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Abstract— Conceptual Integrity has been claimed to be the
essence of high-quality software system design. Gthe other
hand, it has been a rather elusive attribute of stivare systems,
challenging various attempts of a clear-cut charaetrization. This
paper evolves in this direction by two means: firstby analysis
and clarification of open issues in architecture ad abstraction
terms; second, by pointing out to a mathematical fanulation in
algebraic terms. This paper also serves as a bro&utroduction to
discussions on “Conceptual Integrity of Software Sstems”.
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. INTRODUCTION

arbitrariness of the programming language syntag, ltas full
confidence in the choice of the preferred prograngmi
construct — this is the unrestricted flexibilityard the program
is supposed to run for sure. Then, happens thétamds bug,
demanding a subtle correction — this is the actbhnotation.

A widespread rational response to #ntistic flexibility is to
introduce methodologies. If one is methodical, ttienprice of
software design and development should decrease.iSthe
first encounter with elusiveness (cf. the word “Kigal” in the
title of the earlier book by Brooks). Any experiedcsoftware
developer knows that methodologies are not the qenéhat
they promise to be. They fail, sometimes miserably.

Then, Conceptual Integrity, by Brooks, enters theges.
This is a deeper response to the software systewiatenent
problem. We explain the notion in literallychitectureterms,

Frederick Brooks [2], [3], based upon his extensiveexactly as in Brooks’ books, while presenting ojsues in

experience with system development, in particuteg first
families of OS/360 operating systems, proposed
Conceptual Integrity is essential for high-qualispftware
system design. It takes some time to assimilate itlea, but
even after reading about it once and again anchbasécond
and third thoughts, Conceptual Integrity remairigaative, but
a quite elusive notion.

The first task of this paper is to introduce thdiom its
attractiveness and why it is still elusive. Therg argue in
favor of mathematical formalization, like in anyspectable
science. The overall purpose of this paper isytddropen and
discuss deep issues on “Conceptual Integrity oftvioe
Systems” and to point out to a formal solutionhtese issues.

A. The Notion of Conceptual Integrity

Software system design and development, as itriamam
practice nowadays, gives a superficial
unrestricted flexibility, where everything is alled and
nothing is forbidden. Often practitioners think ttreftware
design and development is an art, rather thanemeei People
exposing this opinion may express distaste for ssiigns of
mathematical description of the processes involved.

The feeling of unrestricted flexibility and its iatic
connotation is acquired from the first experiencgih
computer programs that one writes. Except for apasmt
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section 1l

that

B. Paper Organization

The remaining of the paper is organized as folldetion
Il refers to related work. Section Il introducegen issues of
Conceptual Integrity in a broad context. Sectionfé@uses on
architecture principles. Section V turns to abgioac
principles. Section VI summarizes algebraic pritesp of
software design. Section VIl concludes with a désoon.

Il RELATED WORK

A. Conceptual Integrity Outside Software Systems

This paper refers to Architecture of buildings iengral,
following Brooks’ metaphors used in his books tmstrate
notions of Conceptual Integrity. In this contexg vefer here to

impressioh  0a few architecture-related modeling techniquesantdlogies.

DeLuca and co-authors [5] describe a generic fasmedor
semantic modeling of architectural elements, whiompose
buildings of historic interest in classical archttege. Doerr [8]
reviews ontologies for cultural heritage; he emptess
physical objects in archeology, including architeet Quattrini
et al. [22] describe modern computer-based teclesigior
semantically-aware 3D modeling of architecture.



B. Conceptual Integrity Within Software Systems

Conceptual Integrity is closely related to effarggarding
various development phases of software systemseTéiorts
are among others: requirements engineering, conalept
modeling, integrity verification, software systerastgn, and
software architecture planning. The relevant litme is very
extensive, and we provide just a few representgibeters.

Jackson and co-authors [6],[17],[18] analyzed wideded
software systems, such as Git, in terms of Cone¢fnitegrity,
suggesting design improvements.

Insfran et al. [16] refer to conceptual modelingsdxh on
requirements engineering. For these authors coualept
modeling is an UML object-oriented approach rathiesn
based on conceptual integrity. Nevertheless, thare
similarities between these approaches, as disclessedn.

