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Abstract—Cross-company defect prediction (CCDP) is a 

practical way that trains a prediction model by exploiting one or 

multiple projects of a source company and then applies the model 

to target company. Unfortunately, the performance of such CCDP 

models is susceptible to the high imbalanced nature between the 

defect-prone and non-defect classes of CC data. Class imbalance 

learning is applied to alleviate this issue. Because many class 

imbalance learning methods have been proposed, there is an 

imperative need to analyze and compare the performance of these 

methods for CCDP. Although prior empirical studies have proven 

AdaBoost.NC algorithm achieves the best performance for defect 

prediction. This observation leads us to conduct a careful 

empirical study the issues of if and how class imbalance learning 

methods can benefit cross-company defect prediction. We 

investigate different types of class imbalance learning methods, 

including under-sampling technique, over-sampling technique 

and over sampling followed by under-sampling technique on the 

cross-company defect prediction performance over 15 publicly 

available datasets. Experimental results show that under-sampling 

technique achieves the best overall performance in terms of the g-

measure among those methods we studied.1 
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I.  INTRODUCTION  

Software defect prediction is one of the most important 
software quality assurance techniques. It aims to detect the 
defect proneness of new software modules via learning from 
defect data. With the advent of big data era and the development 
of machine learning techniques [1], many machine learning 
algorithms are applied to solve the practical problems in life [2-
4]. Similarly, many efficient software defect prediction 
approaches [5-11] using machine learning techniques have been 
proposed, but they are usually confined to within company 
defect prediction (WCDP). WCDP works well if sufficient data 
is available to train a defect prediction model.  However, it is 
difficult for a new company to perform WCDP if there is limited 
historical data. Cross-company defect prediction (CCDP) is a 
practical approach to solve the problem. It trains a prediction 
model by exploiting one or multiple projects of a source 
company and then applies the model to target company [12]. 

Due to the increased prevalence of machine learning and 
transfer learning techniques, a number of CCDP models have 
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been proposed during the past decade [13-21]. Nevertheless, a 
challenge that threatens the performance of such CCDP models 
is the high imbalanced nature between the defect-prone and non-
defect classes of CC data, i.e., defect datasets with much more 
non-defect instances (majority) than defect-prone instances 
(minority). Existing studies [22-23] have shown that the class 
imbalance problem may cause difficulties for learning, as most 
classification algorithms only perform optimally when the 
number of instances of each class is roughly the same. When 
these algorithms are trained by a highly skewed dataset in which 
the minority class is heavily outnumbered by the majority class, 
these classifiers tend to favor the majority class and have less 
ability to classify the minority class.  

Class imbalance learning is applied to alleviate this issue. 
Because many class imbalance learning methods have been 
proposed, there is an imperative need to analyze and compare 
the performance of these methods for CCDP. Although prior 
empirical studies have proven AdaBoost.NC algorithm achieves 
the best performance for defect prediction [23]. This observation 
leads us to conduct a careful empirical study the issues of if and 
how class imbalance learning methods can benefit cross-
company defect prediction. 

Therefore, several data sampling works should be done 
before building the CCDP model. For example, Lin et al. [19] 
introduced a novel CCDP approach named Double Transfer 
Boosting (DTB). DTB firstly uses NN filter to filter out 
irrelevant CC data, and then uses SMOTE algorithm [24] to re-
sample the CC data before building the CCDP model. 

As the first effort of an in-depth study of class imbalance 
learning methods in CCDP, this paper explores their potential by 
focusing on research questions 

RQ1: How effective are class imbalance learning methods? 

RQ2: Do different class imbalance learning methods have 
significantly distinct effectiveness on CCDP? 

For the two questions, we conduct a large scale empirical 
study on six class imbalance learning methods and compare 
them with CCDP models without involving any class imbalance 
learning method. The six class imbalance learning methods are 
Random under-sampling (RUS) [25], Near Miss (NM) [26], 
Synthetic Minority Oversampling Technique (SMOTE) [24] 



 

 

and ADASYN [27], SMOTE Tomek links (STOME) [28] and 
SMOTE ENN (SENN) [29], covering three major types of 
solutions to learning from imbalanced data, i.e., under sampling 
technique, over sampling technique and over sampling followed 
by under-sampling technique. In the experiments, we choose the 
Naïve Bayes (NB), random forest (RF) and logistic regression 
(LR) as the CCDP models and pd, pf and g-measure as the 
evaluation measures. Experimental results over 15 publicly 
available datasets show that under-sampling technique achieves 
the best overall performance in terms of the g-measure among 
those methods we studied. 

