
New Optimal Solutions for Real-Time Scheduling
of Operating System Tasks Based on Neural

Networks
Ghofrane Rehaiem

Faculty of Mathematical, Physical
and Natural Sciences of Tunis (FST),
Tunis El Manar University, TUNISIA

LISI-INSAT Laboratory (INSAT),
Carthage University, TUNISIA
E-mail: rh.ghofrane@gmail.com

Hamza Gharsellaoui
National Engineering

School of Carthage (ENIC),
Carthage University, Tunisia

LISI-INSAT Laboratory (INSAT),
Carthage University, TUNISIA

E-mail: gharsellaoui.hamza@gmail.com

Samir Ben Ahmed
Faculty of Mathematical, Physical

and Natural Sciences of Tunis (FST),
Tunis El Manar University, TUNISIA

LISI-INSAT Laboratory (INSAT),
Carthage University, TUNISIA

E-mail: samir.benahmed@fst.rnu.tn

1

Abstract—This paper work deals with the implementation of
a neural networks based approach for real-time scheduling of
embedded systems composed by Operating Systems (OS) tasks
in order to handle real-time constraints in execution scenarios.
In our approach, many techniques have been proposed for
both the planning of tasks and reducing energy consumption.
In fact, a combination of Dynamic Voltage Scaling (DVS) and
time feedback can be used to scale the frequency dynamically
adjusting the operating voltage. In this study, Artificial Neural
Networks (ANNs) were used for modeling the parameters that
allow the real-time scheduling of embedded systems under
resources constraints designed for real-time applications running.
Indeed, we present in this paper a new hybrid contribution that
handles the real-time scheduling of embedded systems, low power
consumption depending on the combination of DVS and Neural
Feedback Scheduling (NFS) with the energy Priority Earlier
Deadline First (PEDF) algorithm. Experimental results illustrate
the efficiency of our original proposed approach.

Index Terms—Optimization, Neural Networks, Real-Time
Scheduling, Low-Power Consumption.

I. I NTRODUCTION

The main use of neural networks is to classify possible
results, from a list of informations. More generally, a neural
network allows the approximation of a function. Let’s take the
example of a processor, it can adjust its speed in a continuous
range to ensure that a task is submitted to, at most, a fault
occurrence, and the cost of restoration of state is zero. In this
paper, we want to discuss these issues to propose a heuristic
approach based on neural networks (NN) which can handle
real-time constraints allowing the real-time scheduling with
minimization of power consumption of real-time embedded
systems. A neuron is then the elementary processing unit of
a neural network. It is connected to sources of information as
input and returns output information. All these are organized
through the learning method. In new technology, the use of
fixed parameter method has allowed the development of most

1DOI reference number: 10.18293/SEKE2017-025

embedded detective devices, what is known as the mapping
relationship between test input data and test conclusion. In this
work, we must develop and implement an optimal approach
that considers the following issues in the design which are the
choice of the:

• network model,
• the number of input and output nodes,
• the number of hidden layer nodes,
• the choice of transfer function,
• the choice of initial weight,
• the choice of the learning rules,
• the preprocessed of input and output data in training sam-

ple in order to have a good solution balancing between
the real-time scheduling and the low power consumption
optimization of the embedded systems at the same time.

In this paper, Section 2 gives an overview of the neural
network platform design and the neural feedback scheduling.
Also, we describe the real-time dynamic voltage loop
scheduling DVS. In Section 3, we present our PEDF heuristic
and in Section 4 we shows our experimentation results.
Finally, Section 5 concludes the paper work.

II. BACKGROUND AND RELATED WORKS

Neural network which can adapt the sample data by training
has good fault-tolerance and can be used in the field of
intelligence widely. In the embedded systems, restricted to the
resources and the capacity of processor, the neural network
application has some problems such as losing timeliness, also
the system could be collapsed easily.

A. Neural Network Platform Design:

In practical applications, the input conditions of detection and
the testing standards may need to be modified, which can
damage the existing detection system. The neural network
owns the ability of self-adaptation and self-learning. Therefore,
by studying on the sample data, it can determine the mapping

relationship between the input and the output and if the neural
network is applied to the detection system, it may adjust
the mapping relationship automatically by training samples,
which can make the detection system more flexible and
adaptable [(Bernard, 2008)]. The following paragraph is about
the description of issues needed to be considered in the design.

