New Optimal Solutions for Real-Time Scheduling
of Operating System Tasks Based on Neural
Networks

Ghofrane Rehaiem Hamza Gharsellaoui Samir Ben Ahmed
Faculty of Mathematical, Physical National Engineering Faculty of Mathematical, Physical
and Natural Sciences of Tunis (FST), School of Carthage (ENIC), and Natural Sciences of Tunis (FST),
Tunis El Manar University, TUNISIA Carthage University, Tunisia Tunis ElI Manar University, TUNISIA
LISI-INSAT Laboratory (INSAT), LISI-INSAT Laboratory (INSAT), LISI-INSAT Laboratory (INSAT),
Carthage University, TUNISIA Carthage University, TUNISIA Carthage University, TUNISIA

E-mail: rh.ghofrane@gmail.com E-mail: gharsellaoui.hamza@gmail.com E-mail: samir.benahmed@fst.rnu.tn

1 embedded detective devices, what is known as the mapping

Abstract—This paper work deals with the implementation of relationship between test input data and test conclusiothis
a neural networks based approach for real-time scheduling of work, we must develop and implement an optimal approach

embedded systems composed by Operating Systems (OS) task . o . . .
in order to handle real-time constraints in execution scenarios. fhat considers the following issues in the design which lee t

In our approach, many techniques have been proposed for choice of the:

both the planning of tasks and reducing energy consumption. « network model,

In fact, a combination of Dynamic Voltage Scaling (DVS) and « the number of input and output nodes,
time feedback can be used to scale the frequency dynamically the number of hidden laver nodes
adjusting the operating voltage. In this study, Artificial Neural ¢ . Y . '
Networks (ANNs) were used for modeling the parameters that * the choice of transfer function,
allow the real-time scheduling of embedded systems under e the choice of initial weight,
resources constraints designed for real-time applications running « the choice of the learning rules,

Indeed, we present in this paper a new hybrid contribution that . the preprocessed of input and output data in training sam-

handles the real-time scheduling of embedded systems, low power le in order to have a good solution balancing between
consumption depending on the combination of DVS and Neural P g 9

Feedback Scheduling (NFS) with the energy Priority Earlier the.re.al-t@me scheduling and the low power consump';ion
Deadline First (PEDF) algorithm. Experimental results illustrate optimization of the embedded systems at the same time.
it oo, ReaTine | IS paper, Secton 2 gives an overview of the neura
Scheduling, Low-Power Consfjmption. ’ network platform_deS|gn and th_e neural fee(_jback scheduling
Also, we describe the real-time dynamic voltage loop
scheduling DVS. In Section 3, we present our PEDF heuristic
and in Section 4 we shows our experimentation results.

The main use of neural networks is to classify possibginally, Section 5 concludes the paper work.
results, from a list of informations. More generally, a redur
network allows the approximation of a function. Let’s take t
example of a processor, it can adjust its speed in a contsuou Il. BACKGROUND AND RELATED WORKS
range to ensure that a task is submitted to, at most, a faNkural network which can adapt the sample data by training
occurrence, and the cost of restoration of state is zerchign thas good fault-tolerance and can be used in the field of
paper, we want to discuss these issues to propose a heuristielligence widely. In the embedded systems, restrictetthe
approach based on neural networks (NN) which can handésources and the capacity of processor, the neural network
real-time constraints allowing the real-time schedulinighw application has some problems such as losing timeliness, al
minimization of power consumption of real-time embeddethe system could be collapsed easily.
systems. A neuron is then the elementary processing unit of .
ayneural network. It is connected to sourcgspof informga]\tn é‘ Neural Network Platform Design:
input and returns output information. All these are orgadiz N practical applications, the input conditions of detewtand
through the learning method. In new technology, the use ®fe testing standards may need to be modified, which can

fixed parameter method has allowed the development of m@gimage the existing detection system. The neural network
owns the ability of self-adaptation and self-learning. rEfiere,

1DOI reference number: 10.18293/SEKE2017-025 by studying on the sample data, it can determine the mapping

