
Extending Software Systems While Keeping
Conceptual Integrity

Reuven Yagel
Software Engineering Department

Azrieli – Jerusalem College of Engineering
Israel

robi@jce.ac.il

Abstract— Design and analysis of software systems in terms of
their Conceptual Integrity is a demanding task. Nonetheless,
progress has been made in recent years and actual software
systems in practical use, such as Git, have been analyzed. In
this work we make a further first step within the conceptual
analysis approach, by asking how to extend software systems
by addition of further components while keeping Conceptual
Integrity of the resulting system. We propose specific
techniques to this end. As a case study to illustrate these
techniques, we analyze a popular project management service,
namely Gitlab, for its various services integrity and
adaptability to software engineering lifecycle stages.

Keywords- Component; Software Repository; Lifecycle
Management; Conceptual Integrity; Git; Gitlab

I. INTRODUCTION
Conceptual Integrity has been identified by Brooks [1, 2]

as the main challenge for software system design. More
recently, Jackson et. al. [3, 4] further formulated and
demonstrated the Conceptual design and analysis approach
for a popular software system – git [5]. In this paper we build
on this work and start broadening this view by examining the
further issue of extending software systems with additional
components while preserving the Conceptual Integrity of the
whole system. We propose some specific techniques in this
respect and illustrate them by analyzing popular code
repository and project management services.

A. Git Based Software Project Management Systems
The software development industry is going through

major changes in recent years. Among them are new tools
and services for software project management (SPM) such as
github.com [6]. This service, taken as an example, is based
on cloud hosting of git – a distributed version control system.
Beyond managing source code versions, the service
simplifies workflows of branching and merging and also
includes various project management tools, in particular
social features, which allow vast collaboration options. A
variety of software organizations and their offered services,
have different service models. Examples of the referred kind
are SourceForge, Microsoft’s Team Foundation Services,
bitbucket, Coding.net and many others.

In this work we focus on such a similar service –
gitlab.com [8]. It is also a software project management

service centered on git. Beyond managing source code
versions, it includes various project management tools for
communication, documentation, testing and more.

The reason for choosing git-centered software systems to
illustrate our proposal, is to capitalize on existing analyses of
Git and Gitless by Jackson and co-workers [3], [4], and their
wide industry usage and acceptance.

B. Paper Organization
The remainder of this paper is organized as follows. In

section II we review related literature. In section III we
describe a general Lifecycle Model underlying the software
systems used to illustrate our approach. In section IV,
specific techniques of our approach to extend software
systems while keeping conceptual integrity are proposed. In
section V the Gitlab software system serves to illustrate our
proposed approach. The paper is concluded with a short
discussion in section VI.

II. RELATED LITERATURE
Brooks [1, 2] suggested three principles for representing

the notion of conceptual integrity:

• Orthogonality

• Propriety

• Generality

 Jackson et. al. [3] showed how git conceptual design is
quite complex and also problematic in light of these
principles. They go further on and suggest a new design,
titled gitless to correct those issues.

Git [5] is an open source distributed version control
system. It became quite popular in recent years, but still
criticized for its usability and conceptual integrity issues.

Models of software development as well as processes,
methods, and tools are widely discussed. Here we reference
mainly Rajlich [8], but many others are discussing those,
e.g., [11-15].

III. LIFECYCLE MODEL
Since the discussed services are all aimed for helping

developing large software projects, we choose here a general

DOI: 10.18293/SEKE2017-205

model for software project lifecycle adapted from Rajlich
[8]. It is a basic and general staged model of software
“lifespan”, which includes the stages of:

1. Initial development,

2. Evolution,

3. Maintenance (servicing),

4. Phase-out,

5. Close-down.

The second and third stages are usually iterative and
incremental (see Figure 1 of [8]). A Software Project
Management System is expected to support development
based on such a model and its various derivatives or
alternatives.

Figure 1 Staged model of software adapted from [8]

IV. OUR APPROACH: SOFTWARE EXTENSION WITH
CONCEPTUAL INTEGRITY PRESERVATION

Our approach consists of enabling addition of services
along the lifecycle of a software system, while having an
infrastructure to preserve Conceptual Integrity.

Typically, most SPMs contain at least the following
services:

1) Version Control for code/software (SCM)

2) Documentation system

3) Issue Database

4) API and integration points with other services, e.g.,
continuous integration (CI).

We now formulate our expectations from a SPM system
in the light of the above mentioned conceptual integrity
concepts. In other words, can we forecast eventual
Conceptual Integrity violations from these typical services?

Here is the analysis:

• Propriety – the set of services above is quite concise
and centered around project management.
Extensions are mainly through 3rd party software
integrations.

• Generality – each service can be adapted to a
specific project lifecycle and the actual project being
carried. For example, version control is not limited
to a specific programming language (or even
software artifacts at all). The use of git, opens the
door to many possible git branching models [9].

From this preliminary analysis, the requirements for a

Conceptual Integrity preservation infrastructure are formulated
as specific design patterns for Conceptual Integrity to be
prepared in advance:

Concatenation patterns – design patterns that can be instantiated
for concatenation of services, as in the above example, which
illustrates the Orthogonality principle. These patterns could use

• Orthogonality – in principle each of the above
services should be used standalone, although in
practice users will expect integration between
them. As an example: there might be an open
issue to fix some missing documentation. Upon
update of the documentation (2), the version
control system is preserving a commit (1), the
issue changes status to closed (3) and a CI
service is triggered to run tests (4).