1) The Choice of Network Model: The 2-layer linear per-
ceptron model and the 3-layer Back Propagation (BP) network
model are provided and the user can choose one of them in
the network parameter settings in accordance with the com-
plexity of the detection system. Based on the [(Hagan, 1996)]
works, a 3-layer BP neural network with a hidden layer can
approximate to any continuous function of bounded domain
with arbitrary precision as long as there are enough hidden
layer nodes. Therefore, in terms of the function, 3-layer BP
neural network can meet most sophisticated detection systems’
requirements, while for some detection systems which are
simple mapping, linear perceptron model with a small amount
of calculation and fast speed can be chosen so as to maximize
the efficiency of the systems.

2) The Choice of the Number of Input and Output Nodes:
The number of the input nodes is determined by testing item.
The number of the output nodes is generally determined by
the number of the testing conclusions. But, if there are a lot
of testing conclusions, the number of the output nodes could
become great, then, the amount of calculation also increases.
So, when there are a lot of testing conclusions, the testing
conclusions can be encoded to binary code, then output nodes
take the number greater than or equal tolog2(N), where N is
the number of conclusions [(Liu, 2011)].

3) The Choice of the Number of Hidden Layer Nodes::
If the network model is Back Propagation (BP) network, the
number of the hidden layer nodes needs to be set. Generally
speaking, if there are too few hidden layer nodes, the network
can not study well, and much more training will be needed
and, meantime the training will not be highly precise; while
too many nodes will bring issues such as a large amount
of calculation, long training time and reduced network
fault-tolerance capacity. System uses the default settings as
the empirical formula.

n1 =
√
n+m+ 2 (1)

In the formula 1,n1 is the number of the hidden layer nodes;
n is the number of the input nodes;m is the number of the
output nodes. If the training effect of experience value is not
good, we can reset the number of the hidden layer nodes in
the parameter settings and do many experiments in order to
achieve faster convergence rate. In order to know the training
efficiency, you should output the training number in training
process, changes of the network errors, changes of network
weights and the training time, so as to make a report for the
network analysis [(Liu, 2011)].

4) The Choice of Transfer Function: In the application of
transfer function detection, most of the outputs are the field
data and test conclusions. The field data are collected by the

acquisition system; detection conclusions are obtained bythe
aplication of the neural network algorithm. The detection
conclusions are indicated with two-value, so the transfer
function of output layer generally uses the sigmoid function
[(Liu, 2011)] which is presented as follows:

f(x) =
1

1 + e−x
(2)

The transfer function is a function that should return a real
close to 1 in the presence of ”good” input information and real
close to 0 when they are ”bad”. Generally, we use functions
with values in the interval of real [0, 1]. When the real is
close to 1, the neuron is called ”active” whereas when the
real is close to 0, we say that the neuron is inactive. The real
in question is called the output of the neuron. If the activation
function is linear, the neural network would be reduced to a
simple linear function. The sigmoid function has the advantage
of being differentiable as well as giving intermediate values
(real between 0 and 1). However, this function have a threshold
that is 1/2 when x = 0.

5) The Choice of the Learning Rules: Due to the par-
ticularity of embedded systems, we should try to select the
learning algorithm with simple calculation and low memory
consumption. For this reason, and to improve the efficiency,
a flexible BP learning algorithm may be adopted. It was
only needed to consider the symbol of gradient to the error
function, rather than the increasing amplitude of the gradient.
The symbol of gradient determines the direction of weight
updating, and the change of the weight size is determined by
an independent ”update value” [(Hagan, 1996)]. The iterative
process of weight correction example is shown below:

ω(t+ 1) = ω(t) + α∆ω(t)× sgn
∂Et

∂ωt

(3)

In the formula 3 [(Tian, 2009)],∆ω(t) is the previous
update value, and the initial value∆ω(0) is set by the actual
application.α is the learning parameter, using variable step-
size learning.

