
10.18293/SEKE2017-034

Is the Number of Faults Helpful for Cross-Company

Defect Prediction?

Yiyang Jing1, Jiansheng Zhang2, *Jin Liu1

1State Key Lab. of Software Engineering, Computer School, Wuhan University, Wuhan, China
2School of Computer Science and Information Engineering, HuBei University, Wuhan, China

*Corresponding author

*Corresponding author email: jinliu@whu.edu.cn

Abstract—In the field of Cross-company Defect Prediction (CCDP),

how to deal with the data to make it more accurately predict the

cross-company software defects is the focus problem we need to

consider. Now a mainstream idea is to determine the weight of the

training data based on the similarity between the training data and

the test set, and then build the model on the basis of these weighted

data. However, sometimes, when we deal with some problems with

imbalance class, directly using the weight calculated above may

lead to errors. Because a large number of non-defective instance’s

weight accumulation will lead to the defective instance’s weight

has a little impact on the final result. This is why we need to

consider the addition of the number of defects. Considering the

number of defects will effectively eliminate the impact of a large

number of non-defective instance’s weight accumulation.

Therefore, we propose a Transfer-learning Naïve Bayes model

considering the number of defective information(NTNB). The

method consists of two major stages: weight the data and build the

prediction model. In the stage of weighting the data, we not only

consider the similarity between the data but also consider the

number of defects to get the final weights for data. And we

conducted a set of comparative experiments on six open cross-

company datasets. The results show that considering the number

of defects information can effectively avoid some defective instance

is misjudged as non-defective instance, and improve the accuracy

of prediction in some unbalanced problems.

Keywords—software defect prediction;cross-company defect

prediction; transfer learning; NTNB

I. INTRODUCTION

Software defect prediction is one of the most important
software quality assurance techniques. It aims to detect the
defect proneness of new software modules via learning from
defect data. So far, many efficient software defect prediction
approaches [1-2] have been proposed, but they are usually
confined to within company defect prediction (WCDP). WCDP
works well if sufficient data is available to train a defect
prediction model. However, it is difficult for a new company to
perform WCDP if there is limited historical data. Cross-
company defect prediction (CCDP) is a practical approach to
solve the problem. It trains a prediction model by exploiting one
or multiple projects of a source company and then applies the
model to target company [3].

Recent year, there have sprung up a large number of
excellent articles to solve the cross-company defect prediction
problem. For example, Turhan et al. use a Nearest Neighbor
Filter model (NN-filter) to select the similar data from source

data as training data for more accurate forecasts [4]. Be different
from this, Ying Ma et al. select all the source data as training
data but add weights to them to build a Transfer Naive Bayes
model(TNB)[5]. However, all of these models are not
considered the number of faults whether has an impact on the
forecast results. That is to say, the information about the number
of faults has not been fully utilized.

However, when calculating the weight between training
instances and test instances, the number of faults information has
an important additive effect on it. For example, we tend to give
a higher weight to an instance which has fewer bugs, and these
higher weights allow these instances play a greater role in
predicting the presence or absence of defects in the test instance.
For instance, when calculating the similarity between instances,
we get the same degree of similarity between several training
instances and the test instance, so which of them is more
convincing in determining whether the test instance is defective?
In this time, we need to take the number of faults information
into consider.

Therefore, this paper firstly gives the corresponding initial
weights to the cross-project training instances through the
Transfer Learning [6]. Then give the final weight combines with
number of faults information and calculate the prior probabilities
of the presence or absence of defects. Finally build the forecast
model (NTNB) on them. We select six available and commonly
used software project datasets and choose five of them as
training data, the remaining one as the testing data to do the
experiments [7]. The experimental results show that the NTNB
model which considering the number of faults is superior than
the traditional prediction models.

The structure of this article is as follows, Section II is the

related work in this area; Section III introduces the NTNB

approach for CCDP. Section IV shows the experiment setup and

experiment results. Section V addresses the conclusion and

points out the future work.

II. RELATED WORK

In recent years, Machine Learning is more and more widely

applied in various fields [8-10], In the field of defect prediction,

the machine learning methods are also used a lot. For example,

Xiao Yu propose a novel probabilistic graphical model called

Bayesian Network based Program Dependence Graph (BNPDG)

to locate the defect in the software. In addition, decision trees,

neural networks and other methods have also been widely used

to predict the defect of software [23-24].