I. INTRODUCTION

relationship between the input and the output and if thealeuacquisition system; detection conclusions are obtainethéy
network is applied to the detection system, it may adjuaplication of the neural network algorithm. The detection
the mapping relationship automatically by training sarapleconclusions are indicated with two-value, so the transfer
which can make the detection system more flexible affidnction of output layer generally uses the sigmoid functio
adaptable [(Bernard, 2008)]. The following paragraph iswub [(Liu, 2011)] which is presented as follows:

the description of issues needed to be considered in thgrdesi

1) The Choice of Network Model: The 2-layer linear per- f(z) = 1)
ceptron model and the 3-layer Back Propagation (BP) network L+em
model are provided and the user can choose one of them iMhe transfer function is a function that should return a real
the network parameter settings in accordance with the contese to 1 in the presence of "good” input information and rea
plexity of the detection system. Based on the [(Hagan,]99€)Jose to O when they are "bad”. Generally, we use functions
works, a 3-layer BP neural network with a hidden layer canith values in the interval of real [0, 1]. When the real is
approximate to any continuous function of bounded domagtose to 1, the neuron is called "active” whereas when the
with arbitrary precision as long as there are enough hiddegel is close to 0, we say that the neuron is inactive. The real
layer nodes. Therefore, in terms of the function, 3-layer BIR question is called the output of the neuron. If the acirat
neural network can meet most sophisticated detectionragste function is linear, the neural network would be reduced to a
requirements, while for some detection systems which asinple linear function. The sigmoid function has the adagat
simple mapping, linear perceptron model with a small amouat being differentiable as well as giving intermediate esu
of calculation and fast speed can be chosen so as to maxinfigal between 0 and 1). However, this function have a thidsho
the efficiency of the systems. that is 1/2 when x = 0.

2) The Choice of the Number of Input and Output Nodes: 5) The Choice of the Learning Rules: Due to the par-
The number of the input nodes is determined by testing iteticularity of embedded systems, we should try to select the
The number of the output nodes is generally determined ®arning algorithm with simple calculation and low memory
the number of the testing conclusions. But, if there are a loonsumption. For this reason, and to improve the efficiency,
of testing conclusions, the number of the output nodes cowddflexible BP learning algorithm may be adopted. It was
become great, then, the amount of calculation also incseasenly needed to consider the symbol of gradient to the error
So, when there are a lot of testing conclusions, the testifignction, rather than the increasing amplitude of the gradi
conclusions can be encoded to binary code, then output nodés symbol of gradient determines the direction of weight
take the number greater than or equaldg,(N), where N is updating, and the change of the weight size is determined by
the number of conclusions [(Liu, 2011)]. an independent "update value” [(Hagan, 1996)]. The iteeati

3) The Choice of the Number of Hidden Layer Nodes:: process of weight correction example is shown below:

If the network model is Back Propagation (BP) network, the OFE,

number of the hidden layer nodes needs to be set. Generally wt+1) =w(t) + alw(t) x sgno— 3)
speaking, if there are too few hidden layer nodes, the n&twor wt

can not study well, and much more training will be needed In the formula 3 [(Tian, 2009)],Aw(t) is the previous
and, meantime the training will not be highly precise; whilgpdate value, and the initial valukw(0) is set by the actual
too many nodes will bring issues such as a large amoudplication.« is the learning parameter, using variable step-
of calculation, long training time and reduced networRize learning.

fault-tolerance capacity. System uses the default settagy 6) The Preprocessing of Input and Output Data in Training

the empirical formula. Sample: In the network learning process, because the transfer
function of the neuron is a bounded function, while in the
ny = vn+m+2 (1) detection, as the dimension and unit of input test item data

may be different, some values are very large, while others

In the formula 1, is the number of the hidden layer nodesare very small, which has a great influence on the network.
n is the number of the input nodes) is the number of the To prevent some neurons from reaching saturation state, and
output nodes. If the training effect of experience valueds nmeantime make the larger input fall in the region where
good, we can reset the number of the hidden layer nodesgiradient of neuron activation function is large, input and
the parameter settings and do many experiments in orderoiatput vectors need to be normalized before the training.
achieve faster convergence rate. In order to know the trgini
efficiency, you should output the training number in tragnin o) = _ i = Timin (4)
process, changes of the network errors, changes of network Timaz — Timin
weights and the training time, so as to make a report for thethe formula 4;,,.. andz;,,:, are the maximum value and
network analysis [(Liu, 2011)]. the minimum value of each input component of the neuron

