a small
amount of labeled WC data would be very valuable to improve
the performance of CCDP. Lin et al. [19] introduced a novel
approach named Double Transfer Boosting (DTB) to narrow the
gap of different distributions between CC data and WC data and
to improve the performance of CCDP by reducing negative
samples in CC data.

III. METHODOLOGY

In this section, we only provide a brief description of the 6
class imbalance learning methods studied in this work due to the
space limit. These methods cover three types including under
sampling technique, over sampling technique and over sampling
followed by under-sampling technique.

A. Under sampling techniques

Under-sampling is a technique to reduce the number of
samples in the majority class, where the size of the majority class
sample is reduced from the original datasets to balance the class
distribution. In this study, we employ two representative under-
sampling methods, i.e, Random under-sampling (RUS) and
Near Miss (NM).

Random under-sampling (RUS) is a simple method to select
a subset of majority class samples randomly and then combine
them with minority class sample as a training set. The procedure
of random under-sampling is as follows:

1. Calculate the ratio of the minority class to the majority
class, and get the sampling frequency.

2. Sample the majority class by the sampling frequency.

3. Select all samples in the minority.

4. Combine selected samples and attributes for training.

Near Miss selects negative examples that are close to some

of the positive examples. In the method, we select negative

examples whose average distances to three closest positive

examples are the smallest. This method guarantee every

positive example is surrounded by some negative examples.

Finally, in selection of most distant negative examples, we

choose the negative examples whose average distances to the

three closest positive examples are the farthest. We expect the

Near Miss methods should perform better than the random and

distant methods, and the random method should work better

than the distant method. We also expect that Near Miss method

should achieve high precision and low recall while the distant

method should achieve high recall and low precision.

B. Over sampling techniques

Over-sampling is a technique in which the minority class is
over-sampled by creating “synthetic” examples rather than by
under-sampling with replacement. In this study, we employ two
representative under-sampling methods, i.e, Synthetic Minority
Oversampling Technique (SMOTE) and ADASYN.

The procedure of SMOTE is as follows:

1. For each instance in the minority class, calculate the
Euclidean distance between it and other samples in the minority
class to find its k nearest neighbor.

2. According to the amount of over-sampling, determine
the sampling rate and select a certain number of samples from k
nearest neighbor randomly.

3. Take the difference of the feature vector between it and
its nearest neighbor.

4. Multiply this difference by a random number between
0 and 1, and add it to the feature vector under consideration.

5. Generate new samples for each instance in the minority
class and add new samples into it.

ADASYN is based on the idea of adaptively generating
minority data samples according to their distributions: more
synthetic data is generated for minority class samples that are
harder to learn compared to those minority samples that are
easier to learn. The procedure of ADASYN is as follows:

1. Calculate the degree of class imbalance.

2. If degree is less than d then (d is a preset threshold for
the maximum tolerated degree of class imbalance ratio).

3. Calculate the number of synthetic data examples that
need to be generated for the minority class.

4. For each example, find K nearest neighbors based on the
Euclidean distance in n dimensional space.

5. Normalize according to a density distribution.

6. Calculate the number of synthetic data examples that
need to be generated for each minority example.

7. For each minority class data example, generate synthetic
data examples according to the following steps:

Do the loop:

i. Randomly choose one minority data example from
the k nearest neighbors for data.

ii. Generate the synthetic data example.

C. Over sampling followed by under sampling

Over sampling followed by under-sampling is a technique in
which the minority class is over-sampled by creating “synthetic”
examples followed by under-sampling with replacement. In this
study, we employ two representative under-sampling methods,
i.e, SMOTE Tomek links (STOME) and SMOTE ENN (SENN).

 Although over-sampling minority class examples can
balance class distributions, some other problems usually present
in data sets with skewed class distributions are not solved.
Frequently, class clusters are not well defined since some
majority class examples might be invading the minority class
space. The opposite can also be true, since interpolating minority
class examples can expand the minority class clusters,
introducing artificial minority class examples too deeply in the
majority class space. Inducing a classifier under such a situation
can lead to overfitting. In order to create better-defined class
clusters, we propose to apply Tomek links to the over-sampled
training set as a data cleaning method. Thus, instead of removing
only the majority class examples that form Tomek links,
examples from both classes are removed. The application of this
method can be illustrated as follows. First, the original data set
is over-sampled with Smote, and then Tomek links are identified
and removed, producing a balanced data set with well-defined
class clusters. The STOME links method was first used to
improve the classification of examples for the problem of
annotation of proteins in Bioinformatics.