However, with the evolution of the algorithm, it has been

found that it is more difficult to improve the prediction accuracy

only by improving the algorithm [5]. So people began to

improve the prediction accuracy by using more appropriate

training data. For example, by removing the data which is

poorly related to the company, to mitigate the impact of

irrelevant data on forecasting [15].

In the process of cross-company forecasting(CCDP), The

choice of training data becomes more important. Because the

cross-company defect prediction often means that in the

prediction process, the training data and test data have different

feature distribution and prior knowledge. This requires us to

process the original data to eliminate this priori difference. In

order to achieve this purpose, Turhan et al. use a Nearest

Neighbor Filter model (NN-filter) to select the similar data from

source data as training data for more accurate forecasts [4],

Ying Ma et al. select all the source data as training data but add

weights to them to build a Transfer Naive Bayes model(TNB)

[5].

In addition to selecting the appropriate training data, people

also thought that by selecting the valuable characteristics to

improve the accuracy of prediction. Zhou Xu proposed a

Maximal Information Coefficient with Hierarchical

Agglomerative Clustering (MICHAC) method, first of all,

sorting the attributes according to the amount of information of

them, and then remove the redundant attributes through the

hierarchical clustering to get the most valuable attributes [14]

[16].

III. METHODOLOGY

In this section, we present our NTNB approach for CCDP.

The method consists of two major stages: weight the data and

build the prediction model. In the stage of weighting the data,

we not only consider the similarity between the data but also

consider the number of defects to get the final weights for data.

In the stage of building the prediction model, first of all, we

calculate the prior probabilities and conditional probabilities

based on the previously calculated weights, and then use the

principles of the Naïve Bayes classifier to predict the label of

the test instance.

A. The Naive Bayes Model

The reason why do we use the Naive Bayes as our

forecasting model is that when we encounter such a problem

which need to consider all attribute information to get the

probability of the result, many algorithms may ignore some

weak features, but the Naive Bayes model will use all available

information to correct the forecast results. It’s important for the

defect prediction field which need to consider a large number

of attributes information. Although many attributes may have

little impact on the result separately, but the combination of

them will make a great influence.

The Naïve Bayes' thought is to calculate the probability that

an instance belongs to each category under given conditions,

and which category’s probability is higher, which category we

think it belongs to.

For example, there is an instance x, and the category set is

C = {c1, c2}. If the probability of x belongs to the category c1 is

larger than it belongs to c2, then we regard the instance x’s

category as c1, otherwise as c2.

 P(c1|x) > P(c2|x) →x ∈ c1 (1)

 P(c1|x) < P(c2|x) →x ∈ c2 (2)

And P(𝑐𝑖 | 𝑥) =
P(𝑐𝑖)∗P(𝑥 | 𝑐𝑖)

P(𝑥)
.The P(ci) is the prior

probability of class ci, The
P(𝑥 | 𝑐𝑖)

P(𝑥)
 is an adjustment factor to

adjust the value of the posteriori probability, in order to make

it more close to the true probability.

B. The Weight Of Training Data

This part we intend to calculate the weight of the training

data by considering the number of faults and the distance

between training instances and test instances.

First, we measure the distance between instances by

Transfer Learning [6]. The goal of Transfer Learning is to move

the knowledge learned from one environment to deal with the

problem in a new environment. It’s particularly suitable for the

cross-company defect prediction, because that the cross-

company defect prediction is just using the cross-company code

defect information to predict the code deficiencies for different

companies. Then how do we determine the weights of training

instances in the migration process? An important principle is:

the higher the similarity between the training instance and the

testing instance, the higher the weight.

Then we first calculate the similarity between instances and

calculate the weights based on similarity.

According to TNB [5], the similarity between instances is

measured as follows: 1) we need to find the maximum and

minimum values of each attribute in the test set and store them

into arrays.2) Next we judge whether each attribute of each

training instance is within the maximum and minimum range of

the corresponding attribute in the test set. If yes, the

corresponding instance’s support factor will plus one. For

example, giving three training instances: x1= (1, 2, 2, ’false’),

x2= (2, 1, 3, ’false’), x3= (2, 2, 4, ‘true’|3), where the bit after

‘true’ is the number of defects, and one training instance: y1= (2,

2, 3). Then Max = (2, 2, 3), Min = (2, 2, 3). So for the first

instance = (1, 2, 2, ’false’), the support factor s1 = 1; Similarly,

s2 = 2, s3 = 2.