Cabot and Teniente [4] refer to integrity checking
UML/OCL conceptual schemas. Integrity here mearfisvaoe
state conditions that must be satisfied. Sometinies
specifically refers to avoidance of critical systemlfunction.
Conceptual schemas are basic relations betweenejgiznc
within the general knowledge required by any infation
system (see also e.g. the book by Olive [21]).

Kazman and Carriere [19] reconstruct a softwardegys
architecture usingonceptual integrityas a guideline. Their
goal is to achieve a restricted number of companeoinected
in regular ways, with internally consistent functédity.

C. Mathematical Conceptual Integrity of Software

In this work we shall mainly refer to the ModulgrMatrix
[9],[10],[13] which is based upon linear algebrah€& matrices
have been used for modular design. For instaneeDtsign
Structure Matrix (DSM) is an integral part of thBesign
Rules’ by Baldwin and Clark [1]. It has been apgplitor
various kinds of systems, including software syste@SM
design quality is estimated by an external econothéeory
superimposed on the DSM matrix.

Conceptual lattices, analyzed within Formal Concep
Analysis (FCA) were introduced in Wille [24]. A gemc
review of its mathematical foundations is given®gnter and
Wille [14]. Conceptual Lattices have been shown be
equivalent to Modularity Matrices (e.g. Exman angkiSher
[12]), linking the algebraic characteristics to ceptual ones.

Ill.  OPENISSUES ARCHITECTURE ABSTRACTION,

ALGEBRA

We now consider the open issues of Conceptualrityeg
a wide context. We start by referring to it in atetture terms.
Then we consider abstraction and algebraic fornmust

A. Open Issues: Architecture

In Brooks’ book “The Mythical Man-Month” [2] in frat of
the fourth chapter opening (page 41) there is ambb the
interior of the Reims cathedral, planned by Jea@rbais. An
annotated sketch of the cathedral is seen in Figthis paper.
It has an imposing huge height relative to humassjsual for
medieval gothic cathedrals, implying the difficulty actually
build it.

Figure 1. Reims Cathedral Interior: sketchy anmmtat— one can see the
perfect symmetry of its elements: two rows of véigh parallel columns
(annotated by vertical blue color line segments)o tstained glass rose
windows (annotated by a pink background within @ cicle), and above the
columns the parallel gothic arches.

Nonetheless, despite the incredible weight of itmes, it
displays elegance, coherence, and symmetry obitgponent
forms: e.g. long repetitive rows of identical vdrigh columns
and two symmetrical stained glass rose windows alibe
altar region.

Another example is the renaissance cathedral @&nEd,
whose symmetric dome with repetitive elements wesghed
by Brunelleschi. It is seen in Fig. 6-4 (page #b)The Design
of Design” [3] book by Brooks.

Thus, Conceptual Integrity in classical, medievaild a
renaissancearchitecture means that the overall structure is
immediately recognized by its repetitive and symioet
components’ consistency, and is very attractivédgsthetics.



Figure 2. Bilbao Museum by Frank Gehry: sketchyataitions — one perceives
the intentional total absence of symmetry of ien@nts. It displays one very
high column (annotated by two vertical blue lins®gment bounds) in its
entrance; compare its height with that of humaitoris which are pointed out
by the (dark blue) arrow. The overall asymmetriacttire should resemble a
ship contour (annotated by red linear segmentsyanibus sizes and non-
parallel directions). The outer metal structurdiecelight by fish-like scales.

The Guggenheim Museum in Bilbao, designed by the

architect Frank Gehry, has been metaphoricallymedeto as a
modern cathedral, due to its enormous size, iniqodat the
huge height of its atrium [15]. Fig. 2 is an anmedasketch of
it. Moreover, it seems to be very consistent, ydimilarity of
materials and forms, to resemble a ship — sindeaBils a port.
In fact, it was designed with the support of thgifal Project
(see e.g. [7]), which itself is based upon CATIAophisticated
software system used to plan modern aircraft.