The remainder of this paper is organized as follows. Section 
2 presents the background knowledge about cross-company 
defect prediction. Section 3 describes the class imbalance 
learning methods studied in this work. Section 4 presents the 
data sets, performance measures and the experimental results. 
Section 5 describes the treats to validity. Finally, Section 6 
addresses the conclusion and points out the future work. 

 

II. RELATED WORK 

In this section, we briefly review the existing cross-company 
and cross-company defect prediction approaches.  

Briand et al. [12] used logistic regression and MARS models 
to learn a defect predictor, which is also the earliest work on 
CCDP. Zimmermann et al. [13] studied CCDP models on 12 
real-world applications datasets. Their results indicate that 
CCDP is still a serious challenge. Turhan et al. [14] investigated 
the applicability of CC data for building localized defect 
predictors using 10 projects collected from two different 
companies including NASA and SOFTLAB. And they have 
proposed a nearest neighbor (NN) filter to select CC data.  He et 
al. [15] investigates defect predictions in the cross-project 
context focusing on the selection of training data. Furthermore, 
they proposed an approach to automatically select suitable 
training data for projects without historical data so that the 
results of their experiments are comparable with WCDP, which 
indicated that some approach of  CCDP can comparable to 
WCDP. They noted that learning predictors using the data from 
other projects can be a potential way to defect prediction without 
any historical data. In order to find data for quality prediction, 
Peters et al. [16] introduced the Peters filter to select training 
data via the structure of other projects. They compared the filter 
with two other approaches for quality prediction to assess the 
performance of the Peters filter, and found that 1) WCDP are 
weak for small data sets; 2) the Peters filter + CCDP builds better 
and more useful predictors. Zhang et al. [17] proposed sample-
based methods for software defect prediction. For a large 
software system, they could select and test a small percentage of 
modules, and then built a defect prediction model to predict 
defect-proneness of the rest of the modules. They described 
three methods for selecting a sample and proposed a novel active 
semi-supervised learning method ACoForest to facilitate the 
active sampling. The results showed that the proposed methods 
are effective and have potential to be applied to industrial 
practice. Ma et al. [18] proposed a novel algorithm called 
Transfer Naive Bayes (TNB) to transfer cross-company data 
information into the weights of the training data and then build 
the predictor based on re-weighted CC data. The results 

indicated that TNB is more accurate in terms of AUC, within 
less runtime than the state of the art methods and can effectively 
achieve the CCDP task. The heterogeneous CCDP (HCCDP) 
task is that the source and target company data is heterogeneous.  
Jing et al. [11] provided an effective solution for HCCDP. They 
proposed a unified metric representation (UMR) for the data of 
source and target companies and introduced canonical 
correlation analysis (CCA), an effective transfer learning 
method, into CCDP to make the data distributions of source and 
target companies similar. Results showed that their approach 
significantly outperforms state-of-the-art CCDP methods for 
HCCDP with partially different metrics and for HCCDP with 
totally different metrics, their approach is also effective.  

Turhan et al. [20] introduced a mixed model of within and 
cross data for CCDP to investigate the merits of using mixed 
project data for binary defect prediction. Results showed that 
when there is limited project history, mixed model for CCDP 
can achieve good performance which can be comparable to 
WCDP. It provided a new idea to CCDP that the use of a small 
amount of labeled WC data would be very valuable to improve 
the performance of CCDP. Lin et al. [19] introduced a novel 
approach named Double Transfer Boosting (DTB) to narrow the 
gap of different distributions between CC data and WC data and 
to improve the performance of CCDP by reducing negative 
samples in CC data. 