Next, we will calculate the weight of each training instance

by the above support factors. Here, according to L. Peng’s [17]

paper, we use the gravitational formula to simulate the

gravitational force between the data, that is the weight.

 𝑤𝑖 = G
𝑚1𝑚2

(𝑟)2
=

𝑘𝑚𝑀𝑠𝑖𝑀

(𝑘 − 𝑠𝑖 + 𝑟)2
∝

𝑠𝑖

(𝑘 − 𝑠𝑖 + 𝑟)2
 (3)

In Eq.(3), wi is the weight of each training instance; G is the

universal gravitational constant, m1 and m2 is the mass of two

objects. r is the distance between the two objects; k is the

number of attributes, m is the number of test cases, M is the

mass of each attribute, so kmM is the mass of all test cases; si is

the support factor of each training instance, so siM is the mass

of each training instance; Similarity, (k-si+1) is the distance

between each training instance and the test set. In this process,

we can remove some fixed constants, and thus get the right part

of the Eq.(3). In the end, we can get the final weight w by

accumulate each training instances’ weight wi.

But that's not our final weights. Sometimes, when we deal

with some problems with imbalance class, directly using the

value calculated above may lead to errors. Because a large

number of non-defective instance’s weight accumulation will

lead to the defective instance’s weight has a little impact on the

final result. For example, for training instances x1= (1, 2,

2, ’false’), x2= (2, 1, 3, ’false’), x3= (2, 2, 4, ‘true’|3), and the

test instance: y1= (2, 2, 3). According to Eq.(3), we can calculate

the weight of each training instance, w1 = 1/9, w2 =1/2, w3 = 1/2.

If we predict the presence of defects directly according to these

weights, then the test instance is likely to be judged as having

no errors due to the accumulation of the non-defective

instance’s weight. However, based on the similarity between

the test instance and the defective training instance, this test

instance is still likely to be defective. So, calculating weights

without considering the number of defects can cause some

defective instance is mistaken for non-defective instance, which

will reduce the prediction accuracy.

Therefore, we consider the number of defects information

in calculating the weight of each instance. That is to say we

add the number of defects on the basis of Eq.(3).

 𝑤𝑖 =
𝑠𝑖𝑛𝑖

(𝑘 − 𝑠𝑖 + 1)2
 (4)

ni is the number of defects for the i-th training instance.

Next we will describe how to predict the presence of defects

on the basis of this weight.

C. NTNB Approach

The general idea of our algorithm is to use the Naïve Bayes

as our forecasting model on the weighted data. According to

Eq.(1) and Eq.(2), in order to calculate the posterior probability

P(𝑐𝑖| 𝑥), we need to calculate P(𝑐𝑖), P(𝑥 | 𝑐𝑖) and P(𝑥). To

better explanation, we define the indicative function f(x, y): if

x = y, f(x, y) = 1, otherwise, f(x, y) = 0.

According to [22], The prior probabilities P(𝑐) can be

expressed as:

 P(𝑐) =
∑ 𝑓(𝑐𝑖,𝑐)𝑤𝑖+1

𝑛

𝑖=1

∑ 𝑤𝑖+
𝑛

𝑖=1
𝑛𝑐

 (5)

n is the total number of training instances, f(ci, c) is the

indication function described above, ci is the category of the i-

th training instance, c is the label of the attribute that we want

to calculate the prior probability, wi is the weight of the i-th

training instance, and nC is the total number of categories.

Next, we will calculate the conditional probability of the j-

th attribute aj in the training instance xi according to the formula

in [18].

 P(𝑎𝑗|𝑐) =
∑ 𝑓(𝑎𝑖𝑗,𝑎𝑗)𝑓(𝑐𝑖,𝑐)𝑤𝑖+1

𝑛

𝑖=1

∑ 𝑓(𝑐𝑖,𝑐)𝑤𝑖+𝑛𝑗

𝑛

𝑖=1

 (6)

n is the total number of training instances, aij is the value of

j-th attribute in i-th training instance, ci is the category of the i-

th training instance, c is the label of the attribute that we want

to calculate the conditional probability, wi is the weight of the

i-th training instance, and nj is the number of different values

for attribute aj in the training set.