On the other hand, nothing is repetitive or symioétrthe
Bilbao Museum. There are no two identical compomémthe
Museum. We thought that we had the keys to theonotif
Integrity, but, modermrchitecturebreaks down the older keys.
This is our second encounter with elusiveness. k&éedt with
the open issue:

Open Issue #1 — Conceptual Integrity in Architectue
Despite symmetries being fundamental to physicse-—
they correspond to conservation principles — anitigod
important in classical architecture, symmetries ao¢
ubiquitous in modern architecture.

What is the generalization of symmetry that is camrto
Conceptual Integrity in all kinds of architecture?

Paradoxically one still could say that the Bilbausdum
displays an internal Conceptual Integrity — thepsbiitine —
and even to the apparently dissimilar buildingsthsf city of
Bilbao. Moreover, the outer titanium metal sub-ctwes
reflect light like fish scales! But how is ship afigh related
concepts? This is discussed in the next sub-seotion
Abstraction.

B. Open Issues: Abstraction

We shall refer to abstraction in two senses: fgsgmetric
or image abstraction; second, conceptual abstractio

Regarding geometric abstraction, we mean that an
considerations of Integrity are not taken with exfpto the
actual buildings referred to in the previous assttiire sub-
section. Neither real stone blocks, nor titaniuntahsurfaces
are necessary to perceive symmetry or the “shippsh

®

Figure 3. Reims Cathedral Geometric Abstractiory sketchy annotations —
this figure abstracts Fig. 1 to just the schemafresentation of the rows of
parallel columns (in blue) and the two stained glase windows (in red).

Figure 4. Bilbao Museum Geometric Abstraction: oslgtchy annotations —
this figure abstracts Fig. 2 to just the schemaresentation of the exactly
copied contour segments (in red) and the colummé®utwo vertical (light
blue) segments. The contour segments were in additiked by round (dark
blue) lines, to facilitate our perception of theeoadl “ship” form.

One performs quite complex abstraction operationthé
human brain, which are simulated by computer image
processing — noise elimination, segmentation, ab{ecd
recognition — to extract just the lines neededntferi either
symmetry as in Fig. 3 or a “ship” shape as in Big.

Conceptual abstraction is a further step beyondngtiic
abstraction. In the cathedral case the relevantems are
“columns$ and “stained glass rose windéwogether with the
even more abstract concept @yfmmetry. The next step in
conceptual abstraction is the usage of architectiomain
ontologies (see e.g. [8]). In the Bilbao Museumecaslevant
concepts could bepbrt” of Bilbao, “shig’ and “fish”. These
could be found in Maritime domain ontologies (seg £3]).
But, the conceptual jump from these specific cotedp a
Museum of modern art architecture is far from ohgiol hen:

Open Issue #2 — Abstraction Conceptual Integrity
Abstraction Conceptual Integrity seems to be istdally
associative irrespective of the relevant domain.

How to formally capture the associative charactér
abstraction Conceptual Integrity?




C. Open Issues: Algebra

Let us temporarily take for granted that Algebrathe
mathematical basis of our formal approach to Coedp
Integrity — an approach extensively justified elkeve (see e.g.
[10], [11]), with respective arguments presentedrlan in this
paper. In order to apply algebra to concepts wealdry to get
an answer to Open Issue #2. Instead, we assumethbat
associative process of choosing sets of abstractocepts —
as discussed in the previous sub-section — is tgnleuman
software engineers, without any current attempfotonalize
this process.

The algebraic phase of Conceptual Integrity staitts the
chosen sets of concepts that humans find necessédmyild a
desired software system. We have called the spemifiology
relevant to a desired software system asppfication
ontology. One can easily see that application ontologegeha
striking similarity to UML class diagrams. Ontologpncepts
correspond to classes, and relationships amongedaare of
three kinds: inheritance (a sub-class is a typeclaks),
composition (wholes are made of parts) and associdsay
usage of the functionality of another class). Thus deal with
classes and their functionalities, and their respec
generalizations.

What is lacking in the above picture? The answekis
lack criteria to verify that the choice of concejstiseasonable.
This is the role of algebra. Thus:

Open Issue #3 — Algebraic Conceptual Integrity
Assume that humans choose the needed conceptane
to a desired software system, by a black-box algori
What are the criteria to verify that the concepteice
indeed comply with an idea of Conceptual Integfiy
the desired software system?