6) The Preprocessing of Input and Output Data in Training
Sample: In the network learning process, because the transfer
function of the neuron is a bounded function, while in the
detection, as the dimension and unit of input test item data
may be different, some values are very large, while others
are very small, which has a great influence on the network.
To prevent some neurons from reaching saturation state, and
meantime make the larger input fall in the region where
gradient of neuron activation function is large, input and
output vectors need to be normalized before the training.

x′
i =

xi − ximin

ximax − ximin

(4)

In the formula 4,ximax andximin are the maximum value and
the minimum value of each input component of the neuron
number i; xi, x′

i are respectively the former and later input
component after pretreatment of the neuron numberi. The
input data values after normalization processing range between

0 and 1. If the neural network training is unsuccessful, or
if the training time is too long, process of training must be
analyzed to train after readjusting the network parameters. If
the training results are satisfactory, the testing sample data
may be used to test the function of the network. Successful
testing demonstrates that the construction of the network is
completed, and then the network parameters and the weights
of each layer of the network are saved as files, ready for testing
procedures.

B. Neural Feedback Scheduling

The basic idea of the neural feedback scheduling (NFS) is
to allocate available resources dynamically among multiple
real-time tasks based on feedback information about actual
resource usage. To tackle the problem associated with the
large computational overheads of optimal feedback scheduling
algorithms, a NFS scheme must be proposed. The goal is to
optimize the overall Quality of Control (QoC) of multitasking
control systems through feedback scheduling while minimiz-
ing the feedback scheduling overhead [(Xia, 2008)].
On one hand, this scheme has advantages such as low feed-
back scheduling overhead, wide applicability, and intelligent
computation. It is also capable of delivering almost optimal
QoC. On the other hand, neural networks are powerful in
learning and adapting, and capable of approximating complex
nonlinear functions with arbitrary precision [(Hagan, 1996)],
[(Zhu, 2006)]. Once well trained using the accurate optimal
solutions at design time, neural networks will be able to deliver
online almost-optimal feedback scheduling performance.

C. Real-time Dynamic Voltage Loop Scheduling

Low power is extremely important for real-time embedded sys-
tems. A real-time loop scheduling techniques were proposed
to minimize energy consumption via Dynamic Voltage Scaling
(DVS) for applications with loops considering transition over-
head. Two algorithms, Iterative Dynamic Voltage Scheduling
(IDVS) and Dynamic Voltage Loop Scheduling (DVLS), are
designed integrating with dynamic voltage scaling (DVS).
IDVS is an algorithm to iteratively optimize the Directed
Acyclic Graph (DAG) part of a loop by incorporating transition
overhead into optimization scheduling scheme. DVLS is an
algorithm to repeatedly regroup a loop based on rotation
scheduling and decreases the energy by DVS as much as
possible within a timing constraint. DVS is one of the most
powerful techniques to reduce energy consumption by adjust-
ing supply voltage at running time.

III. C ONTRIBUTION

In this section, we describe our proposed approach and
we give its notation to be more clear. So, to do this, we
will present how to use processor and a limited memory
to perform a neural network algorithm in order to improve
adaptability in real-time embedded systems. In the application
of the neural network, we need to enter a large number of
training data and output of the training process and the results
of the training, which requires a higher demand for input

and output. Our main goal is about minimizing the number
of neurons in order to facilitate the implementation which
will be adapted later. In this context, we must ensure a low
complexity and fast convergence and as a consequence the
number of neurons must be significantly reduced. Therefore,
new building regulations have been proposed to design the
smallest possible neural network in order to optimize the
scheduling of reconfigurable embedded systems in real-time

A. Formalization

Embedded applications are implemented in a complex
SOC (System-on-Chip). Other resources, such as cores or
dynamically reconfigurable accelerators need to be controlled
by the OS. In particular, an instantiation of the task execution
resources is performed using the OS scheduling service. As
each task can be defined for multiple targets, this service
has to decide at run-time, on what resource the task must
be instantiated. Neural networks have demonstrated their
efficiency in optimization constraint problems with the ability
to converge in a reasonable time (i.e., few cycles) if the
number of neurons and connections between them can be
limited as much as possible. It should be noted that when the
network converges to a stable state which does not belong to
the set of valid solutions, this network need to be reinitialized.