Suppose that x is an instance. Then:

 𝑃(𝑥) = ∑ P(𝑐𝑖)∏𝑗=1
𝑘 P(𝑎𝑗 | 𝑐𝑖)

𝑛𝑐

𝑖=1
 (7)

nC is the total number of categories, k is the number of

attributes in instance x, P(𝑐𝑖) is introduced in Eq.(5),

P(𝑎𝑗 | 𝑐𝑖) is introduced in Eq.(6).

So we can predict the x’s category by:

 P(𝑐𝑖 | 𝑥) =
P(𝑐𝑖)∏𝑗=1

𝑘
P(𝑎𝑗| 𝑐𝑖)

P(𝑥)
 (8)

The P(𝑐𝑖| 𝑥) is the probability that instance x is predicted

as class c, P(𝑐𝑖) is introduced in Eq.(5), k is the number of

attributes in instance x, P(𝑎𝑗 | 𝑐𝑖) is introduced in Eq.(6), P(𝑥

is introduced in Eq.(7).

If P(𝑐𝑖 | x) > P(𝑐𝑖 | x), 1 ≪ 𝑗 ≪ nc, 𝑗 ≠ i ,then, x ∈ ci.

Otherwise, x∈cj. where 𝑛𝑐 is the total number of categories.

Next, we will classify the below examples from considering

the number of defects and not considering it.

For training instances x1= (1, 2, 2, ’false’), x2= (2, 1,

3, ’false’), x3= (2, 2, 4, ‘true’|3), and the test instance: y1= (2,

2, 3). Then n = 3, nC = 2, k = 3.

1) Considering The Number Of Defects

 According to Eq.(4), we can calculate the weight of each

training instance, w1 = 1/9, w2 =1/2, w3 = 3/2.

 According to Eq.(5)

 P(′𝑡𝑟𝑢𝑒′) =
(𝑤3 ∗ 1) + 1

(𝑤1 ∗ 1 + 𝑤2 ∗ 1 + 𝑤3 ∗ 1) + 2
= 0.608

 P(′𝑓𝑎𝑙𝑠𝑒′) =
(𝑤1 ∗ 1 + 𝑤2 ∗ 1) + 1

(𝑤1 ∗ 1 + 𝑤2 ∗ 1 + 𝑤3 ∗ 1) + 2
= 0.392

 According to Eq.(6), n1=2 ,n2=2, n3= 3.

 P(𝑎1 = 2|′𝑡𝑟𝑢𝑒′) =
(𝑤3 ∗ 1) + 1

(𝑤3 ∗ 1) + 2
= 0.714

 P(𝑎1 = 2|′𝑓𝑎𝑙𝑠𝑒′) =
(𝑤2 ∗ 1) + 1

 (𝑤1 ∗ 1 + 𝑤2 ∗ 1) + 2
= 0.574

 P(𝑎2 = 2|′𝑡𝑟𝑢𝑒′) =
(𝑤3 ∗ 1) + 1

(𝑤3 ∗ 1) + 2
= 0.714

 P(𝑎2 = 2|′𝑓𝑎𝑙𝑠𝑒) =
(𝑤1 ∗ 1) + 1

(𝑤1 ∗ 1 + 𝑤2 ∗ 1) + 2
= 0.426

 P(𝑎3 = 3|′𝑡𝑟𝑢𝑒′) =
1

(𝑤3 ∗ 1) + 3
= 0.222

 P(𝑎3 = 3|′𝑓𝑎𝑙𝑠𝑒′) =
(𝑤2 ∗ 1) + 1

(𝑤1 ∗ 1 + 𝑤2 ∗ 1) + 3
= 0.415

 According to Eq.(7),

 𝑃(𝑦1) = P(′𝑡𝑟𝑢𝑒′)∏𝑗=1
3 P(𝑎𝑗 | ′𝑡𝑟𝑢𝑒′)

+ P(′𝑓𝑎𝑙𝑠𝑒′)∏𝑗=1
3 P(𝑎𝑗 | ′𝑓𝑎𝑙𝑠𝑒′)

=0.0688 +0.0398=0.1086

 According to Eq.(8)

P(′𝑡𝑟𝑢𝑒′|𝑦1) =
P(′𝑡𝑟𝑢𝑒′)∏𝑗=1

3 P(𝑎𝑗 | ′𝑡𝑟𝑢𝑒′)

P(𝑦1)
 = 0.6335

P(′𝑓𝑎𝑙𝑠𝑒′|𝑦1) =
P(′𝑓𝑎𝑙𝑠𝑒′)∏𝑗=1

3 P(𝑎𝑗 | ′𝑓𝑎𝑙𝑠𝑒′)

P(𝑦1)
= 0.3665

Obviously, P(′𝑡𝑟𝑢𝑒′|𝑦1) > P(′𝑓𝑎𝑙𝑠𝑒′|𝑦1) , So the test

instance 𝑦1’s category is true.