IV. ARCHITECTUREPRINCIPLES

B. Behavior: Flying and Running Systems

Physical systems displaying motion, such as aigdan
autonomous cars, robots, helicopters, boats ancedro
(unmanned aircraft systems) may fly, walk, navig&te. In
addition to structural constraints, they have kiagm
constraints limiting their motion in terms of speethd
possible trajectories.

Software systems when running also have constraints
their speeds, communication and memory usage. Taese
certainly affected by their structural constrainWith the
increasing usage of autonomous systems, with engedd
software, the software itself is also affected Iy tonstraints
of the containing physical systems.

C. Modularity

Modularity is an important consideration for anytgm,
as it facilitates development, building and underding of
systems. Modularity is achieved by simplistic répet reuse
of the same units again and again — such as thessta the
columns of the Reims cathedral, and wheels in raobil
vehicles.

Modularity maybe also achieved by more sophistitate
means than strict repetition. The titanium metalicfaces of
the Bilbao Museum are each of them unique, but trey
generated by a software system which reuses thee sam
technology to obtain different shapes.

Modularity is the result of complying with constnts,
partially relaxing them as far as possible whilenimizing
undesirable effects. This is true in particular &wftware
systems.

V. ABSTRACTIONPRINCIPLES

In this section we deal with abstraction principles
Abstraction here is understood as conceptual aibisnafor
system design. We further focus only on embeddéd/ae or
purely software system design.

The answer to the Open Issue #3 starts with the The abstraction principles express the necessastraints

understanding that in any domain there are conssréimiting
solutions. We start as in the previous section yithciples of
architecture.

A. Structure: Buildings and Software

The basic constraints obeyed by any building, eithe
antiquity or in modern times are first and foremibest laws of
static — the branch of classical mechanics (itselfield of
physics) dealing with structures which have no omtiOne
should have columns and beams to support strucifres
building, a bridge over a bay or tunnels belowveri These
columns and beams have a material composition¢csagrete
or steel, and suitable sizes and forms. Modern tngi®ns
have additional constraints, such as heating, &csus
distribution of electricity and water tubing.

Software structures, just as buildings, are hiéiaat with
classes and patterns — as sets of classes — lheinglevant
structural units. The relevant constraints are reefd by the
above mentioned relationships already found inayication
ontologies — viz. inheritance, composition and eisgimn.

which limit design to modular solutions. Concomttarthese
provide the criteria to verify that design solusoare optimal
under these constraints. In terms of the abstautapts, this is
the meaning o€onceptual Integrity

Conceptual abstraction principles were first foratet by
Brooks in his books [3]. Here we succinctly revidhese
principles. Note that all the three principles &oemulated as
negative expressions, i.e.Do not...”, which are effectively
constraining design and meaning.

A. Abstract Propriety

Brooks concisely formulates propriety asDd" not
introduce what isimmaterial”.

He explains this principle by an example of proyria
computers, viz. the representation of zero in te@syplement
notation, which obeys the constraint of not attaghh sign to
zero.

In contrast, signed-magnitude and ones-complement
representations do attach a sign to zero, whiokxiganeous
and inconsistent with the original meaning of theert”
concept. The consequence of these representaticanddition



of artificial rules needed to characterize the bareof zero in
arithmetic operations.

B. Abstract Orthogonality

Brooks concisely formulates orthogonality aBo“not link
what isindependent”.

He explains this principle by a basic example
orthogonality in computers, viz. the operation d6aftware or
embedded) alarm clock. Two functionalities of saatlock are
lighting and alarm. Orthogonality means that thdse
functionalities obey the constraint of actually Hgei
independent.

In contrast, if the alarm would operate only whiea tlock
is illuminated, it would violate orthogonality, s& one is
artificially linking two unrelated functionalities.

C. Abstract Generality

Brooks concisely formulates generality aBo“not restrict
what isinherent”.

He explains this principle by a surprising example
generality of an operation in a processor, viz. dperation
“restart’. Its original purpose was to restart a processrain
interruption. But the design generality enabled ltse as
returning from a subroutine. The obeyed constraiate is
avoiding incidental restriction.