 The motivation behind SENN is similar to STOME. SENN
tends to remove more examples than the Tomek links does, so it
is expected that it will provide a more in depth data cleaning.
Differently from NCL which is an under-sampling method,
ENN is used to remove examples from both classes. Thus, any
example that is misclassified by its three nearest neighbors is
removed from the training set.

IV. EXPERIMENTS

In this section, we first introduce the experiment dataset and
the performance measures. Then, in order to investigate the
performance of class imbalance learning methods, we perform
some empirical experiments to find answers to the research
questions mentioned above.

A. Data set

In this experiment, we employ 15 available and commonly
used datasets which can be obtained from PROMISE. The 15
datasets have the same 20 attributes, so we can apply all attribute
information directly. Table 1 tabulates the details about the
datasets.

TABLE I. DETAILS OF EXPERIMENT DATASET

Project Examples %Defective Description

ant 125 16 Open-source

arc 234 11.5 Academic

camel 339 3.8 Open-source

elearn 64 7.8 Academic

jedit 272 33.1 Open-source

log4j 135 25.2 Open-source

lucene 195 46.7 Open-source

poi 237 59.5 Open-source

Project Examples %Defective Description

prop 660 10 Proprietary

redaktor 176 15.3 Academic

synapse 157 10.2 Open-source

systemdata 65 13.8 Open-source

tomcat 858 9 Open-source

xalan 723 15.2 Open-source

xerces 162 47.5 Open-source

B. Performance measures

In the experiment, we employ three commonly used
performance measures including pd, pf and g-measure. They are
defined in Table 2 and summarized as follows.

TABLE II. PERFORMANCE MEASURES

 Actual

yes no

Predicted yes TP FP

no FN TN

pd 𝑻𝑷

𝑻𝑷+ 𝑭𝑵

pf 𝑭𝑷

𝑭𝑷+ 𝑻𝑵

g-measure 𝟐 ∗ 𝒑𝒅 ∗ (𝟏 − 𝒑𝒇)

𝒑𝒅 + (𝟏 − 𝒑𝒇)

● Probability of detection or pd is the measure of defective
modules that are correctly predicted within the defective class.
The higher the pd, the fewer the false negative results.

● Probability of false alarm or pf is the measure of non-
defective modules that are incorrectly predicted within the non-
defective class. Unlike pd, the lower the pf value, the better the
results.

● g-measure is a trade-off measure that balances the
performance between pd and pf. A good prediction model should
have high pd and low pf, and thus leading to a high g-measure.

C. Experimental Procedure

 In every experiment, one dataset is selected as WC data and
the rest are regarded as CC data to conduct the experiment. The
CC data is considered as basic training data which will be
adjusted in every experiment. All processing steps (data filter
and data sampling) are done on CC data. Then processed CC
data are used to build the CCDP model. Finally, the resulting
model is evaluated on the WC data. The procedure will be
repeated 30 times in every experiment to avoid sample bias.
Then, the mean values of performance are calculated.

 In this experiment, we choose three representative classifiers
as the basic prediction model, Naive Bayes (NB), Random
Forest (RF), and Logistic Regression (LR).The reason we
choose these classifiers is that these classifiers fall into three
different families of learning methods. NB is a probabilistic
classifier; RF is a decision-tree classifier; and LR is a linear
model for classification.

D. Experimental results

Fig. 1 presents the scatter plots of (PD, PF) points from the
seven training methods on the ten SDP data sets. We can gain
the following results from Fig. 1.

Although CCDP models without involving any class
imbalance learning algorithms appears to be better at PF than
other class imbalance learning models, it has lowest PD value,
which proves class imbalance learning should be applied to
CCDP models. In terms of the defect detection rate (PD), NM
outperforms other class imbalance learning models, which
shows its effectiveness in finding defects. However, NM has
relatively high PF value. In terms of the false alarm rate (PF),
although SENN is the best, it performs not well in PD, which
makes it hardly useful in practice.

(a)NB

(b)RF

(c)LR

Fig. 1. Performances with Scatter plots of (PD, PF) points of the six class

imbalacne learning methods and the CCDP model without class imbalance
learning on the fifteen projects

Table 3-5 also show the g-measure values for each project
on all the methods. From the tables, we can find that CCDP
models without involving any class imbalance learning
algorithms perform the worst in g-measure, which proves that
the class imbalance problem is a big challenge for CCDP. In
terms of NB model, NM achieves the best average g-measure
value among the 15 projects. In terms of RF, RUS achieves the
best average g-measure value among the 15 projects. In terms of
LG, ADASYN achieves the best average g-measure value
among the 15 projects. RUS and NM are under-sampling
techniques, which reduce the number of CC instances in the non-
defect class. We guess the reason under-sampling technique
performs better is that it retains the defect-prone instances.