2) Not Considering The Number Of Defects

 According to Eq.(4), we can calculate the weight of each

training instance, w1 = 1/9, w2 =1/2, w3 = 1/2.

 According to Eq.(5)

 P(′𝑡𝑟𝑢𝑒′) =
(𝑤3 ∗ 1) + 1

(𝑤1 ∗ 1 + 𝑤2 ∗ 1 + 𝑤3 ∗ 1) + 2
= 0.482

 P(′𝑓𝑎𝑙𝑠𝑒′) =
(𝑤1 ∗ 1 + 𝑤2 ∗ 1) + 1

(𝑤1 ∗ 1 + 𝑤2 ∗ 1 + 𝑤3 ∗ 1) + 2
= 0.518

 According to Eq.(6), n1=2 ,n2=2, n3= 3.

 P(𝑎1 = 2|′𝑡𝑟𝑢𝑒′) =
(𝑤3 ∗ 1) + 1

(𝑤3 ∗ 1) + 2
= 0.6

P(𝑎1 = 2|′𝑓𝑎𝑙𝑠𝑒′) =
(𝑤2 ∗ 1) + 1

 (𝑤1 ∗ 1 + 𝑤2 ∗ 1) + 2
= 0.574

 P(𝑎2 = 2|′𝑡𝑟𝑢𝑒′) =
(𝑤3 ∗ 1) + 1

(𝑤3 ∗ 1) + 2
= 0.6

 P(𝑎2 = 2|′𝑓𝑎𝑙𝑠𝑒) =
(𝑤1 ∗ 1) + 1

(𝑤1 ∗ 1 + 𝑤2 ∗ 1) + 2
= 0.426

 P(𝑎3 = 3|′𝑡𝑟𝑢𝑒′) =
1

(𝑤3 ∗ 1) + 3
= 0.286

 P(𝑎3 = 3|′𝑓𝑎𝑙𝑠𝑒′) =
(𝑤2 ∗ 1) + 1

(𝑤1 ∗ 1 + 𝑤2 ∗ 1) + 3
= 0.415

 According to Eq.(7),

 𝑃(𝑦1) = P(′𝑡𝑟𝑢𝑒′)∏𝑗=1
3 P(𝑎𝑗 | ′𝑡𝑟𝑢𝑒′)

+ P(′𝑓𝑎𝑙𝑠𝑒′)∏𝑗=1
3 P(𝑎𝑗| ′𝑓𝑎𝑙𝑠𝑒′)

=0.0496 +0.0526=0.1022

 According to Eq.(8)

P(′𝑡𝑟𝑢𝑒′|𝑦1) =
P(′𝑡𝑟𝑢𝑒′)∏𝑗=1

3 P(𝑎𝑗 | ′𝑡𝑟𝑢𝑒′)

P(𝑦1)
 = 0.485

P(′𝑓𝑎𝑙𝑠𝑒′|𝑦1) =
P(′𝑓𝑎𝑙𝑠𝑒′)∏𝑗=1

3 P(𝑎𝑗 | ′𝑓𝑎𝑙𝑠𝑒′)

P(𝑦1)
= 0.514

P(′𝑡𝑟𝑢𝑒′|𝑦1)< P(′𝑓𝑎𝑙𝑠𝑒′|𝑦1) , So the test instance 𝑦1 ’s

category is false.

So, we can see clearly that calculating weights without

considering the number of defects can cause serious mistakes,

such as some instances of potentially defective are misjudged

as having no defects.

Why did this happen? The reason is that a large number of

non-defective instance’s weight accumulation will leads to the

defective instance’s weight has a little impact on the final result.

That is to say, the class imbalance caused part of information

has little influence on the result, unfortunately it maybe just the

part of information we need. This is why we need to consider

the addition of the number of defects.

Algorithm1 presents the pseudo-code of NTNB approach.

IV. EXPERIMENTS

In this section, we evaluate our proposed NTNB approach

to perform CCDP. We first introduce the experiment dataset

and the performance measures. Then, in order to investigate the

performance of NTNB, we perform some contrast experiment.

