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Abstract—In the field of Cross-company Defect Prediction (CCDP), 

how to deal with the data to make it more accurately predict the 

cross-company software defects is the focus problem we need to 

consider. Now a mainstream idea is to determine the weight of the 

training data based on the similarity between the training data and 

the test set, and then build the model on the basis of these weighted 

data. However, sometimes, when we deal with some problems with 

imbalance class, directly using the weight calculated above may 

lead to errors. Because a large number of non-defective instance’s 

weight accumulation will lead to the defective instance’s weight 

has a little impact on the final result. This is why we need to 

consider the addition of the number of defects. Considering the 

number of defects will effectively eliminate the impact of a large 

number of non-defective instance’s weight accumulation. 

Therefore, we propose a Transfer-learning Naïve Bayes model 

considering the number of defective information(NTNB). The 

method consists of two major stages: weight the data and build the 

prediction model. In the stage of weighting the data, we not only 

consider the similarity between the data but also consider the 

number of defects to get the final weights for data. And we 

conducted a set of comparative experiments on six open cross-

company datasets. The results show that considering the number 

of defects information can effectively avoid some defective instance 

is misjudged as non-defective instance, and improve the accuracy 

of prediction in some unbalanced problems. 

Keywords—software defect prediction;cross-company defect 

prediction; transfer learning; NTNB 

I.  INTRODUCTION  

Software defect prediction is one of the most important 
software quality assurance techniques. It aims to detect the 
defect proneness of new software modules via learning from 
defect data. So far, many efficient software defect prediction 
approaches [1-2] have been proposed, but they are usually 
confined to within company defect prediction (WCDP). WCDP 
works well if sufficient data is available to train a defect 
prediction model.  However, it is difficult for a new company to 
perform WCDP if there is limited historical data. Cross-
company defect prediction (CCDP) is a practical approach to 
solve the problem. It trains a prediction model by exploiting one 
or multiple projects of a source company and then applies the 
model to target company [3]. 

Recent year, there have sprung up a large number of 
excellent articles to solve the cross-company defect prediction 
problem. For example, Turhan et al. use a Nearest Neighbor 
Filter model (NN-filter) to select the similar data from source 

data as training data for more accurate forecasts [4]. Be different 
from this, Ying Ma et al. select all the source data as training 
data but add weights to them to build a Transfer Naive Bayes 
model(TNB)[5]. However, all of these models are not 
considered the number of faults whether has an impact on the 
forecast results. That is to say, the information about the number 
of faults has not been fully utilized. 

However, when calculating the weight between training 
instances and test instances, the number of faults information has 
an important additive effect on it. For example, we tend to give 
a higher weight to an instance which has fewer bugs, and these 
higher weights allow these instances play a greater role in 
predicting the presence or absence of defects in the test instance. 
For instance, when calculating the similarity between instances, 
we get the same degree of similarity between several training 
instances and the test instance, so which of them is more 
convincing in determining whether the test instance is defective? 
In this time, we need to take the number of faults information 
into consider.  

Therefore, this paper firstly gives the corresponding initial 
weights to the cross-project training instances through the 
Transfer Learning [6]. Then give the final weight combines with 
number of faults information and calculate the prior probabilities 
of the presence or absence of defects. Finally build the forecast 
model (NTNB) on them. We select six available and commonly 
used software project datasets and choose five of them as 
training data, the remaining one as the testing data to do the 
experiments [7]. The experimental results show that the NTNB 
model which considering the number of faults is superior than 
the traditional prediction models. 

The structure of this article is as follows, Section II is the 

related work in this area; Section III introduces the NTNB 

approach for CCDP. Section IV shows the experiment setup and 

experiment results. Section V addresses the conclusion and 

points out the future work. 

II. RELATED WORK 

In recent years, Machine Learning is more and more widely 

applied in various fields [8-10], In the field of defect prediction, 

the machine learning methods are also used a lot. For example, 

Xiao Yu propose a novel probabilistic graphical model called 

Bayesian Network based Program Dependence Graph (BNPDG) 

to locate the defect in the software. In addition, decision trees, 



neural networks and other methods have also been widely used 

to predict the defect of software [23-24]. 

However, with the evolution of the algorithm, it has been 

found that it is more difficult to improve the prediction accuracy 

only by improving the algorithm [5]. So people began to 

improve the prediction accuracy by using more appropriate 

training data. For example, by removing the data which is 

poorly related to the company, to mitigate the impact of 

irrelevant data on forecasting [15].  