 

III. METHODOLOGY 

In this section, we only provide a brief description of the 6 
class imbalance learning methods studied in this work due to the 
space limit. These methods cover three types including under 
sampling technique, over sampling technique and over sampling 
followed by under-sampling technique. 

A. Under sampling techniques 

Under-sampling is a technique to reduce the number of 
samples in the majority class, where the size of the majority class 
sample is reduced from the original datasets to balance the class 
distribution. In this study, we employ two representative under-
sampling methods, i.e, Random under-sampling (RUS) and 
Near Miss (NM). 

Random under-sampling (RUS) is a simple method to select 
a subset of majority class samples randomly and then combine 
them with minority class sample as a training set. The procedure 
of random under-sampling is as follows:  

1. Calculate the ratio of the minority class to the majority 
class, and get the sampling frequency. 

2. Sample the majority class by the sampling frequency. 

3. Select all samples in the minority. 

4. Combine selected samples and attributes for training. 

Near Miss selects negative examples that are close to some 

of the positive examples. In the method, we select negative 

examples whose average distances to three closest positive 

examples are the smallest. This method guarantee every 

positive example is surrounded by some negative examples. 

Finally, in selection of most distant negative examples, we 



 

 

choose the negative examples whose average distances to the 

three closest positive examples are the farthest. We expect the 

Near Miss methods should perform better than the random and 

distant methods, and the random method should work better 

than the distant method. We also expect that Near Miss method 

should achieve high precision and low recall while the distant 

method should achieve high recall and low precision. 
 

B. Over sampling techniques 

Over-sampling is a technique in which the minority class is 
over-sampled by creating “synthetic” examples rather than by 
under-sampling with replacement. In this study, we employ two 
representative under-sampling methods, i.e, Synthetic Minority 
Oversampling Technique (SMOTE) and ADASYN. 

The procedure of SMOTE is as follows: 

1. For each instance in the minority class, calculate the 
Euclidean distance between it and other samples in the minority 
class to find its k nearest neighbor. 

2. According to the amount of over-sampling, determine 
the sampling rate and select a certain number of samples from k 
nearest neighbor randomly. 

3. Take the difference of the feature vector between it and 
its nearest neighbor. 

4. Multiply this difference by a random number between 
0 and 1, and add it to the feature vector under consideration. 

5. Generate new samples for each instance in the minority 
class and add new samples into it. 

ADASYN is based on the idea of adaptively generating 
minority data samples according to their distributions: more 
synthetic data is generated for minority class samples that are 
harder to learn compared to those minority samples that are 
easier to learn. The procedure of ADASYN is as follows: 

1. Calculate the degree of class imbalance. 

2. If degree is less than d then (d is a preset threshold for 
the maximum tolerated degree of class imbalance ratio). 

3. Calculate the number of synthetic data examples that 
need to be generated for the minority class. 

4. For each example, find K nearest neighbors based on the 
Euclidean distance in n dimensional space. 

5. Normalize according to a density distribution. 

6. Calculate the number of synthetic data examples that 
need to be generated for each minority example. 

7. For each minority class data example, generate synthetic 
data examples according to the following steps: 

Do the loop: 

i. Randomly choose one minority data example from 
the k nearest neighbors for data. 

ii. Generate the synthetic data example. 

C. Over sampling followed by under sampling 

Over sampling followed by under-sampling is a technique in 
which the minority class is over-sampled by creating “synthetic” 
examples followed by under-sampling with replacement. In this 
study, we employ two representative under-sampling methods, 
i.e, SMOTE Tomek links (STOME) and SMOTE ENN (SENN). 

 Although over-sampling minority class examples can 
balance class distributions, some other problems usually present 
in data sets with skewed class distributions are not solved. 
Frequently, class clusters are not well defined since some 
majority class examples might be invading the minority class 
space. The opposite can also be true, since interpolating minority 
class examples can expand the minority class clusters,                        
introducing artificial minority class examples too deeply in the 
majority class space. Inducing a classifier under such a situation 
can lead to overfitting. In order to create better-defined class 
clusters, we propose to apply Tomek links to the over-sampled 
training set as a data cleaning method. Thus, instead of removing 
only the majority class examples that form Tomek links, 
examples from both classes are removed. The application of this 
method can be illustrated as follows. First, the original data set 
is over-sampled with Smote, and then Tomek links are identified 
and removed, producing a balanced data set with well-defined 
class clusters. The STOME links method was first used to 
improve the classification of examples for the problem of 
annotation of proteins in Bioinformatics. 