A. Data set

In this experiment, we employ 6 available and commonly
used software project datasets with their 26 releases which can
be obtained from PROMISE [7]. The details about the datasets
is shown in Table I, where #Instance represents the number of
instances, #Defects represents the total number of faults in the
release, %Defect represents the percentage of defect-prone
instances, and Max is the maximum value of faults.

TABLE I. DETAILS OF EXPERIMENT DATASET

Project Release #Instance #Defects %Defects Max

Ant

Ant-1.3 125 33 16.0% 3

Ant-1.4 178 47 22.5% 3

Ant-1.5 293 35 10.9% 2

Ant-1.6 351 184 26.2% 10

Ant-1.7 745 338 22.3% 10

Camel

Camel-1.0 339 14 3.4% 2

Camel-1.2 608 522 35.5% 28

Camel-1.4 872 335 16.6% 17

Camel-1.6 965 500 19.5% 28

Jedit

Jedit-3.2 272 382 33.1% 45

Jedit-4.0 306 226 24.5% 23

Jedit-4.1 312 217 25.3% 17

Jedit-4.2 267 106 13.1% 10

Jedit-4.3 492 12 2.2% 2

Synapse

Synapse-1.0 157 21 10.2% 4

Synapse-1.1 222 99 27.0% 7

Synapse-1.2 256 145 33.6% 9

Prop
Prop-1 18471 2738 14.8% 37

Prop-2 23014 2431 10.6% 22

Algorithm 1. NTNB approach

Input: Training set L: {x1, x2, … , Xm }, Test set U: {u1, u2, … , un}

Output: The classifier P

1. for each attribute aj in U do:

2. get the max value and min value for aj.

3. get the number of different values nj for aj:

4. end for

5. for each instance xi in L do:

6. calculate wi through Eq.(4)

7. get the total number of categories nc

8. end for

9. According to Eq.(5, 6, 7, 8):

10. Build weighted Naïve Bayes

11. for each instance ui in U do:

12. predict ui through Eq.(1, 2)

13. end for
14. return P

Project Release #Instance #Defects %Defects Max

Prop-3 10274 1180 11.5% 11

Prop-4 8718 840 9.6% 22

Prop-5 8516 1299 15.3% 19

Prop-6 660 66 10% 4

Forrest

Forrest-0.6 6 1 16.7% 1

Forrest-0.7 29 5 17.2% 8

Forrest-0.8 32 2 6.3% 4

There are the same 20 independent variables (the 20 feature
metrics) and one dependent variable (the number of faults) in
each dataset [19].

And we combine the different versions of the same project
as a data set. And choose five from them together as a training
set, the remaining one as a test set to do experiment.

B. Performance measures

In the experiment, we employ three commonly used
performance measures including pd, pf and f-measure to judge
the experimental results [5]. They are summarized as follows.

TABLE II. PERFORMANCE MEASURES

 Actual

yes no

Predicted yes TP FP

no FN TN

● TP is the number of defective instances are correctly
predicted. FP is the number of defective instances are predicted
as non-defective. FN is the number of non-defective instances
are predicted as defective. TN is the number of non-defective
instances are correctly predicted.

●The precision is the measure of defective modules that are
correctly predicted within the instances which is predicted to be
defective. The higher the precision, the better the results.

precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (9)

● The recall rate or pd is the measure of defective modules
that are correctly predicted within the defective class. The higher
the pd, the fewer the false negative results.

pd=
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (10)

● Probability of false alarm or pf is the measure of non-
defective modules that are incorrectly predicted within the non-
defective class. Unlike pd, the lower the pf value, the better the
results.

pf=
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (11)

● The f-measure is the harmonic average of pd and precision.
The higher the measure, the better the results.

f=
2∗𝑝𝑑∗precision

𝑝𝑑+precision
 (12)

Here we generally use f-measure as the total performance
evaluation standard because it’s the combination of pf and
precision.

C. Experimental results

In order to better verify the performance of NTNB algorithm,

we use the training set and test set in table III to do a set of

comparative experiments. We mainly compared the pd, pf and

f parameters of NTNB, TNB, and NB. Their respective

characteristics are as follows:

NTNB considering the number of defects based on the TNB

to avoid the imbalance problem. The imbalance problem is in

the process of forecasting, the accumulation of a large number

of defective instance’s weights resulting in the defective

instance’s weight has a little impact on the final result.