4) The Choice of Transfer Function: In the application of numberi; z;, = are respectively the former and later input
transfer function detection, most of the outputs are theal fietomponent after pretreatment of the neuron nunibéerhe
data and test conclusions. The field data are collected by thput data values after normalization processing rangedsst

0 and 1. If the neural network training is unsuccessful, @nd output. Our main goal is about minimizing the number
if the training time is too long, process of training must bef neurons in order to facilitate the implementation which
analyzed to train after readjusting the network parametérs will be adapted later. In this context, we must ensure a low
the training results are satisfactory, the testing sampl@a dcomplexity and fast convergence and as a consequence the
may be used to test the function of the network. Successfuimber of neurons must be significantly reduced. Therefore,
testing demonstrates that the construction of the netwsrkriew building regulations have been proposed to design the
completed, and then the network parameters and the weigbtsallest possible neural network in order to optimize the
of each layer of the network are saved as files, ready fonggstischeduling of reconfigurable embedded systems in real-time
procedures.

B. Neural Feedback Scheduling A. Formalization

The basic idea of the neural feedback scheduling (NFS)Esnbedded applications are implemented in a complex
to allocate available resources dynamically among maeltippOC (System-on-Chip). Other resources, such as cores or
real-time tasks based on feedback information about actaghamically reconfigurable accelerators need to be cdetfol
resource usage. To tackle the problem associated with thethe OS. In particular, an instantiation of the task execut
large computational overheads of optimal feedback scheglul resources is performed using the OS scheduling service. As
algorithms, a NFS scheme must be proposed. The goal isetach task can be defined for multiple targets, this service
optimize the overall Quality of Control (QoC) of multitaskj has to decide at run-time, on what resource the task must
control systems through feedback scheduling while minimibe instantiated. Neural networks have demonstrated their
ing the feedback scheduling overhead [(Xia, 2008)]. efficiency in optimization constraint problems with the |&pi
On one hand, this scheme has advantages such as low féedeonverge in a reasonable time (i.e., few cycles) if the
back scheduling overhead, wide applicability, and ingeltit number of neurons and connections between them can be
computation. It is also capable of delivering almost optimdimited as much as possible. It should be noted that when the
QoC. On the other hand, neural networks are powerful iretwork converges to a stable state which does not belong to
learning and adapting, and capable of approximating camplthe set of valid solutions, this network need to be reiniéd.
nonlinear functions with arbitrary precision [(Hagan, 69
[(Zhu, 2006)]. Once well trained using the accurate optimal 1) Scheduling Modeling Through Neural Network:: In con-
solutions at design time, neural networks will be able tiveel text of SoC architecture, service implementations for task
online almost-optimal feedback scheduling performance. scheduling are often complex and are not always suitable for
)) . real-time systems because they are usually time costly and
C. Real-time Dynamic \bltage Loop Scheduling they do not consider the dynamic behavior of the application
Low power is extremely important for real-time embedded sy®ur solution uses Atrtificial Neural Networks (ANN) for onéin
tems. A real-time loop scheduling techniques were proposeshl-time scheduling, where we have chosen the Hopfield
to minimize energy consumption via Dynamic Voltage Scalingiodel [(Hopfied, 1985)] to ensure network convergence to a
(DVS) for applications with loops considering transitioveo- stable state, while respecting the optimization constrdinis
head. Two algorithms, Iterative Dynamic Voltage Schedulinfunction is defined as follows:

(IDVS) and Dynamic Voltage Loop Scheduling (DVLS), are LA N
designed integrating with dynamic voltage scaling (DVS). J D— ZZTM X T X T — ZL' X T (5)
IDVS is an algorithm to iteratively optimize the Directed 2 i=1 j=1 im1

Acyclic Graph (DAG) part of a loop by incorporating traneiti T, , is the connection weight between the neuroasidj.

overh_ead into optimization scheduling scheme. DVLS is an "is the state of the neurdn
algorithm to repeatedly regroup a loop based on rotation " < the external input of the neuran

scheduling and decreases the energy by DVS as much_as : ; N .
possible within a timing constraint. DVS is one of the moslzl)%lsed on this model and by using an optimization function

owerful techniaues to reduce enerav consumption b ad'uo{ the constraints, a design rule can be defined in order to
ﬁ] suool volta? e at running time ay P Y allUgicilitate construction of the neural network. The rule k-0
9 Supply 9 9 ' of-N is a major result in ANN for optimization. This rule