 The motivation behind SENN is similar to STOME. SENN 
tends to remove more examples than the Tomek links does, so it 
is expected that it will provide a more in depth data cleaning. 
Differently from NCL which is an under-sampling method, 
ENN is used to remove examples from both classes. Thus, any 
example that is misclassified by its three nearest neighbors is 
removed from the training set. 

 

IV. EXPERIMENTS 

In this section, we first introduce the experiment dataset and 
the performance measures. Then, in order to investigate the 
performance of class imbalance learning methods, we perform 
some empirical experiments to find answers to the research 
questions mentioned above. 

A. Data set 

In this experiment, we employ 15 available and commonly 
used datasets which can be obtained from PROMISE. The 15 
datasets have the same 20 attributes, so we can apply all attribute 
information directly. Table 1 tabulates the details about the 
datasets. 

TABLE I.  DETAILS OF EXPERIMENT DATASET 

Project Examples %Defective Description 

ant 125 16 Open-source 

arc 234 11.5 Academic 

camel 339 3.8 Open-source 

elearn 64 7.8 Academic 

jedit 272 33.1 Open-source 

log4j 135 25.2 Open-source 

lucene 195 46.7 Open-source 

poi 237 59.5 Open-source 



 

 

Project Examples %Defective Description 

prop 660 10 Proprietary 

redaktor 176 15.3 Academic 

synapse 157 10.2 Open-source 

systemdata 65 13.8 Open-source 

tomcat 858 9 Open-source 

xalan 723 15.2 Open-source 

xerces 162 47.5 Open-source 

 

B. Performance measures 

In the experiment, we employ three commonly used 
performance measures including pd, pf and g-measure. They are 
defined in Table 2 and summarized as follows. 

TABLE II.  PERFORMANCE MEASURES 

 Actual 

yes no 

Predicted yes TP FP 

no FN TN 

pd 𝑻𝑷

𝑻𝑷+ 𝑭𝑵
 

pf 𝑭𝑷

𝑭𝑷+ 𝑻𝑵
 

g-measure 𝟐 ∗ 𝒑𝒅 ∗ (𝟏 − 𝒑𝒇)

𝒑𝒅 + (𝟏 − 𝒑𝒇)
 

 

● Probability of detection or pd is the measure of defective 
modules that are correctly predicted within the defective class. 
The higher the pd, the fewer the false negative results. 

● Probability of false alarm or pf is the measure of non-
defective modules that are incorrectly predicted within the non-
defective class. Unlike pd, the lower the pf value, the better the 
results. 

●  g-measure is a trade-off measure that balances the 
performance between pd and pf. A good prediction model should 
have high pd and low pf, and thus leading to a high g-measure. 

C. Experimental Procedure 

 In every experiment, one dataset is selected as WC data and 
the rest are regarded as CC data to conduct the experiment. The 
CC data is considered as basic training data which will be 
adjusted in every experiment. All processing steps (data filter 
and data sampling) are done on CC data. Then processed CC 
data are used to build the CCDP model. Finally, the resulting 
model is evaluated on the WC data. The procedure will be 
repeated 30 times in every experiment to avoid sample bias. 
Then, the mean values of performance are calculated. 

 In this experiment, we choose three representative classifiers 
as the basic prediction model, Naive Bayes (NB), Random 
Forest (RF), and Logistic Regression (LR).The reason we 
choose these classifiers is that these classifiers fall into three 
different families of learning methods. NB is a probabilistic 
classifier; RF is a decision-tree classifier; and LR is a linear 
model for classification. 

D. Experimental results 

Fig. 1 presents the scatter plots of (PD, PF) points from the 
seven training methods on the ten SDP data sets. We can gain 
the following results from Fig. 1.  