In the process of cross-company forecasting(CCDP), The 

choice of training data becomes more important. Because the 

cross-company defect prediction often means that in the 

prediction process, the training data and test data have different 

feature distribution and prior knowledge. This requires us to 

process the original data to eliminate this priori difference. In 

order to achieve this purpose, Turhan et al. use a Nearest 

Neighbor Filter model (NN-filter) to select the similar data from 

source data as training data for more accurate forecasts [4], 

Ying Ma et al. select all the source data as training data but add 

weights to them to build a Transfer Naive Bayes model(TNB) 

[5]. 

In addition to selecting the appropriate training data, people 

also thought that by selecting the valuable characteristics to 

improve the accuracy of prediction. Zhou Xu proposed a 

Maximal Information Coefficient with Hierarchical 

Agglomerative Clustering (MICHAC) method, first of all, 

sorting the attributes according to the amount of information of 

them, and then remove the redundant attributes through the 

hierarchical clustering to get the most valuable attributes [14] 

[16]. 

III. METHODOLOGY 

In this section, we present our NTNB approach for CCDP.  

The method consists of two major stages: weight the data and 

build the prediction model. In the stage of weighting the data, 

we not only consider the similarity between the data but also 

consider the number of defects to get the final weights for data. 

In the stage of building the prediction model, first of all, we 

calculate the prior probabilities and conditional probabilities 

based on the previously calculated weights, and then use the 

principles of the Naïve Bayes classifier to predict the label of 

the test instance. 

A. The Naive Bayes Model 

The reason why do we use the Naive Bayes as our 

forecasting model is that when we encounter such a problem 

which need to consider all attribute information to get the 

probability of the result, many algorithms may ignore some 

weak features, but the Naive Bayes model will use all available 

information to correct the forecast results. It’s important for the 

defect prediction field which need to consider a large number 

of attributes information. Although many attributes may have 

little impact on the result separately, but the combination of 

them will make a great influence.   

The Naïve Bayes' thought is to calculate the probability that 

an instance belongs to each category under given conditions, 

and which category’s probability is higher, which category we 

think it belongs to. 

For example, there is an instance x, and the category set is 

C = {c1, c2}.  If the probability of x belongs to the category c1 is 

larger than it belongs to c2, then we regard the instance x’s 

category as c1, otherwise as c2. 

               P(c1|x) > P(c2|x) →x ∈ c1                                (1) 

               P(c1|x) < P(c2|x) →x ∈ c2                                (2) 

And P(𝑐𝑖  | 𝑥 ) =
P(𝑐𝑖  )∗P(𝑥 | 𝑐𝑖) 

P( 𝑥)
.The P(ci) is the prior 

probability of class ci, The  
P(𝑥 | 𝑐𝑖 ) 

P( 𝑥)
 is an adjustment factor to 

adjust the value of the posteriori probability, in order to make 

it more close to the true probability. 

B. The Weight Of Training Data 

This part we intend to calculate the weight of the training 

data by considering the number of faults and the distance 

between training instances and test instances. 

First, we measure the distance between instances by 

Transfer Learning [6]. The goal of Transfer Learning is to move 

the knowledge learned from one environment to deal with the 

problem in a new environment. It’s particularly suitable for the 

cross-company defect prediction, because that the cross-

company defect prediction is just using the cross-company code 

defect information to predict the code deficiencies for different 

companies. Then how do we determine the weights of training 

instances in the migration process? An important principle is: 

the higher the similarity between the training instance and the 

testing instance, the higher the weight. 

Then we first calculate the similarity between instances and 

calculate the weights based on similarity. 

According to TNB [5], the similarity between instances is 

measured as follows: 1) we need to find the maximum and 

minimum values of each attribute in the test set and store them 

into arrays.2) Next we judge whether each attribute of each 

training instance is within the maximum and minimum range of 

the corresponding attribute in the test set. If yes, the 

corresponding instance’s support factor will plus one. For 

example, giving three training instances: x1= (1, 2, 2, ’false’), 

x2= (2, 1, 3, ’false’), x3= (2, 2, 4, ‘true’|3), where the bit after 

‘true’ is the number of defects, and one training instance: y1= (2, 

2, 3). Then Max = (2, 2, 3), Min = (2, 2, 3). So for the first 

instance = (1, 2, 2, ’false’), the support factor s1 = 1; Similarly, 

s2 = 2, s3 = 2.  