TABLE III. G-MEASURE PERFORMANCES WITH NAVIE BAYES

Project None SMOTE ADASYN SENN STOME RUS NM

ant 0.32 0.50 0.38 0.50 0.50 0.55 0.43

arc 0.30 0.35 0.30 0.53 0.40 0.35 0.62

camel 0.62 0.61 0.62 0.46 0.61 0.61 0.67

elearn 0.00 0.00 0.00 0.33 0.00 0.00 0.67

jedit 0.46 0.47 0.55 0.47 0.46 0.58 0.51

log4j 0.25 0.37 0.25 0.34 0.37 0.37 0.62

lucene 0.17 0.23 0.17 0.24 0.23 0.21 0.52

poi 0.23 0.28 0.23 0.28 0.27 0.23 0.49

prop 0.23 0.43 0.23 0.45 0.41 0.28 0.54

redaktor 0.19 0.40 0.19 0.35 0.35 0.19 0.27

synapse 0.59 0.68 0.53 0.69 0.68 0.39 0.38

system 0.50 0.61 0.50 0.61 0.61 0.49 0.62

tomcat 0.65 0.73 0.64 0.72 0.73 0.70 0.60

xalan 0.64 0.65 0.63 0.65 0.65 0.63 0.50

xerces 0.34 0.39 0.33 0.39 0.39 0.34 0.46

AVG 0.37 0.45 0.37 0.47 0.44 0.39 0.53

TABLE IV. G-MEASURE PERFORMANCES WITH RANDOM FOREST

Project None SMOTE ADASYN SENN STOME RUS NM

ant 0.51 0.67 0.64 0.67 0.70 0.66 0.29

arc 0.19 0.25 0.44 0.19 0.31 0.62 0.54

camel 0.14 0.26 0.14 0.14 0.26 0.61 0.60

elearn 0.00 0.00 0.00 0.00 0.00 0.33 0.73

jedit 0.25 0.47 0.44 0.44 0.49 0.70 0.36

log4j 0.11 0.41 0.37 0.37 0.48 0.73 0.51

lucene 0.04 0.26 0.23 0.17 0.29 0.62 0.41

poi 0.05 0.40 0.32 0.37 0.46 0.66 0.47

prop 0.23 0.34 0.28 0.23 0.34 0.68 0.45

redaktor 0.00 0.19 0.13 0.13 0.30 0.37 0.20

synapse 0.39 0.67 0.64 0.60 0.61 0.72 0.31

system 0.35 0.35 0.35 0.35 0.35 0.66 0.54

tomcat 0.33 0.49 0.55 0.43 0.44 0.66 0.48

xalan 0.54 0.63 0.64 0.58 0.62 0.63 0.46

xerces 0.22 0.42 0.38 0.38 0.41 0.46 0.43

AVG 0.20 0.39 0.37 0.34 0.40 0.56 0.45

TABLE V. G-MEASURE PERFORMANCES WITH LOGISTIC REGRESSION

Project None SMOTE ADASYN SENN STOME RUS NM

ant 0.26 0.74 0.75 0.77 0.76 0.76 0.39

arc 0.13 0.52 0.55 0.48 0.52 0.51 0.62

camel 0.00 0.52 0.64 0.36 0.53 0.69 0.68

elearn 0.00 0.56 0.56 0.33 0.56 0.32 0.73

Project None SMOTE ADASYN SENN STOME RUS NM

jedit 0.25 0.70 0.67 0.69 0.69 0.69 0.47

log4j 0.11 0.62 0.65 0.58 0.63 0.65 0.57

lucene 0.10 0.59 0.58 0.48 0.56 0.56 0.51

poi 0.08 0.67 0.63 0.57 0.66 0.67 0.49

prop 0.11 0.63 0.64 0.49 0.63 0.61 0.50

redaktor 0.00 0.66 0.65 0.65 0.66 0.48 0.29

synapse 0.11 0.76 0.74 0.64 0.73 0.72 0.44

system 0.19 0.75 0.73 0.66 0.75 0.72 0.61

tomcat 0.37 0.59 0.68 0.58 0.58 0.67 0.57

xalan 0.59 0.62 0.59 0.62 0.62 0.61 0.51

xerces 0.26 0.41 0.39 0.37 0.40 0.39 0.45

AVG 0.17 0.62 0.63 0.55 0.62 0.60 0.52

RQ1 Summary. According to the experiment results in
Table 3-5, we conclude that these class imbalance learning
algorithms can yield better prediction results than CCDP
models without involving any class imbalance learning
algorithms.