In contrast, if it were strictly allowed only foné original
purpose, one would clutter the design by introdgicamother
almost overlapping concept for the second kindsafge.

VI. ALGEBRA: PRINCIPLES OFSOFTWARE DESIGN

The power of a mathematical formalism is to exprbes
abstract constraints in a precise way, enablingutations
upon the representation of a given software sysiesign —
e.g. of eigenvectors [11],[20] to obtain softwaredules —, and
the verification whether the design comply with ihgosed
constraints. Moreover, one can improve the softwdasign,
based upon the verification results.

The choice of linear algebra structures, such as th

Modularity Matrix and its equivalents, is justifiedy the
following reasons:

of

generalized classes to all levels of the hierasthsoftware
system. Structors provide functionalities. Thuse @lso has
functional vectors.

In order to avoid immaterial additions, i.e. thesida goal
is to minimize the representation of a softwaretesys the
algebraidPropriety constraint islinear independence of all the
structor vectors and of all the functional vectars the
Modularity Matrix of the given software system. Any
dependent vector is superfluous and discarded.

B. Algebraic Orthogonality

The algebraic translation of Brooks’ Orthogonalgyeven
more immediate. One literally uses exactly the samoed
orthogonality, but now with the exact algebraic mieg of
“zero scalar product of a pair of vectors”.

The algebrai®rthogonality constraint isorthogonality of
all structor vectors and all functional vectorsdesa module to
the respective vectors in all other modules in Medularity
Matrix of the given software system. Thus, diffdérenftware
modules actually deal with different concerns,réitly having
different conceptual meanings.

C. Algebraic Generality

The algebraic translation of Brooks’ Generalitytiat since
the definition of a structor or its functionalitiese not strictly
repeated in another location of the same softwgstes, one
still can re-use these structors and their funetitas
elsewhere in the same system by means of compositiby
means of aspect-oriented design.

The algebraicGenerality constraint is:generality once
again minimizes the number of appearances of strwetctors
and functional vectors in various hierarchical levef the
Modularity Matrix of the given software system. @ other
hand, in an aspect-oriented design fashion, orethatgeneral
structors/functionals in a high enough hierarchlegkl, to be
accessible from anywhere in the system.

VII.

We here summarize the important points of this pape
Brooks’ used architecture of cathedrals to justifys

DiscussIioN

e Expressivity — algebraic structures are expressiveConceptual Integrity principles. Indeed the ardtitee of
enough to represent the wide variability of pyjidings provides fruitful metaphors in our cortieas we

software structures;

e Constraints Nature — it is very natural to
formulate Brooks' abstraction constraints

sub-sections;

have seen that one obtains valuable concepts fierhuilding
abstractions. But, even more importantly, they léadbpen

in issues challenging simplistic notions of Conceptotdgrity.
algebraic terms, as will be seen in the following

A. Eliciting Concepts
Concept elicitation from system stakeholders, usiygiem

e Conceptual Meaning — since each Modularity sketches, drafts or early models, is an activitiateel to
Matrix of a software system is equivalent to itsrequirements engineering. It demands high humaabiktges
corresponding Conceptual Lattice, the Conceptuahnd in this paper this activity was left to the fmmengineers.

meanings are immediately taken into account.

A. Algebraic Propriety

The algebraic translation of Brooks’ Propriety iased
upon the following ideas [10]. Instead of sets lafsses (the
concepts), one works with vectors of classes. &freicare

We currently give up any effort to mathematicalnfiatize this
activity. It may well be that we shall return tastiasic issue in
future work.

We deliberately assumed that one starts the Coumalept
Integrity analysis from an initial list of conceptstranslated



into structor and functional vectors. This inifist may change
along the design and development processes.

B.

Criteria for Integrity
Brooks’ principles actually are constraints on sloware

system design solutions. Once this is understood, can
clearly express algebraic equivalent formulatiohshe same
principles.

The propriety and orthogonality constraints receiae

very natural translation to linear algebra notioriEhe
generality principle seems to deserve further itigaton.

C.

Main Contribution

The main contribution of this paper is a set ofrosues

to be discussed within a Conceptual Integrity foramd the

clear

understanding of its principles, as matherahti

constraints on the design solution for a softwgestesn.
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