I1l. CONTRIBUTION allows the construction o neurons for which the evolution

. . . leads to a stable state with "exacttyactive neurons amon
In this section, we describe our proposed approach aﬁc? ky 9

we give its notation to be more clear. So, to do this, we ’ The energy function is defined as follows:

will present how to use processor and a limited memory N

to perform a neural network algorithm in order to improve E=(k-=> =) (6)
adaptability in real-time embedded systems. In the aptidica =1

of the neural network, we need to enter a large number ©his function is minimal when the active neuron sum is
training data and output of the training process and thdteesiequal to k, and is positive otherwise. The results of this
of the training, which requires a higher demand for inpucheduling solution in real-time demonstrate the intargst

convergence speed which makes ANN suitable for onlimeutual exclusion is provided by the presence of an inhipitor
utilization. However, this technique has two major weakess neuronlIN; ; for the taskr; and the execution of resourgeln

The first is the large number of slack neurons needed to mo#éjure 2, an example of the scheduling problem is presented
the problem, which depends on the cycle, so that when thwith one taskr; andR possible resources.

schedule time increases, the number of slack neurons also

increases. The second problem is the presence of Sevi excuionresources Execution resource 2 Execution resource p

local minima when many rules are applied to the same ¢ a1 a:

of neurons. These local minima are particular points of th 555
energy function representing invalid solutions. Our wosk i~
to considerably reduce the number of hollow neurons fi
any period. The principal consequence is the simplificatibn
network control. It is clear at this point that our propamitiis
guided by a main objective which consists of reducing tt
number of neurons while ensuring the convergence of t
network.

x Monoprocessor architecture: Fig. 2. Scheduling Problem Modeled with Inhibitor Neurons.

In the case of monoprocessor architecture, the scheduling

problem is modeled through ANN by the following represen- A set of N¢ neurons is called; ; (N = 3 in our use case
tation: example) and represents the possible scheduling cycldsgeof t
Neuronsn;; are organized in a matrix form, with the sidg- taskr; on the resourc@ For each resourcg the Worst Case

X N¢, where linei represents the task and the columrj Execution Time (WCET) of the task; is defined asC; ;.
corresponds to schedule time upiThe number of time units The set of neurons; is configured (definition of inputs and
Nc is the least common multiple of all the task periods angeights) to converge towards; ; active neurons amongyc.

Ci,2 .. -Ci,p -Ci, 1 .. -Ci,p -Ci, 1..-Ci,2

Nz is the number of tasks. The main characteristic of this neuron network is its cayaci
- A neuronn;; is considered active when the taskis being to converge to a stable state from any initial state. One or
executed, during the corresponding time ynit more lines of slack neurons can be added to ensure the

- One line of neurons is added to model the possible inagtivihetwork convergence during the application of k-out-of-N
of the processor during the schedule times. These neurensraite on each vertical line of neurons. As shown in Figure
called slack neurons. 1, the number of added lines in each layer is equal to the
* Multiprocessor architecture: number of identical processors in this layer (In our example
In the case of homogeneous multiprocessor architectuve, sene resource can execute the tasks, so one line of slack
eral matrices arranged in layers are required to model theurons are added, lifE). In this case, the convergence can
different execution resources. New slack neurons are theot be always obtained.

needed to manage the execution of each task on resourdesdelete these lines, we choose the application of a k1-out-
For each couple (task;, resourceg), C; ; new slack neurons of-N1 classical rule on the horizontal sets of neurons and a
should be added. So, the total number of slack neurons id eqatamost-k2-among-N2 rule on the vertical sets of neurons.

to: If Np tasks must be scheduled gnidentical resourcesp(
N P processors in the same layer) during tNe cycles, Ng
ZZC’?J +px No) at-mostp-amongNy rules must be applied on each vertical
i=1j=1 set of N neurons.