Next, we will calculate the weight of each training instance 

by the above support factors. Here, according to L. Peng’s [17] 

paper, we use the gravitational formula to simulate the 

gravitational force between the data, that is the weight. 

           𝑤𝑖  = G
𝑚1𝑚2

(𝑟)2
=

𝑘𝑚𝑀𝑠𝑖𝑀

(𝑘 − 𝑠𝑖 + 𝑟)2
∝

𝑠𝑖

(𝑘 − 𝑠𝑖 + 𝑟)2
     (3) 

In Eq.(3), wi is the weight of each training instance; G is the 

universal gravitational constant, m1 and m2 is the mass of two 

objects. r is the distance between the two objects; k is the 

number of attributes, m is the number of test cases, M is the 

mass of each attribute, so kmM is the mass of all test cases; si is 

the support factor of each training instance, so siM is the mass 

of each training instance; Similarity, (k-si+1) is the distance 

between each training instance and the test set. In this process, 

we can remove some fixed constants, and thus get the right part 



of the Eq.(3). In the end, we can get the final weight w by 

accumulate each training instances’ weight wi. 

But that's not our final weights. Sometimes, when we deal 

with some problems with imbalance class, directly using the 

value calculated above may lead to errors. Because a large 

number of non-defective instance’s weight accumulation will 

lead to the defective instance’s weight has a little impact on the 

final result. For example, for training instances x1= (1, 2, 

2, ’false’), x2= (2, 1, 3, ’false’), x3= (2, 2, 4, ‘true’|3), and the 

test instance: y1= (2, 2, 3). According to Eq.(3), we can calculate 

the weight of each training instance, w1 = 1/9, w2 =1/2, w3 = 1/2. 

If we predict the presence of defects directly according to these 

weights, then the test instance is likely to be judged as having 

no errors due to the accumulation of the non-defective 

instance’s weight. However, based on the similarity between 

the test instance and the defective training instance, this test 

instance is still likely to be defective. So, calculating weights 

without considering the number of defects can cause some 

defective instance is mistaken for non-defective instance, which 

will reduce the prediction accuracy. 

Therefore, we consider the number of defects information 

in calculating the weight of each instance. That is to say we 

add the number of defects on the basis of Eq.(3). 

                                   𝑤𝑖  =
𝑠𝑖𝑛𝑖

(𝑘 − 𝑠𝑖 + 1)2
                             (4) 

ni is the number of defects for the i-th training instance.       

Next we will describe how to predict the presence of defects 

on the basis of this weight. 

C. NTNB Approach 

The general idea of our algorithm is to use the Naïve Bayes 

as our forecasting model on the weighted data. According to 

Eq.(1) and Eq.(2), in order to calculate the posterior probability 

P(𝑐𝑖| 𝑥 ), we need to calculate P(𝑐𝑖 ),  P(𝑥 | 𝑐𝑖 ) and P( 𝑥). To 

better explanation, we define the indicative function f(x, y): if 

x = y, f(x, y) = 1, otherwise, f(x, y) = 0. 

According to [22], The prior probabilities P(𝑐 )  can be 

expressed as: 

                       P(𝑐 )  =
∑ 𝑓(𝑐𝑖,𝑐)𝑤𝑖+1

𝑛

𝑖=1

∑ 𝑤𝑖+
𝑛

𝑖=1
𝑛𝑐

                        (5) 

n is the total number of training instances, f(ci, c) is the 

indication function described above, ci is the category of the i-

th training instance, c is the label of the attribute that we want 

to calculate the prior probability, wi is the weight of the i-th 

training instance, and nC is the total number of categories. 

Next, we will calculate the conditional probability of the j-

th attribute aj in the training instance xi according to the formula 

in [18]. 

         P(𝑎𝑗|𝑐 )  =
∑ 𝑓(𝑎𝑖𝑗,𝑎𝑗)𝑓(𝑐𝑖,𝑐)𝑤𝑖+1

𝑛

𝑖=1

∑ 𝑓(𝑐𝑖,𝑐)𝑤𝑖+𝑛𝑗

𝑛

𝑖=1

            (6) 

n is the total number of training instances, aij is the value of 

j-th attribute in i-th training instance, ci is the category of the i-

th training instance, c is the label of the attribute that we want 

to calculate the conditional probability, wi is the weight of the 

i-th training instance, and nj is the number of different values 

for attribute aj in the training set. 