TNB assigns the data weights according to the similarity

between the training instance and the test set, and builds the

Naïve Bayes model on these weighted data [5].

While NB did not consider the difference between cross-

company data, directly building the model.

The following table III shows the pf and pf values in the

experimental results for our three approaches, where the

boldface represents the best result of this experiment. And Fig.

1 shows the scatter plots of pd and pf for three CCDP models

on 6 datasets. If it has a higher recall rate pd and less false alarm

pf, then the defect model has more points distributed in the

lower right corner, which also represents a better performance

for the forecasting model.

TABLE III. PD,PF VALUES, THE REASULTS OF THREE

APPROACH

No. Test Set NTNB TNB NB

PD PF PD PF PD PF

1 synapse 0.556 0.220 0.506 0.180 0.305 0.112

2 prop 0.182 0.073 0.257 0.118 0.197 0.137

3 jedit 0.696 0.321 0.706 0.327 0.423 0.207

4 forrest 0.625 0.305 0.375 0.237 0.000 0.017

5 camel 0.393 0.187 0.383 0.184 0.110 0.099

6 ant 0.726 0.301 0.729 0.300 0.346 0.137

Fig. 1. Scatter plots of pd and pf for three CCDP models on 6

dataset

The table IV is the f-measures in the experimental results for

our three approaches, where the boldface represents the best

result of this experiment. The experimental results show that in

some data sets with unbalanced problems, considering the

number of defects information can effectively avoid some

defective instance is misjudged as non-defective instance, and

improve the accuracy of prediction [20].

TABLE IV. F-MEASURE VALUES, THE REASULTS OF THREE

APPROACH

No. Test data NTNB TNB NB

1 synapse 0.506 0.498 0.337

2 prop 0.213 0.245 0.151

3 jedit 0.431 0.432 0.240

4 forrest 0.323 0.240 0.000

5 camel 0.369 0.363 0.116

6 ant 0.504 0.506 0.314

V. CONCLUSION AND FUTURE WORK

In the field of cross-company defects prediction, many

models do not consider the defects number information in

predicting the result. However, according to our analysis, in

some imbalance problems, considering the number of defects

will effectively eliminate the impact of a large number of non-

defective instance’s weight accumulation. To prove this, we

conducted a set of comparative experiments on six open cross-

company datasets. The results show that considering the

number of defects information can effectively avoid some

defective instance is misjudged as non-defective instance, and

improve the accuracy of prediction in some unbalanced

problems. In the following work, we want to find a balance to

avoid defects number information overfitting the forecast result.

For example, give an extreme example: there are 100000 errors

for one instance, then what can we do to avoid it exceeding

intervening the result? In addition, we will apply our model on

the social data to further prove its effectiveness [21-22], and try

to apply our model to other areas [11-12].

ACKNOWLEDGMENT

This work is partly supported by the grants of National
Natural Science Foundation of China (No.61572374,
No.U163620068, No.U1135005) and the Academic Team
Building Plan from Wuhan University and National Science
Foundation (NSF) (No. DGE-1522883).

REFERENCES

[1] M. Liu, L. Miao, and D. Zhang, “Two-stage cost-sensitive learning for
software defect prediction,” IEEE Transactions on Reliability,2014,
63(2):676-686.

[2] X. Y. Jing, S. Ying, Z. W. Zhang, S. S. Wu, and J. Liu, “Dictionary
learning based software defect prediction,” in: Proc. of the 36th
International Conference on Software Engineering (ICSE), 2014,pp. 414-
423.

[3] Xiaoyuan Jing et al, “Heterogeneous Cross-Company Defect Prediction
by Unified Metric Representation and CCA-Based Transfer Learning,” in:
Proc. of the 10th Joint Meeting on Foundations of Software Engineering,
2015, pp.496-507.

[4] B. Turhan, T. Menzies, A.B. Bener, J.D. Stefano, “On the relative value
of crosscompany and within-company data for defect prediction,”
Empirical Software Engineering, 2009, 14(5):540-578.

[5] Ying Ma, Guangchun Luo, Xue Zeng and Aiguo Chen, “Transfer learning
for cross-company software defect prediction,” Information and Software
Technology,2012, 54:248–256.

[6] Y. Shi, Z. Lan, W. Liu and W. Bi, “Extending semi-supervised learning
methods for inductive transfer learning,” In: Ninth IEEE International
Conference on Data Mining, 2009, pp.483–492.