RQ2 Summary. According to the experiment results in
Table 3-5, the above observations show that the
effectiveness of these class imbalance learning methods
exhibits significant differences on the performance of
CCDP. Among the three types of imbalance learning
methods, under-sampling technique is the winner according

to g-measure.

V. THREATS TO VALIDITY

In this section, we discuss several validity threats that may
have an impact on the results of our studies.

A. External validity

Threats to external validity occur when the results of our
experiments cannot be generalized. As a preliminary result, we
performed our experiments on the 15 datasets to answer the
research questions. Although these datasets have been widely
used in many software defect prediction studies, we still cannot
claim that our conclusions can be generalized to other software
projects. Nevertheless, this work provides a detail experimental
description, including parameter settings (default parameter
settings specified by sklearn), thus other researchers can easily
replicate our method on new datasets.

B. Internal validity

 In our study, we repeat 30 times to avoid sample bias, and
calculate average results to verify the performance of all test
methods. In this work, we only use three classifiers, Naive Bayes
(NB), Random Forest (RF), and Logistic Regression (LR) due
to its popularity in defect prediction.

C. Construct validity

In our experiments, we mainly use pd, pf, g-measure to
measure the effectiveness of the proposed method. Nevertheless,
other evaluation measures such as AUC measure can also be
considered.

VI. CONCLUSION AND FUTURE WORK

The cross-company defect prediction is an interest problem
in the field of software engineer. The class imbalance problem
of defect datasets usually makes it difficult to build a CCDP
model with high performance. In this paper, we address the issue
how class imbalance learning methods can contribute to CCDP.
We conduct a larger scale empirical study to investigate the
impact of 6 class imbalance learning methods on the CCDP
performance. We conduct experiments on the 15 datasets to
evaluate the performance of the methods. The experimental
results indicate that under-sampling technique is the winner
according to g-measure among the three types of imbalance
learning methods.

 In the future, we would like to validate the generalization of
our conclusion on more company data. In addition, we plan to
apply our method to more real-life systems [30-31] to predict the
defective module.

ACKNOWLEDGMENT

This work is partly supported by the grants of National
Natural Science Foundation of China (No.61572374,
No.U163620068, No.U1135005) and the Academic Team
Building Plan from Wuhan University and National Science
Foundation (NSF) (No. DGE-1522883).

REFERENCES

[1] Xu Z, Liu Y, Mei L, et al. Semantic based representing and organizing
surveillance big data using video structural description technology[J].
Journal of Systems and Software, 2015, 102: 217-225.

[2] Xu Z, Zhang S, Choo K K, et al. Hierarchy-cutting model based
association semantic for analyzing domain topic on the web[J]. IEEE
Transactions on Industrial Informatics, 2017.

[3] Xu Z, Mei L, Lu Z, et al. Multi-modal Description of Public Security
Events using Surveillance and Social Data[J]. IEEE Transactions on Big
Data, 2017.

[4] Xu Z, Liu Y, Mei L, et al. The mobile media based emergency
management of web events influence in cyber-physical space[J]. Wireless
Personal Communications, 2016: 1-14.

[5] Elish K O, Elish M O. Predicting defect-prone software modules using
support vector machines[J]. Journal of Systems and Software, 2008, 81(5):
649-660.

[6] Zheng J. Cost-sensitive boosting neural networks for software defect
prediction[J]. Expert Systems with Applications, 2010, 37(6): 4537-4543.

[7] Sun Z, Song Q, Zhu X. Using coding-based ensemble learning to improve
software defect prediction[J]. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 2012, 42(6): 1806-1817.

[8] Wang S, Yao X. Using class imbalance learning for software defect
prediction[J]. IEEE Transactions on Reliability, 2013, 62(2): 434-443.

[9] Liu M, Miao L, Zhang D. Two-stage cost-sensitive learning for software
defect prediction[J]. IEEE Transactions on Reliability, 2014, 63(2): 676-
686.

[10] Jing X Y, Ying S, Zhang Z W, et al. Dictionary learning based software
defect prediction[C]//Proceedings of the 36th International Conference on
Software Engineering. ACM, 2014: 414-423.