Although CCDP models without involving any class 
imbalance learning algorithms appears to be better at PF than 
other class imbalance learning models, it has lowest PD value, 
which proves class imbalance learning should be applied to 
CCDP models. In terms of the defect detection rate (PD), NM 
outperforms other class imbalance learning models, which 
shows its effectiveness in finding defects. However, NM has 
relatively high PF value. In terms of the false alarm rate (PF), 
although SENN is the best, it performs not well in PD, which 
makes it hardly useful in practice.  

 

(a)NB 

 

(b)RF 

 

(c)LR 



 

 

Fig. 1. Performances with Scatter plots of (PD, PF) points of the six class 

imbalacne learning methods and the CCDP model without class imbalance 
learning on the fifteen projects 

Table 3-5 also show the g-measure values for each project 
on all the methods. From the tables, we can find that CCDP 
models without involving any class imbalance learning 
algorithms perform the worst in g-measure, which proves that 
the class imbalance problem is a big challenge for CCDP. In 
terms of NB model, NM achieves the best average g-measure 
value among the 15 projects. In terms of RF, RUS achieves the 
best average g-measure value among the 15 projects. In terms of 
LG, ADASYN achieves the best average g-measure value 
among the 15 projects. RUS and NM are under-sampling 
techniques, which reduce the number of CC instances in the non-
defect class. We guess the reason under-sampling technique 
performs better is that it retains the defect-prone instances. 

TABLE III.  G-MEASURE PERFORMANCES WITH NAVIE BAYES 

Project None SMOTE ADASYN SENN STOME RUS NM 

ant 0.32 0.50 0.38 0.50 0.50 0.55 0.43 

arc 0.30 0.35 0.30 0.53 0.40 0.35 0.62 

camel 0.62 0.61 0.62 0.46 0.61 0.61 0.67 

elearn 0.00 0.00 0.00 0.33 0.00 0.00 0.67 

jedit 0.46 0.47 0.55 0.47 0.46 0.58 0.51 

log4j 0.25 0.37 0.25 0.34 0.37 0.37 0.62 

lucene 0.17 0.23 0.17 0.24 0.23 0.21 0.52 

poi 0.23 0.28 0.23 0.28 0.27 0.23 0.49 

prop 0.23 0.43 0.23 0.45 0.41 0.28 0.54 

redaktor 0.19 0.40 0.19 0.35 0.35 0.19 0.27 

synapse 0.59 0.68 0.53 0.69 0.68 0.39 0.38 

system 0.50 0.61 0.50 0.61 0.61 0.49 0.62 

tomcat 0.65 0.73 0.64 0.72 0.73 0.70 0.60 

xalan 0.64 0.65 0.63 0.65 0.65 0.63 0.50 

xerces 0.34 0.39 0.33 0.39 0.39 0.34 0.46 

AVG 0.37 0.45 0.37 0.47 0.44 0.39 0.53 

 

TABLE IV.  G-MEASURE PERFORMANCES WITH RANDOM FOREST 

Project None SMOTE ADASYN SENN STOME RUS NM 

ant 0.51 0.67 0.64 0.67 0.70 0.66 0.29 

arc 0.19 0.25 0.44 0.19 0.31 0.62 0.54 

camel 0.14 0.26 0.14 0.14 0.26 0.61 0.60 

elearn 0.00 0.00 0.00 0.00 0.00 0.33 0.73 

jedit 0.25 0.47 0.44 0.44 0.49 0.70 0.36 

log4j 0.11 0.41 0.37 0.37 0.48 0.73 0.51 

lucene 0.04 0.26 0.23 0.17 0.29 0.62 0.41 

poi 0.05 0.40 0.32 0.37 0.46 0.66 0.47 

prop 0.23 0.34 0.28 0.23 0.34 0.68 0.45 

redaktor 0.00 0.19 0.13 0.13 0.30 0.37 0.20 

synapse 0.39 0.67 0.64 0.60 0.61 0.72 0.31 

system 0.35 0.35 0.35 0.35 0.35 0.66 0.54 

tomcat 0.33 0.49 0.55 0.43 0.44 0.66 0.48 

xalan 0.54 0.63 0.64 0.58 0.62 0.63 0.46 

xerces 0.22 0.42 0.38 0.38 0.41 0.46 0.43 

AVG 0.20 0.39 0.37 0.34 0.40 0.56 0.45 

 