[7] G. Boetticher, T. Menzies, T. Ostrand, The PROMISE Repository of
Empirical Software Engineering Data, 2007
<http://promisedata.org/repository>.

[8] Xu, Z., et al, “ Hierarchy-Cutting Model based Association Semantic for
Analyzing Domain Topic on the Web,” IEEE Transactions on Industrial
Informatics, doi:10.1109/TII.2017.2647986.

[9] Xu, Z., et al, “The Mobile Media based Emergency Management of Web
Events Influence in Cyber-Physical Space,” Wireless Personal
Communications: ,DOI: 10.1007/s11277-016-3689-7.

[10] Xu, Z., et al, “Building Knowledge Base of Urban Emergency Events
based on Crowdsourcing of Social Media,” Concurrency and
Computation: Practice and Experience, 2016 ,28(15) :4038-4052

[11] Ziwei Liu, Chuanbo Wei, Yang Ma, Hui Li, Xiaoguang Niu* and Lina
Wang, “UCOR: An Unequally Clustering-based Hierarchical
Opportunistic Routing Protocol for WSNs,” Springer Berlin Heidelberg,
2013, 7992:175-185.

[12] Ziwei Liu, Xiaoguang Niu, Xu Lin, Ting Huang Yunlong Wu and Hui Li,
“A Task-Centric Cooperative Sensing Scheme for Mobile Crowdsourcing
Systems,” 《Sensors》, 2016, 16(5):746.

[13] Xiao Yu, Jin Liu, Zijiang James Yang, Xiao Liu, Xiaofei Yin and Shijie
Y, “Bayesian Network Based Program Dependence Graph for Fault
Localization”. ISSRE Workshops 2016: 181-188.

[14] Zhou Xu, Jin Liu, Zijiang Yang, Gege An and Xiangyang Jia, “The Impact
of Feature Selection on Defect Prediction Performance: An Empirical
Comparison”. ISSRE 2016: 309-320.

[15] Xiao Yu, Jin Liu, Mandi Fu, Chuanxiang Ma and Guoping Nie, “A Multi-
Source TrAdaBoost Approach for Cross-Company Defect Prediction”.
SEKE 2016: 237-242.

[16] Zhou Xu, Jifeng Xuan, Jin Liu and Xiaohui Cui, “MICHAC: Defect
Prediction via Feature Selection Based on Maximal Information
Coefficient with Hierarchical Agglomerative Clustering”. SANER 2016:
370-381.

[17] L. Peng, B. Yang and Y. Chen, “A. Abraham, Data gravitation based
classification,” Information Sciences,2009,179(6):809-819.

[18] E. Frank, M. Hall, B. Pfahringer, “Locally Weighted Naive Bayes,” in:
Proceedings of the Conference on Uncertainty in Artificial Intelligence,
2003, pp. 249–256.

[19] Xiao Yu, Jin Liu, Mandi Fu, Chuanxiang Ma, Guoping Nie: “A Multi-
Source TrAdaBoost Approach for Cross-Company Defect Prediction.,”
SEKE 2016: 237-242

[20] Lin Chen, Bin Fang, Zhaowei Shang and Yuanyan Tang, “Negative
samples reduction in cross-company software defects prediction,”
Information and Software Technology,2015,62:67-77.

[21] Zheng Xu et.a, “Multi-modal Description of Public Safety Events using
Surveillance and Social Data,” IEEE Transactions on Big Data, 2017,
10.1109/TBDATA.

[22] Zheng Xu, Yunhuai Liu, Hui Zhang, Xiangfeng Luo, Lin Mei and
Chuanping Hu, “Building the Multi-Modal Storytelling of Urban
Emergency Events Based on Crowd sensing of Social Media Analytics,”
Mobile Networks and Applications: ,DOI: 10.1007/s11036-016-0789-2.

[23] T.M. Khoshgoftaar, E.B. Allen, J.P. Hudepohl and S.J. Aud, “Application
of neural networks to software quality modeling of a very large
telecommunications system,” IEEE Transactions on Neural
Networks,1997, 8 (4): 902–909.

[24] S. Kanmani, V. Rhymend Uthariaraj, V. Sankaranarayanan and P.
Thambidurai, “Object-oriented software fault prediction using neural
networks,” Information and Software Technology,2007, 49 (5) :483–492.