1) Scheduling Modeling Through Neural Network:: In con-
text of SoC architecture, service implementations for task
scheduling are often complex and are not always suitable for
real-time systems because they are usually time costly and
they do not consider the dynamic behavior of the application.
Our solution uses Artificial Neural Networks (ANN) for online
real-time scheduling, where we have chosen the Hopfield
model [(Hopfied, 1985)] to ensure network convergence to a
stable state, while respecting the optimization constraint. This
function is defined as follows:

E = −1

2

N∑

i=1

N∑

j=1

Ti,j × xi × xj −
N∑

i=1

Ii × xi (5)

- Ti,j is the connection weight between the neuronsi and j.
- xi is the state of the neuroni.
- Ii is the external input of the neuroni.
Based on this model and by using an optimization function
of the constraints, a design rule can be defined in order to
facilitate construction of the neural network. The rule k-out-
of-N is a major result in ANN for optimization. This rule
allows the construction ofN neurons for which the evolution
leads to a stable state with ”exactlyk active neurons among
N”. The energy function is defined as follows:

E = (k −
N∑

i=1

xi)
2 (6)

This function is minimal when the active neuron sum is
equal to k, and is positive otherwise. The results of this
scheduling solution in real-time demonstrate the interesting

convergence speed which makes ANN suitable for online
utilization. However, this technique has two major weaknesses.
The first is the large number of slack neurons needed to model
the problem, which depends on the cycle, so that when the
schedule time increases, the number of slack neurons also
increases. The second problem is the presence of several
local minima when many rules are applied to the same set
of neurons. These local minima are particular points of the
energy function representing invalid solutions. Our work is
to considerably reduce the number of hollow neurons for
any period. The principal consequence is the simplificationof
network control. It is clear at this point that our proposition is
guided by a main objective which consists of reducing the
number of neurons while ensuring the convergence of the
network.
∗ Monoprocessor architecture:
In the case of monoprocessor architecture, the scheduling
problem is modeled through ANN by the following represen-
tation:
Neuronsnij are organized in a matrix form, with the sizeNT

x NC , where linei represents the taskτi and the columnj
corresponds to schedule time unitj. The number of time units
NC is the least common multiple of all the task periods and
NT is the number of tasks.
- A neuronnij is considered active when the taskτi is being
executed, during the corresponding time unitj.
- One line of neurons is added to model the possible inactivity
of the processor during the schedule times. These neurons are
called slack neurons.
∗ Multiprocessor architecture:
In the case of homogeneous multiprocessor architecture, sev-
eral matrices arranged in layers are required to model the
different execution resources. New slack neurons are then
needed to manage the execution of each task on resources.
For each couple (taskτi, resourcej), Ci,j new slack neurons
should be added. So, the total number of slack neurons is equal
to:

NT∑

i=1

p∑

j=1

Ci,j + p×NC (7)

Running example of network withp resource layers is pre-
sented in Figure 1. Grey circles represent slack neurons.

Fig. 1. Classical Structure to Model the Scheduling Problemwith ANN.

To reduce the required number of neurons, we must mod-
ify neural network structure. The changes correspond to an
adaptation of the Hopfield model. We have adopted the idea
of creating a mutual exclusion between the possible task
instantiations on execution resources [(Chillet, 2007)].This

mutual exclusion is provided by the presence of an inhibitory
neuronINi,j for the taskτi and the execution of resourcej. In
Figure 2, an example of the scheduling problem is presented
with one taskτi andR possible resources.

Fig. 2. Scheduling Problem Modeled with Inhibitor Neurons.

A set of NC neurons is calledSi,j (NC = 3 in our use case
example) and represents the possible scheduling cycles of the
taskτi on the resourcej. For each resourcej, the Worst Case
Execution Time (WCET) of the taskτi is defined asCi,j .
The set of neuronsSj is configured (definition of inputs and
weights) to converge towardsCi,j active neurons amongNC .
The main characteristic of this neuron network is its capacity
to converge to a stable state from any initial state. One or
more lines of slack neurons can be added to ensure the
network convergence during the application of k-out-of-N
rule on each vertical line of neurons. As shown in Figure
1, the number of added lines in each layer is equal to the
number of identical processors in this layer (In our example,
one resource can execute the tasks, so one line of slack
neurons are added, lineT′). In this case, the convergence can
not be always obtained.
To delete these lines, we choose the application of a k1-out-
of-N1 classical rule on the horizontal sets of neurons and a
at-most-k2-among-N2 rule on the vertical sets of neurons.
If NT tasks must be scheduled onp identical resources (p
processors in the same layer) during theNC cycles, NC