TABLE V.  G-MEASURE PERFORMANCES WITH LOGISTIC REGRESSION 

Project None SMOTE ADASYN SENN STOME RUS NM 

ant 0.26 0.74 0.75 0.77 0.76 0.76 0.39 

arc 0.13 0.52 0.55 0.48 0.52 0.51 0.62 

camel 0.00 0.52 0.64 0.36 0.53 0.69 0.68 

elearn 0.00 0.56 0.56 0.33 0.56 0.32 0.73 

Project None SMOTE ADASYN SENN STOME RUS NM 

jedit 0.25 0.70 0.67 0.69 0.69 0.69 0.47 

log4j 0.11 0.62 0.65 0.58 0.63 0.65 0.57 

lucene 0.10 0.59 0.58 0.48 0.56 0.56 0.51 

poi 0.08 0.67 0.63 0.57 0.66 0.67 0.49 

prop 0.11 0.63 0.64 0.49 0.63 0.61 0.50 

redaktor 0.00 0.66 0.65 0.65 0.66 0.48 0.29 

synapse 0.11 0.76 0.74 0.64 0.73 0.72 0.44 

system 0.19 0.75 0.73 0.66 0.75 0.72 0.61 

tomcat 0.37 0.59 0.68 0.58 0.58 0.67 0.57 

xalan 0.59 0.62 0.59 0.62 0.62 0.61 0.51 

xerces 0.26 0.41 0.39 0.37 0.40 0.39 0.45 

AVG 0.17 0.62 0.63 0.55 0.62 0.60 0.52 
 

RQ1 Summary. According to the experiment results in 
Table 3-5, we conclude that these class imbalance learning 
algorithms can yield better prediction results than CCDP 
models without involving any class imbalance learning 
algorithms. 

 

RQ2 Summary. According to the experiment results in 
Table 3-5, the above observations show that the 
effectiveness of these class imbalance learning methods 
exhibits significant differences on the performance of 
CCDP. Among the three types of imbalance learning 
methods, under-sampling technique is the winner according 

to g-measure. 

 

V. THREATS TO VALIDITY 

In this section, we discuss several validity threats that may 
have an impact on the results of our studies. 

A. External validity  

Threats to external validity occur when the results of our 
experiments cannot be generalized. As a preliminary result, we 
performed our experiments on the 15 datasets to answer the 
research questions. Although these datasets have been widely 
used in many software defect prediction studies, we still cannot 
claim that our conclusions can be generalized to other software 
projects. Nevertheless, this work provides a detail experimental 
description, including parameter settings (default parameter 
settings specified by sklearn), thus other researchers can easily 
replicate our method on new datasets. 

B. Internal validity  

 In our study, we repeat 30 times to avoid sample bias, and 
calculate average results to verify the performance of all test 
methods. In this work, we only use three classifiers, Naive Bayes 
(NB), Random Forest (RF), and Logistic Regression (LR) due 
to its popularity in defect prediction. 

C. Construct validity  

In our experiments, we mainly use pd, pf, g-measure to 
measure the effectiveness of the proposed method. Nevertheless, 
other evaluation measures such as AUC measure can also be 
considered. 



 

 

 

VI. CONCLUSION AND FUTURE WORK 

The cross-company defect prediction is an interest problem 
in the field of software engineer. The class imbalance problem 
of defect datasets usually makes it difficult to build a CCDP 
model with high performance. In this paper, we address the issue 
how class imbalance learning methods can contribute to CCDP. 
We conduct a larger scale empirical study to investigate the 
impact of 6 class imbalance learning methods on the CCDP 
performance. We conduct experiments on the 15 datasets to 
evaluate the performance of the methods. The experimental 
results indicate that under-sampling technique is the winner 
according to g-measure among the three types of imbalance 
learning methods. 

 In the future, we would like to validate the generalization of 
our conclusion on more company data. In addition, we plan to 
apply our method to more real-life systems [30-31] to predict the 
defective module.  
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