Suppose that x is an instance. Then: 

                   𝑃(𝑥) = ∑ P(𝑐𝑖)∏𝑗=1
𝑘 P(𝑎𝑗  | 𝑐𝑖  ) 

𝑛𝑐

𝑖=1
                     (7) 

nC is the total number of categories, k is the number of 

attributes in instance x, P(𝑐𝑖)  is introduced in Eq.(5), 

P(𝑎𝑗 | 𝑐𝑖 ) is introduced in Eq.(6). 

So we can predict the x’s category by: 

                 P(𝑐𝑖 | 𝑥 ) =
P(𝑐𝑖 )∏𝑗=1

𝑘
P(𝑎𝑗| 𝑐𝑖 )

 
 

P( 𝑥)
                    (8) 

The P(𝑐𝑖| 𝑥 ) is  the probability that instance x is predicted 

as class c, P(𝑐𝑖) is introduced in Eq.(5), k is the number of 

attributes in instance x, P(𝑎𝑗 | 𝑐𝑖 ) is introduced in Eq.(6), P(𝑥 

is introduced in Eq.(7). 

If P( 𝑐𝑖 | x) > P( 𝑐𝑖 | x), 1 ≪ 𝑗 ≪ nc, 𝑗 ≠ i  ,then, x ∈ ci. 

Otherwise, x∈cj. where 𝑛𝑐  is the total number of categories. 

Next, we will classify the below examples from considering 

the number of defects and not considering it. 

For training instances x1= (1, 2, 2, ’false’), x2= (2, 1, 

3, ’false’), x3= (2, 2, 4, ‘true’|3), and the test instance: y1= (2, 

2, 3). Then n = 3, nC = 2, k = 3. 

1) Considering The Number Of Defects 

 According to Eq.(4), we can calculate the weight of each 

training instance, w1 = 1/9, w2 =1/2, w3 = 3/2.  

 According to Eq.(5) 

  P(′𝑡𝑟𝑢𝑒′ )  =
(𝑤3 ∗ 1) + 1

(𝑤1 ∗ 1 + 𝑤2 ∗ 1 + 𝑤3 ∗ 1) + 2
= 0.608 

 

   P(′𝑓𝑎𝑙𝑠𝑒′ )  =
(𝑤1 ∗ 1 + 𝑤2 ∗ 1) + 1

(𝑤1 ∗ 1 + 𝑤2 ∗ 1 + 𝑤3 ∗ 1) + 2
= 0.392 

 

 According to Eq.(6), n1=2 ,n2=2, n3= 3. 

  P(𝑎1 = 2|′𝑡𝑟𝑢𝑒′)  =
(𝑤3 ∗ 1) + 1

(𝑤3 ∗ 1) + 2
= 0.714  

     P(𝑎1 = 2|′𝑓𝑎𝑙𝑠𝑒′)  =
(𝑤2 ∗ 1) + 1

 (𝑤1 ∗ 1 + 𝑤2 ∗ 1) + 2
= 0.574 

 P(𝑎2 = 2|′𝑡𝑟𝑢𝑒′)  =
(𝑤3 ∗ 1) + 1

(𝑤3 ∗ 1) + 2
= 0.714 

        P(𝑎2 = 2|′𝑓𝑎𝑙𝑠𝑒)  =
(𝑤1 ∗ 1) + 1

(𝑤1 ∗ 1 + 𝑤2 ∗ 1) + 2
=  0.426   

 P(𝑎3 = 3|′𝑡𝑟𝑢𝑒′)  =
1

(𝑤3 ∗ 1) + 3
= 0.222 

         P(𝑎3 = 3|′𝑓𝑎𝑙𝑠𝑒′)  =
(𝑤2 ∗ 1) + 1

(𝑤1 ∗ 1 + 𝑤2 ∗ 1) + 3
=  0.415 

 According to Eq.(7), 

     𝑃(𝑦1) = P(′𝑡𝑟𝑢𝑒′)∏𝑗=1
3 P(𝑎𝑗  | ′𝑡𝑟𝑢𝑒′ ) 