at-most-p-among-NT rules must be applied on each vertical
set ofNT neurons.
There remains the problem concerning the application of
two rules on both sets of neurons with a common neuron.
Figure 3 shows an example of this case, where the first
set of neurons is composed of three horizontal neurons
n1, n2, n3, and the second is composed of three vertical
neuronsn1, n4, n5 (Neuron n1 is the common neuron of the
two sets). The classical additive for various rules mentioned
that if a k1-out-of-3 rule is applied on the first set and
at-most-k2-among-of-3 rule is applied on the second set, then
the inputs and weights are defined as follows:
-Inputs are equal to:
I1 = (2× k1 − 1) + (2× k2 − 1)
I2 = I3 = (2× k1 − 1)
I4 = I5 = (2× k2 − 1)
- Weights are equal towi,j = −2; ∀i, j = 1..5
k2 slack neurons can be added with a specific weight

connection with other neurons in order to ensure the at-most-
k2-among-of-3 rule. In the figure 3, the slack neurons (Sn1,
Sn2) are represented.
To remove the slack neurons while ensuring convergence,
we need to simplify thek-out-of-N rule by adopting the
simple redefinition of input and weight values. The energy
function given in the equation 6, energy was rewrited as
E = (1√

2
k − 1√

2

∑N

i=1
xi)

2.
With these new input values and weight, we can suggest a
simple additive betweenk1-out-of-N1 and at-most-k2-among-
N2 rules. The main idea is to apply the rulek1-out-of-N1
rule at first on horizontal lines andk2-out-of-N2 rule on the
vertical lines and secondly the change of weight of horizontal
lines.
Thus, the common neuron has its input set at the value
k1 + k2 as shown in Figure 3. The change of the weight
values of the horizontal rule (here the horizontal ruler
k1-out-of-3) compensates the increase of input values on the
common neuron. This compensation is done by decreasing
the weight value between the horizontal neurons and the
common neuron between the two rules. An example of
additive of the two rules is given in Figure 3. We present

Fig. 3. Additive of k1-out-of-N1, and at-most-k2-among-N2 Rules with
Slack Neurons.

an online scheduling algorithm for real-time systems that
attempts to minimize the energy consumed by a periodic task
set. This is based on the well-known earliest-deadline-first
(EDF) algorithm [(Liu, 1973)]. We attempt to find the voltage
at which each task must be executed such that the energy
consumed by the entire set of periodic tasks is minimized
and generate a schedule for the task set such that the release
time requirements are satisfied and the deadline for each task
is met. Although the scheduling methods cited above are very
efficient, most of them make the assumption that the Central
Processor Unit (CPU) can operate at several different voltage
levels (and hence different clock frequencies) which can be
varied continuously. In addition, a number of these methods
are aimed at the synthesis of low-power designs and they do
not address energy minimization during field operation.

The optimization problem that we address in this work, is
to minimize the total energy consumed by the set ofn tasks
by optimally determining their start times, their voltagesand
corresponding execution speeds at the real-time scheduling.
The following constraints need to be modeled:
(i) CPU speeds are limited to one of three valuesS1, S2 and
speed-mediumS3 = Sm = (S1 + S2)/2,
(ii) The deadline of each task must be met,
(iii) Tasks are non preemptable,
(iv) A task may start only after it has been released.
The objective function is to minimize

∑
liv

2
i . The modeling

of the constraints and their subsequent linearization are
omitted here due to space limitations.

2) The PEDF Heuristic:: The Priority-energy Earliest
Deadline First heuristic, or simply PEDF, is an extension of
the well-known earliest deadline first (EDF) algorithm. The
operation of PEDF is as follows: PEDF maintains a list of all
released tasks, called the ready list. When tasks are released,
the task with the nearest deadline is chosen to be executed. A
check is performed to see if the task deadline can be met by
executing it at the lower voltage (speed). If the deadline can
be met, PEDF assigns the lower voltage and the execution
of the task begins. During the task’s execution, other tasks
may arrive at any random time. These tasks are assumed to
be placed automatically on the ready list. PEDF again selects
the task with the nearest deadline to be executed. As long as
there are tasks waiting to be executed, PEDF does not keep
the processor idle. This process is repeated until all the tasks
have been scheduled.