Running example of network witp resource layers is pre- There remains the problem concerning the application of
sented in Figure 1. Grey circles represent slack neurons. tWo rules on both sets of neurons with a common neuron.
Figure 3 shows an example of this case, where the first
set of neurons is composed of three horizontal neurons
e Ressouree Layer p n;,ne,ng, and the second is composed of three vertical

Ressource Laycr 1 Ressource Liy!
n 8 8 8 8 8 8 8 8 8 8 8 8 g neuronsny, ng, N5 (Neuronn; is the common neuron of the
5 000 @ 000 @ @ 000 @ two sets). The classical additive for various rules mermtbn
T @ ®@ @ @ @@ @ 0@

that if a k1-out-of-3 rule is applied on the first set and
at-most#2-among-of-3 rule is applied on the second set, then
Fig. 1. Classical Structure to Model the Scheduling Probigith ANN. the inputs and weights are defined as follows:
-Inputs are equal to:
To reduce the required number of neurons, we must moH-= (2 x k; — 1) + (2 x ko — 1)
ify neural network structure. The changes correspond to &= 13 = (2 x k; — 1)
adaptation of the Hopfield model. We have adopted the idéa= I5 = (2 x ko — 1)
of creating a mutual exclusion between the possible taskVeights are equal ta; ; = —2; Vi,j = 1..5
instantiations on execution resources [(Chillet, 200Tfjis k2 slack neurons can be added with a specific weight

connection with other neurons in order to ensure the at-mo¥he optimization problem that we address in this work, is

k2-among-of-3 rule. In the figure 3, the slack neurog(

Sy2) are represented.

to minimize the total energy consumed by the sendésks
by optimally determining their start times, their voltagesd

To remove the slack neurons while ensuring convergena®rresponding execution speeds at the real-time schedulin
we need to simplify thek-out-of-N rule by adopting the The following constraints need to be modeled:

simple redefinition of input and weight values. The enerdy) CPU speeds are limited to one of three valigs S, and
function given in the equation 6, energy was rewrited apeed-mediunds = S,, = (S1 + 52)/2,

E = (%k - % Ziil i)?.

(ii) The deadline of each task must be met,

With these new input values and weight, we can suggesi{i#® Tasks are non preemptable,

simple additive betweehl-out-of-N1 and at-mos#&2-among-
N2 rules. The main idea is to apply the rutd-out-of-N'1

(iv) A task may start only after it has been released.
The objective function is to minimiz&" /,v?. The modeling

rule at first on horizontal lines ankR-out-of-V2 rule on the of the constraints and their subsequent linearization are
vertical lines and secondly the change of weight of horiabntomitted here due to space limitations.

lines.

Thus, the common neuron has its input set at the value2) The PEDF Heuristic:: The Priority-energy Earliest

k1 + k2 as shown in Figure 3. The change of the weigHdeadline First heuristic, or simply PEDF, is an extension of
values of the horizontal rule (here the horizontal rulehe well-known earliest deadline first (EDF) algorithm. The
k1-out-of-3) compensates the increase of input values on tbgeration of PEDF is as follows: PEDF maintains a list of all

common neuron. This compensation is done by decreasitejeased tasks, called the ready list. When tasks are rdlease
the weight value between the horizontal neurons and tttee task with the nearest deadline is chosen to be executed. A
common neuron between the two rules. An example oheck is performed to see if the task deadline can be met by

additive of the two rules is given in Figure 3. We presergxecuting it at the lower voltage (speed). If the deadline ca

(2.k1-1)+(2.k2-1)

-2
(2.k2-1)
(2.k2-1)

Vertical set of neurons

(2.k1-1) (2.k1-1)

Horizontal set of neurons

-2

(2.k2-1)

(2.k2-1)

Slack neurons

Fig. 3. Additive of k;1-out-of-Nq, and at-mosts-among#Ve Rules with

Slack Neurons.

be met, PEDF assigns the lower voltage and the execution
of the task begins. During the task’'s execution, other tasks
may arrive at any random time. These tasks are assumed to
be placed automatically on the ready list. PEDF again select
the task with the nearest deadline to be executed. As long as
there are tasks waiting to be executed, PEDF does not keep
the processor idle. This process is repeated until all thlesta
have been scheduled.