+ P(′𝑓𝑎𝑙𝑠𝑒′)∏𝑗=1
3 P(𝑎𝑗  | ′𝑓𝑎𝑙𝑠𝑒′ )  

=0.0688 +0.0398=0.1086 

 According to Eq.(8) 



P(′𝑡𝑟𝑢𝑒′|𝑦1 )  =
P(′𝑡𝑟𝑢𝑒′ )∏𝑗=1

3 P(𝑎𝑗  | ′𝑡𝑟𝑢𝑒′) 

P( 𝑦1 )
  = 0.6335   

P(′𝑓𝑎𝑙𝑠𝑒′|𝑦1  )  =
P(′𝑓𝑎𝑙𝑠𝑒′ )∏𝑗=1

3 P(𝑎𝑗  | ′𝑓𝑎𝑙𝑠𝑒′) 

P( 𝑦1 )
= 0.3665 

Obviously, P(′𝑡𝑟𝑢𝑒′|𝑦1 ) > P(′𝑓𝑎𝑙𝑠𝑒′|𝑦1) , So the test 

instance 𝑦1’s category is true. 

2) Not Considering The Number Of Defects 

 According to Eq.(4), we can calculate the weight of each 

training instance, w1 = 1/9, w2 =1/2, w3 = 1/2.  

 According to Eq.(5) 

  P(′𝑡𝑟𝑢𝑒′ )  =
(𝑤3 ∗ 1) + 1

(𝑤1 ∗ 1 + 𝑤2 ∗ 1 + 𝑤3 ∗ 1) + 2
= 0.482 

 

   P(′𝑓𝑎𝑙𝑠𝑒′ )  =
(𝑤1 ∗ 1 + 𝑤2 ∗ 1) + 1

(𝑤1 ∗ 1 + 𝑤2 ∗ 1 + 𝑤3 ∗ 1) + 2
= 0.518 

 

 According to Eq.(6), n1=2 ,n2=2, n3= 3. 

  P(𝑎1 = 2|′𝑡𝑟𝑢𝑒′)  =
(𝑤3 ∗ 1) + 1

(𝑤3 ∗ 1) + 2
= 0.6  

P(𝑎1 = 2|′𝑓𝑎𝑙𝑠𝑒′)  =
(𝑤2 ∗ 1) + 1

 (𝑤1 ∗ 1 + 𝑤2 ∗ 1) + 2
= 0.574 

 P(𝑎2 = 2|′𝑡𝑟𝑢𝑒′)  =
(𝑤3 ∗ 1) + 1

(𝑤3 ∗ 1) + 2
= 0.6 

  P(𝑎2 = 2|′𝑓𝑎𝑙𝑠𝑒)  =
(𝑤1 ∗ 1) + 1

(𝑤1 ∗ 1 + 𝑤2 ∗ 1) + 2
=  0.426   

 P(𝑎3 = 3|′𝑡𝑟𝑢𝑒′)  =
1

(𝑤3 ∗ 1) + 3
= 0.286 

   P(𝑎3 = 3|′𝑓𝑎𝑙𝑠𝑒′)  =
(𝑤2 ∗ 1) + 1

(𝑤1 ∗ 1 + 𝑤2 ∗ 1) + 3
=  0.415 

 According to Eq.(7), 

     𝑃(𝑦1) = P(′𝑡𝑟𝑢𝑒′)∏𝑗=1
3 P(𝑎𝑗  | ′𝑡𝑟𝑢𝑒′ ) 

+ P(′𝑓𝑎𝑙𝑠𝑒′)∏𝑗=1
3 P(𝑎𝑗| ′𝑓𝑎𝑙𝑠𝑒′ )  

=0.0496 +0.0526=0.1022 

 According to Eq.(8) 

P(′𝑡𝑟𝑢𝑒′|𝑦1 )  =
P(′𝑡𝑟𝑢𝑒′ )∏𝑗=1

3 P(𝑎𝑗  | ′𝑡𝑟𝑢𝑒′) 

P( 𝑦1 )
  = 0.485  

P(′𝑓𝑎𝑙𝑠𝑒′|𝑦1  )  =
P(′𝑓𝑎𝑙𝑠𝑒′ )∏𝑗=1

3 P(𝑎𝑗  | ′𝑓𝑎𝑙𝑠𝑒′) 

P( 𝑦1 )
= 0.514 

P(′𝑡𝑟𝑢𝑒′|𝑦1 )< P(′𝑓𝑎𝑙𝑠𝑒′|𝑦1 ) , So the test instance 𝑦1 ’s 

category is false. 