Begin algorithm
Procedure PEDF
Repeat forever
If tasks waiting to be scheduled are in ready list
Sort deadlines in ascending order
Schedule task with earliest deadline
If deadline can be met at lower speed (voltage)
schedule task to execute at lower voltage (speed)
If deadline can not be met at medium speed (voltage)
schedule task to execute at medium voltage (speed)
If deadline can not be met at higher speed (voltage)
schedule task to execute at higher voltage (speed)
Else deadline cannot be met, task cannot be scheduled.
End algorithm

3) Notation:: We present the notation and the underlying
assumptions. LetT be a set of assumedn periodic tasks
whereT = τ1, τ2,...,τn. Associated with each taskτi ∈ T are:
(i) its arrival timeai,
(ii) its deadlinedi,
(iii) its length li (represented in number of instruction cycles),
(iv) its periodpi.
Each task is released at time t =ai. Release times are
arbitrary where each task may be released at any time before
its deadline. We assume that the Central Processor Unit
(CPU) can operate at one of the three voltages:V1, V2 or V3.

Depending on the voltage level, the CPU speed may take on
three values:S1, S2 or S3. The supply voltage to the CPU
is under OS control and the OS may dynamically switch the
voltage during run-time with relatively low overhead. CPU
speeds are specified in terms of the number of instructions
executed per second. Each taskτi may be executed at a
voltageVi, V i ∈ {V 1, V 2, V 3}.

Task
Arrival
Time
ai

Deadline
di

Length
li

li/v1 li/v2 li/v3

τ1 3 7 800 2.66 2 2.28
τ2 9 21 750 2.5 1.875 2.14
τ3 0 5 1600 5.33 4 4.57
τ4 18 25 1000 3.33 2.5 2.85
τ5 14 16 600 2 1.5 1.71
τ6 7 10 1200 4 3 3.42
τ7 20 27 1100 3.66 2.75 3.14
τ8 14 20 1600 5.33 4 4.57
τ9 11 14 500 1.66 1.25 1.42

TABLE I
TASK SET COMPOSED OF9 TASKS.

IV. EXPERIMENTATION RESULTS

We present now our experimental results. First, we show the
results of the PEDF for a task set of nine tasks. Our example
task set is given in Table I. It consists of tasksτ1 to τ9.
Each task has a release timeai, a deadlineli and a length
li. We assume that the three processor speeds are 300 million
instructions per second (MIPS) at 2.47 V, 350 MIPS at 2.885 V
and 400 MIPS at 3.3 V. The energy consumed by the schedule
generated through MILP is 75677,4575 units (measured by the
sum of theliv2i values).

Fig. 4. Comparison of Schedules Generated by EDF and PEDF

In this part, we observe that the increased energy consump-
tion of EDF arises due to the fact that EDF does not possess
knowledge of the release times a priori. Our PEDF model,
which does not have such a restriction, executes tasksτ3 and
τ9 at a medium speed (voltage) even though both could have
met their respective deadlines by executing at a lower speed
(voltage). We can observe that energy consumed by a task
is proportional to its length. Since the length of taskτ3 is

greater than the lengths of bothτ1 and τ2. We observe that
by executingτ1 at a medium speed (voltage), andτ2 at a
higher speed (voltage), we can executeτ3 at a medium speed
(voltage) and thus reduces the effect of the length ofτ3 on
energy consumption. This, in fact, does result in an optimal
schedule. The results, plotted in Figure 4, prove that PEDF
produces optimal schedules.
Now we use the first row from the above I, (3, 7, 800) to
demonstrate forward propagation: For this example, we take
two hidden layers with six neurons. Then, we assign weights
to all of the synapses. These weights are selected randomly
(based on Gaussian distribution). The initial weights willbe
between 0 and 1.