Begin algorithm

Procedure PEDF

Repeatforever

If tasks waiting to be scheduled are in ready list

Sort deadlines in ascending order

Schedule task with earliest deadline

If deadline can be met at lower speed (voltage)
schedule task to execute at lower voltage (speed)

If deadline can not be met at medium speed (voltage)
schedule task to execute at medium voltage (speed)

an online scheduling algorithm for real-time systems th#t deadline can not be met at higher speed (voltage)
attempts to minimize the energy consumed by a periodic tasthedule task to execute at higher voltage (speed)

set. This is based on the well-known earliest-deadliné-firSlse deadline cannot be met, task cannot be scheduled.
(EDF) algorithm [(Liu, 1973)]. We attempt to find the voltageEnd algorithm

at which each task must be executed such that the energi) Notation:: We present the notation and the underlying
consumed by the entire set of periodic tasks is minimizedssumptions. LefT be a set of assumed periodic tasks
and generate a schedule for the task set such that the relegsereT = 7, 75,...;7,,. Associated with each task € T are:
time requirements are satisfied and the deadline for eakh té&$ its arrival time a;,

is met. Although the scheduling methods cited above are vdiy its deadlined;,

efficient, most of them make the assumption that the Cent(al) its length /; (represented in number of instruction cycles),
Processor Unit (CPU) can operate at several different gelta(iv) its period p;.

levels (and hence different clock frequencies) which can Iiach task is released at time t &. Release times are
varied continuously. In addition, a number of these methodsbitrary where each task may be released at any time before
are aimed at the synthesis of low-power designs and they itk deadline. We assume that the Central Processor Unit

not address energy minimization during field operation.

(CPU) can operate at one of the three voltaggs:V, or V3.

Depending on the voltage level, the CPU speed may take gireater than the lengths of both and .. We observe that
three values:S;, Se or S;. The supply voltage to the CPUby executingr; at a medium speed (voltage), and at a

is under OS control and the OS may dynamically switch thegher speed (voltage), we can execuieat a medium speed
voltage during run-time with relatively low overhead. CPUvoltage) and thus reduces the effect of the length0bn
speeds are specified in terms of the number of instructioesergy consumption. This, in fact, does result in an optimal
executed per second. Each task may be executed at aschedule. The results, plotted in Figure 4, prove that PEDF
voltageV;, Vi e {V1,V2,V3}. produces optimal schedules.

Now we use the first row from the above I, (3, 7, 800) to
demonstrate forward propagation: For this example, we take

Arrival .

Task| Time g?ad“”e lL_ength Ljoi | Lijve | Li/vs two hidden layers with six neurons. Then, we assign weights
a; ' ! to all of the synapses. These weights are selected randomly

n_|3 l 800 266 |2 2.28 (based on Gaussian distribution). The initial weights o

™]9 21 750 25 1875 | 2.14

P 5 1600 | 533 | 4 457 between 0 and 1.

7. | 18 25 1000 | 333 | 25 2.85

s | 14 16 600 2 15 1.71 DN

7o | 7 10 1200 | 4 3 3.42

) 27 1100 | 366 | 2.75 | 3.14

s | 14 20 1600 | 533 | 4 457

7o | 11 12 500 166 | 125 | 142 outpur

TABLE T

0.5
TASK SET COMPOSED OF9 TASKS.

0.8
IV. EXPERIMENTATION RESULTS

We present now our experimental results. First, we show the
results of the PEDF for a task set of nine tasks. Our example
task set is given in Table I. It consists of tasks to 9.
Each task has a release timg a deadlinel; and a length

li. We assume that the three processor speeds are 300 milliofye cajculate the sum of the product of the inputs with their
instructions per second (MIPS) at 2.47 V, 350 MIPS at 2.885 M, responding set of weights to arrive at the first values for

and 400 MIPS at 3.3 V. The energy consumed by the schedylg higden layer. Weights may be considered as measures of
generated through MILP is 75677,4575 units (measured by th@,,ence of input nodes on the outpui.

sum of thelivf values). 3*01+7*04+800*0.7=563.1

3*0.2+7*0.5+800*0.8=0644.1
3*0.3+7*0.6+800*0.9=7242

Fig. 5. Determination of Initial Weights

90000

s 3*0.1+7*0.5+800*0.9=7238
70000 We put these sums smaller in the circle, because they are not
o000 the final values:

50000
HIDDEN
— e

—— ped

40000

Energy consumption

30000

OouTPUT

0.8

20000
10000
0

0 1 2 3 4 5 6 7 8 9 10

Number of tasks

Fig. 4. Comparison of Schedules Generated by EDF and PEDF

In this part, we observe that the increased energy consump-
tion of EDF arises due to the fact that EDF does not possess Fig. 6. Calcul of Sums for the First Hidden Layer
knowledge of the release times a priori. Our PEDF model,
which does not have such a restriction, executes taslksd We apply the activation function 2 to the hidden layer
T9 at a medium speed (voltage) even though both could hasems. The purpose of the activation function is to transform
met their respective deadlines by executing at a lower spebé input signal into an output signal and are necessary for
(voltage). We can observe that energy consumed by a tawural networks to model complex non-linear patterns. We

is proportional to its length. Since the length of taskis use the sigmoid function as Transfer Functifix) = H%:

f(563.1) = f(644.1) = f(724.2) = f(723.8) = 1 real-time embedded systems failures.
We add the obtained results to our neural network as hidden

layer results: Then, we sum the product of the hidden layer
REFERENCES

HIDDEN [(Bernard, 2008)] W. Bernard, D.S. Samuel: "Adaptive SigRabcessing”.
Machinery Industry Press, Beijing, 2008.

[(Liu, 2011)] D. Li, Y. Liu, and Y. Chen. "The Application Resrch of

outpPuT Neural Network in Embedded Intelligent Detection”. (EdSQCTA
o5 2010, Part IV, IFIP AICT 347, pp. 376381, 2011.
[(Tian, 2009)] Y. Tian. "Hybrid Neural Network Technology”Science
Press, Beijing, 2009.

[(Hagan, 1996)] M.T. Hagan, H.B. Demuth and M.H. Beale. "Naur
Network Design”, PWS Publishing, USA, 1996.

[(Xia, 2005)] F. Xia, S.B. Li and Y.X. Sun. "Neural Network Bad

Feedback Scheduler for Networked Control System with Blexi
Fig. 7. Application of activation function Workload”, Int. Conf. on Natural Computation (ICNC), LeatuNotes
in Computer Science, vol.3611, pp.237-246, 2005.

results with th n t of weight I termin
esufts e second set o eights (also dete 9Veiser, 1994)] M. Weiser, B. Welch, A. Demers and S. Shenker

randomly the first time around) to determine the output sum. " »scheduling for reduced CPU energy”, Proc. Sympo-sium onr&jreg
1*09+1*04+1*0.7+1*08=2.8 System Design and Implementation, pp. 1323, 1994.

* +1* + 1 * + 1 * =
1705+1%08+1%01+1 0.'3 . L7 [(Liu, 1973)] C. L. Liu and J. Layland. "Scheduling algonitis for
We apply now the Transfer Function: multiprogramming in a hard real-time environment’, Journal oé th
f(2.8) = 0.94 ACM, vol. 20, pp. 4661, 1973,
f(1.7) = 0.84

[(Xia, 2008)] F. Xia, Feng and Tian, Yu-Chu and Sun, Youxiard &ong,

Jinxiang, Neural feedback scheduling of real-time contrasks.
Following the presented method, we had the final output International Journal of Innovative Computing, Informat@md Control
result. (JICIC), 4(11). pp. 2965-2975, 2008.

[(Zhu, 2006)] E. Zhu, Z.B., A simple feasible SQP algorithnn fieequality
HIDDEN constrained optimization, Applied Mathematics and Compomati
vol.182, pp.987-998, 2006.

[(Hopfied, 1985)] J. J. Hopfield and D. W. Tank. Neural comgatatof

OUTPUT decisions in optimization problems. Biological Cybernet%2:141-52,

1985.
0.5
[(Chillet, 2007)] Daniel Chillet, Sebastien Pillement andivier Sentieys.
@ A Neural Network Model for Real-Time Scheduling Heterogareo
2 SoC Architectures on Heterogeneous SoC ArchitectureseRdings of
0.8 International Joint Conference on Neural Networks, Ortgarielorida,

USA, August 12-17, 2007.

Fig. 8. Full Diagram

V. CONCLUSION

In this paper we have presented advanced approaches for
real-time scheduling of reconfigurable embedded systems to
meet real-time constraints in different execution scersari
using neural networks. As a fast and intelligent feedback
scheduling scheme, neural feedback scheduling has been
proposed in this paper for real-time scheduling of OS tasks.
To minimize the total energy consumed, we integrated the
PEDF as online scheduling algorithm for real-time systems.

A first perspective for the future works is to extend our
original approach based on a neural network approach
and especially on the back propagation method to support