So, we can see clearly that calculating weights without 

considering the number of defects can cause serious mistakes, 

such as some instances of potentially defective are misjudged 

as having no defects. 

Why did this happen? The reason is that a large number of 

non-defective instance’s weight accumulation will leads to the 

defective instance’s weight has a little impact on the final result. 

That is to say, the class imbalance caused part of information 

has little influence on the result, unfortunately it maybe just the 

part of information we need. This is why we need to consider 

the addition of the number of defects. 

Algorithm1 presents the pseudo-code of NTNB approach. 

 

IV. EXPERIMENTS 

In this section, we evaluate our proposed NTNB approach 

to perform CCDP. We first introduce the experiment dataset 

and the performance measures. Then, in order to investigate the 

performance of NTNB, we perform some contrast experiment. 

A. Data set 

In this experiment, we employ 6 available and commonly 
used software project datasets with their 26 releases which can 
be obtained from PROMISE [7]. The details about the datasets 
is shown in Table I, where #Instance represents the number of 
instances, #Defects represents the total number of faults in the 
release, %Defect represents the percentage of defect-prone 
instances, and Max is the maximum value of faults.  

TABLE I.  DETAILS OF EXPERIMENT DATASET 

Project Release #Instance #Defects %Defects Max 

Ant 

Ant-1.3 125 33 16.0% 3 

Ant-1.4 178 47 22.5% 3 

Ant-1.5 293 35 10.9% 2 

Ant-1.6 351 184 26.2% 10 

Ant-1.7 745 338 22.3% 10 

Camel 

Camel-1.0 339 14 3.4% 2 

Camel-1.2 608 522 35.5% 28 

Camel-1.4 872 335 16.6% 17 

Camel-1.6 965 500 19.5% 28 

Jedit 

Jedit-3.2 272 382 33.1% 45 

Jedit-4.0 306 226 24.5% 23 

Jedit-4.1 312 217 25.3% 17 

Jedit-4.2 267 106 13.1% 10 

Jedit-4.3 492 12 2.2% 2 

Synapse 

Synapse-1.0 157 21 10.2% 4 

Synapse-1.1 222 99 27.0% 7 

Synapse-1.2 256 145 33.6% 9 

Prop 
Prop-1 18471 2738 14.8% 37 

Prop-2 23014 2431 10.6% 22 

Algorithm 1.  NTNB approach 

Input: Training set L: {x1, x2, … , Xm }, Test set U: {u1, u2, … ,  un} 

Output: The classifier P 

1. for each attribute aj in U do: 

2.      get the max value and min value for aj. 

3.      get the number of different values nj for aj: 

4. end for 

5. for each instance xi  in L do: 

6.       calculate wi through Eq.(4) 

7.       get the total number of categories nc 

8. end for 

9. According to Eq.(5, 6, 7, 8): 

10.        Build weighted Naïve Bayes 

11. for each instance ui in U do: 

12.       predict  ui through Eq.(1, 2) 

13. end for 
14. return P 



Project Release #Instance #Defects %Defects Max 

Prop-3 10274 1180 11.5% 11 

Prop-4 8718 840 9.6% 22 

Prop-5 8516 1299 15.3% 19 

Prop-6 660 66 10% 4 

Forrest 

Forrest-0.6 6 1 16.7% 1 

Forrest-0.7 29 5 17.2% 8 

Forrest-0.8 32 2 6.3% 4 

 

There are the same 20 independent variables (the 20 feature 
metrics) and one dependent variable (the number of faults) in 
each dataset [19].  

And we combine the different versions of the same project 
as a data set. And choose five from them together as a training 
set, the remaining one as a test set to do experiment. 

B. Performance measures 

In the experiment, we employ three commonly used 
performance measures including pd, pf and f-measure to judge 
the experimental results [5]. They are summarized as follows. 

TABLE II.  PERFORMANCE MEASURES 

 Actual 

yes no 

Predicted yes TP FP 

no FN TN 
 

●  TP is the number of defective instances are correctly 
predicted. FP is the number of defective instances are predicted 
as non-defective. FN is the number of non-defective instances 
are predicted as defective. TN is the number of non-defective 
instances are correctly predicted. 