Fig. 5. Determination of Initial Weights

We calculate the sum of the product of the inputs with their
corresponding set of weights to arrive at the first values for
the hidden layer. Weights may be considered as measures of
influence of input nodes on the output.
3 * 0.1 + 7 * 0.4 + 800 * 0.7 = 563.1
3 * 0.2 + 7 * 0.5 + 800 * 0.8 = 644.1
3 * 0.3 + 7 * 0.6 + 800 * 0.9 = 724.2
3 * 0.1 + 7 * 0.5 + 800 * 0.9 = 723.8
We put these sums smaller in the circle, because they are not
the final values:

Fig. 6. Calcul of Sums for the First Hidden Layer

We apply the activation function 2 to the hidden layer
sums. The purpose of the activation function is to transform
the input signal into an output signal and are necessary for
neural networks to model complex non-linear patterns. We
use the sigmoid function as Transfer Functionf(x) = 1

1+e−x :

f(563.1) = f(644.1) = f(724.2) = f(723.8) = 1
We add the obtained results to our neural network as hidden
layer results: Then, we sum the product of the hidden layer

Fig. 7. Application of activation function

results with the second set of weights (also determined
randomly the first time around) to determine the output sum.
1 * 0.9 + 1 * 0.4 + 1 * 0.7 + 1 * 0.8 = 2.8
1 * 0.5 + 1 * 0.8 + 1 * 0.1 + 1 * 0.3 = 1.7
We apply now the Transfer Function:
f(2.8) = 0.94
f(1.7) = 0.84

Following the presented method, we had the final output
result.

Fig. 8. Full Diagram

V. CONCLUSION

In this paper we have presented advanced approaches for
real-time scheduling of reconfigurable embedded systems to
meet real-time constraints in different execution scenarios
using neural networks. As a fast and intelligent feedback
scheduling scheme, neural feedback scheduling has been
proposed in this paper for real-time scheduling of OS tasks.
To minimize the total energy consumed, we integrated the
PEDF as online scheduling algorithm for real-time systems.
A first perspective for the future works is to extend our
original approach based on a neural network approach
and especially on the back propagation method to support

real-time embedded systems failures.

REFERENCES

[(Bernard, 2008)] W. Bernard, D.S. Samuel: ”Adaptive SignalProcessing”.
Machinery Industry Press, Beijing, 2008.

[(Liu, 2011)] D. Li, Y. Liu, and Y. Chen. ”The Application Research of
Neural Network in Embedded Intelligent Detection”. (Eds.):CCTA
2010, Part IV, IFIP AICT 347, pp. 376381, 2011.

[(Tian, 2009)] Y. Tian. ”Hybrid Neural Network Technology”. Science
Press, Beijing, 2009.

[(Hagan, 1996)] M.T. Hagan, H.B. Demuth and M.H. Beale. ”Neural
Network Design”, PWS Publishing, USA, 1996.

[(Xia, 2005)] F. Xia, S.B. Li and Y.X. Sun. ”Neural Network Based
Feedback Scheduler for Networked Control System with Flexible
Workload”, Int. Conf. on Natural Computation (ICNC), Lecture Notes
in Computer Science, vol.3611, pp.237-246, 2005.

[(Weiser, 1994)] M. Weiser, B. Welch, A. Demers and S. Shenker.
”Scheduling for reduced CPU energy”, Proc. Sympo-sium on Operating
System Design and Implementation, pp. 1323, 1994.

[(Liu, 1973)] C. L. Liu and J. Layland. ”Scheduling algorithms for
multiprogramming in a hard real-time environment”, Journal of the
ACM, vol. 20, pp. 4661, 1973.

[(Xia, 2008)] F. Xia, Feng and Tian, Yu-Chu and Sun, Youxian and Dong,
Jinxiang, Neural feedback scheduling of real-time control tasks.
International Journal of Innovative Computing, Informationand Control
(IJICIC), 4(11). pp. 2965-2975, 2008.

[(Zhu, 2006)] E. Zhu, Z.B., A simple feasible SQP algorithm for inequality
constrained optimization, Applied Mathematics and Computation,
vol.182, pp.987-998, 2006.

[(Hopfied, 1985)] J. J. Hopfield and D. W. Tank. Neural computation of
decisions in optimization problems. Biological Cybernetics, 52:141-52,
1985.

[(Chillet, 2007)] Daniel Chillet, Sebastien Pillement and Olivier Sentieys.
A Neural Network Model for Real-Time Scheduling Heterogeneous
SoC Architectures on Heterogeneous SoC Architectures.Proceedings of
International Joint Conference on Neural Networks, Orlando, Florida,
USA, August 12-17, 2007.