[11] Jing X, Wu F, Dong X, et al. Heterogeneous cross-company defect
prediction by unified metric representation and CCA-based transfer
learning[C]//Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering. ACM, 2015: 496-507.

[12] Briand L C, Melo W L, Wust J. Assessing the applicability of fault-
proneness models across object-oriented software projects[J]. IEEE
transactions on Software Engineering, 2002, 28(7): 706-720.

[13] Zimmermann T, Nagappan N, Gall H, et al. Cross-project defect
prediction: a large scale experiment on data vs. domain vs.
process[C]//Proceedings of the the 7th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering. ACM, 2009: 91-100.

[14] Turhan B, Menzies T, Bener A B, et al. On the relative value of cross-
company and within-company data for defect prediction[J]. Empirical
Software Engineering, 2009, 14(5): 540-578.

[15] He Z, Shu F, Yang Y, et al. An investigation on the feasibility of cross-
project defect prediction[J]. Automated Software Engineering, 2012,
19(2): 167-199.

[16] Peters F, Menzies T, Marcus A. Better cross company defect
prediction[C]//Mining Software Repositories (MSR), 2013 10th IEEE
Working Conference on. IEEE, 2013: 409-418.

[17] Zhang F, Mockus A, Keivanloo I, et al. Towards building a universal
defect prediction model[C]//Proceedings of the 11th Working Conference
on Mining Software Repositories. ACM, 2014: 182-191.

[18] Ma Y, Luo G, Zeng X, et al. Transfer learning for cross-company software
defect prediction[J]. Information and Software Technology, 2012, 54(3):
248-256.

[19] Chen L, Fang B, Shang Z, et al. Negative samples reduction in cross-
company software defects prediction[J]. Information and Software
Technology, 2015, 62: 67-77.

[20] Turhan B, Mısırlı A T, Bener A. Empirical evaluation of the effects of
mixed project data on learning defect predictors[J]. Information and
Software Technology, 2013, 55(6): 1101-1118.

[21] Xiao Yu,Jin Liu, Mandi Fu, et al. A Multi-Source TrAdaBoost Approach
for Cross-Company Defect Prediction[C]// The 28th International
Conference on Software Engineering & Knowledge Engineering. San
Francisco Bay, California, USA,2016: 237-242.

[22] Ozturk M M, Zengin A. HSDD: a hybrid sampling strategy for class
imbalance in defect prediction data sets[C]//Future Generation
Communication Technologies (FGCT), 2016 Fifth International
Conference on. IEEE, 2016: 60-69.

[23] Wang S, Yao X. Using class imbalance learning for software defect
prediction[J]. IEEE Transactions on Reliability, 2013, 62(2): 434-443.

[24] Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: synthetic minority
over-sampling technique[J]. Journal of artificial intelligence research,
2002, 16: 321-357.

[25] Tahir M A, Kittler J, Yan F. Inverse random under sampling for class
imbalance problem and its application to multi-label classification[J].
Pattern Recognition, 2012, 45(10): 3738-3750.

[26] Mani I, Zhang I. kNN approach to unbalanced data distributions: a case
study involving information extraction[C]//Proceedings of workshop on
learning from imbalanced datasets. 2003.

[27] He H, Bai Y, Garcia E A, et al. ADASYN: Adaptive synthetic sampling
approach for imbalanced learning[C]//Neural Networks, 2008. IJCNN
2008.(IEEE World Congress on Computational Intelligence). IEEE
International Joint Conference on. IEEE, 2008: 1322-1328.

[28] Batista G E, Bazzan A L C, Monard M C. Balancing Training Data for
Automated Annotation of Keywords: a Case Study[C]//WOB. 2003: 10-
18.

[29] Batista G E, Prati R C, Monard M C. A study of the behavior of several
methods for balancing machine learning training data[J]. ACM Sigkdd
Explorations Newsletter, 2004, 6(1): 20-29.

[30] Liu Z, Wei C, Ma Y, et al. UCOR: an unequally clustering-based
hierarchical opportunistic routing protocol for WSNs[C]//International
Conference on Wireless Algorithms, Systems, and Applications. Springer
Berlin Heidelberg, 2013: 175-185.

[31] Liu Z, Niu X, Lin X, et al. A Task-Centric Cooperative Sensing Scheme
for Mobile Crowdsourcing Systems[J]. Sensors, 2016, 16(5): 746.