●The precision is the measure of defective modules that are 
correctly predicted within the instances which is predicted to be 
defective. The higher the precision, the better the results. 

precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                             (9) 

● The recall rate or pd is the measure of defective modules 
that are correctly predicted within the defective class. The higher 
the pd, the fewer the false negative results. 

pd=
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                   (10) 

● Probability of false alarm or pf is the measure of non-
defective modules that are incorrectly predicted within the non-
defective class. Unlike pd, the lower the pf value, the better the 
results. 

pf=
𝐹𝑃

𝐹𝑃+𝑇𝑁
                                    (11) 

● The f-measure is the harmonic average of pd and precision. 
The higher the measure, the better the results. 

f=
2∗𝑝𝑑∗precision 

𝑝𝑑+precision 
                              (12) 

Here we generally use f-measure as the total performance 
evaluation standard because it’s the combination of pf and 
precision. 

C. Experimental results 

In order to better verify the performance of NTNB algorithm, 

we use the training set and test set in table III to do a set of 

comparative experiments. We mainly compared the pd, pf and 

f parameters of NTNB, TNB, and NB. Their respective 

characteristics are as follows: 

NTNB considering the number of defects based on the TNB 

to avoid the imbalance problem. The imbalance problem is in 

the process of forecasting, the accumulation of a large number 

of defective instance’s weights resulting in the defective 

instance’s weight has a little impact on the final result. 

TNB assigns the data weights according to the similarity 

between the training instance and the test set, and builds the 

Naïve Bayes model on these weighted data [5]. 

While NB did not consider the difference between cross-

company data, directly building the model. 

The following table III shows the pf and pf values in the 

experimental results for our three approaches, where the 

boldface represents the best result of this experiment. And Fig. 

1 shows the scatter plots of pd and pf for three CCDP models 

on 6 datasets. If it has a higher recall rate pd and less false alarm 

pf, then the defect model has more points distributed in the 

lower right corner, which also represents a better performance 

for the forecasting model.  

TABLE III.  PD,PF VALUES, THE REASULTS OF THREE 

APPROACH 

No. Test Set NTNB TNB NB 

PD PF PD PF PD PF 

1 synapse 0.556 0.220  0.506 0.180 0.305 0.112 

2 prop 0.182 0.073 0.257 0.118 0.197 0.137 

3 jedit 0.696 0.321 0.706 0.327 0.423 0.207 

4 forrest 0.625 0.305 0.375 0.237 0.000 0.017 

5 camel 0.393 0.187 0.383 0.184 0.110 0.099 

6 ant 0.726 0.301 0.729 0.300 0.346 0.137 

 

 
 

Fig. 1. Scatter plots of pd and pf for three CCDP models on 6 

dataset 



The table IV is the f-measures in the experimental results for 

our three approaches, where the boldface represents the best 

result of this experiment. The experimental results show that in 

some data sets with unbalanced problems, considering the 

number of defects information can effectively avoid some 

defective instance is misjudged as non-defective instance, and 

improve the accuracy of prediction [20]. 

TABLE IV.  F-MEASURE  VALUES, THE REASULTS OF THREE 

APPROACH 

No. Test data NTNB TNB NB 

1 synapse 0.506 0.498 0.337 

2 prop 0.213 0.245 0.151 

3 jedit 0.431 0.432 0.240 

4 forrest 0.323 0.240 0.000 

5 camel 0.369 0.363 0.116 

6 ant 0.504 0.506 0.314 

 

V. CONCLUSION AND FUTURE WORK 

In the field of cross-company defects prediction, many 

models do not consider the defects number information in 

predicting the result. However, according to our analysis, in 

some imbalance problems, considering the number of defects 

will effectively eliminate the impact of a large number of non-

defective instance’s weight accumulation. To prove this, we 

conducted a set of comparative experiments on six open cross-

company datasets. The results show that considering the 

number of defects information can effectively avoid some 

defective instance is misjudged as non-defective instance, and 

improve the accuracy of prediction in some unbalanced 

problems. In the following work, we want to find a balance to 

avoid defects number information overfitting the forecast result. 

For example, give an extreme example: there are 100000 errors 

for one instance, then what can we do to avoid it exceeding 

intervening the result? In addition, we will apply our model on 

the social data to further prove its effectiveness [21-22], and try 

to apply our model to other areas [11-12]. 
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