Figure 2: Using Builder
Concatenation Pattern

for example the "builder" GoF [10] pattern (shown in Fig. 2),
suitable for setting up a related set of services.

Integration interfaces – this set of patterns should act as a sort of
“adapter” or “façade” GoF patterns, with the purpose of
integrating yet unknown 3rd party software.

 Models and languages variations – these patterns needed to cope
with variation of programming languages and say branching
models, should resemble GoF “strategy” patterns.

V. THE GITLAB CASE STUDY
We shortly discuss the Gitlab services, and their

conformance to conceptual integrity principles. The Gitlab
feature page [7] presents the software as containing
“Powerful features for modern software development, tightly
integrated into one platform”. It is centered around a hosted
git server with a rich web interface.

• Version Control – Gitlab suggests hosting of
unlimited private or public git repositories, thus
conforming to generality. The web platform is used
to provide accessible and convenient graphical user
interfaces for the various version control operations.
Gitlab can be installed on premise or consumed as a
cloud service. Still the usability issues of git are not
totally masked, and this might explain the slow
adoption rate of such a service outside of the
software engineering community.
Gitlab has a snippet service for sharing portions of
code. Such a service could be attitude as an
extension to version control; alas a snippet is not
versioned!
Gitlab added fined grain access control (FGAC) and
several privacy tracks, which in fact are evidently
options for version control especially for enterprise
settings. Specific files or folders can be locked in
order to prevent merge conflicts. Gitlab also suggest
sharing small portions of code by a code snippet
service.

• Documentation – Gitlab provides a wiki system and
also a static site hosting solution (Gitlab pages). The
wiki system is maintained in a separate and less
accessible git repository instance. This is, in our
mind, a conceptual integrity issue, since project
artifacts are handled differently (github has the same
issue). Also, it is a common practice to have a major
documentation file – usually named Readme, which
resides in the main source tree. Thus, project
documentation become spread in at least three
different areas – source code, wiki and a static site,
not to mention other possible documentations
(formal or informal).

• Issue Database – the text of an issue can link to
other artifacts, and there are ways to change issue
statuses from version control commit messages. This
is another potential point were conceptual integrity

can be weakened. Gitlab also has an activity stream,
so users need to adjust their most efficient project
update communication patterns.

• API and integrations with other services, e.g.,
continuous integration (CI) – some of the services
are hosted and some are just interfaces to 3rd parties.
An infrastructure can help define the interfaces in
more concise ways to improve conceptual integrity.

VI. DISCUSSION AND FUTURE WORK
In this position paper, we outlined an ongoing research to

examine the conceptual integrity of complex software systems
and laid directions for patterns for conforming to integrity
principles. We intend to further analyze in detail Gitlab and
compare it to other services. The expected outcome of the
analysis and comparisons with other services is a suggested
series of concrete detailed improvements of the system.

The economics of the competition between companies
suggesting those services might lead to “feature creep”
followed by breaking conceptual integrity. This is indirectly
demonstrated in the long feature lists in the providers’
websites.

Conceptual integrity will also be discussed from other
angles, e.g., operations, hosting options, and pricing models.

Acknowledgment: I would like to thank Iaakov Exman for
helpful and fruitful advice.

REFERENCES

[1] F.P. Brooks, The Mythical Man-Month – Essays in Software
Engineering – Anniversary Edition, Addison-Wesley, Boston, MA,
USA, 1995.

[2] F.P. Brooks, The Design of Design: Essays from a Computer
Scientist, Addison-Wesley, Boston, MA, USA, 2010.

[3] D. Jackson and S. P. DeRosso, “What's wrong with git?: a conceptual
design analysis” in Proceedings of the ACM international symposium
on New ideas, new paradigms, and reflections on programming &
software (Onward!), 2013.

[4] D. Jackson, “Towards a Theory of Conceptual Design for Software”,
in Proc. Onward! 2015 ACM Int. Symposium on New Ideas, New
Paradigms and Reflections on Programming and Software, pp. 282-
296, 2015.

[5] S. Chacon, Pro Git, Apress 2009, http://git-scm.com/book
[6] Github, https://github.com/about
[7] Gitlab, https://about.gitlab.com/features/
[8] V. Rajlich, “Software Evolution and Maintenance”, in Proceedings of

the on Future of Software Engineering (FOSE), 2014.
[9] Atlassian Tutorial, “Comparing Workflows”,

https://www.atlassian.com/git/tutorials/comparing-workflows
[10] E. Gamma et. al., Design Patterns: Elements of Reusable Object-

Oriented Software, AddisonWesley Professional, 1994.
[11] Amber, The Agile System Development Life Cycle (SDLC),

http://www.ambysoft.com/essays/agileLifecycle.html
[12] P. A. Laplante, What Every Engineer Should Know about Software

Engineering, CRC Press, 2007.
[13] R. S. Pressman, Software Engineering: A Practitioner's Approach, 8th

Edition, McGraw-Hill Education, 2014.

[14] B. Boehm, "A Spiral Model of Software Development and
Enhancement". In: ACM SIGSOFT Software Engineering Notes
(ACM) 11(4):14-24, 1986.

[15] S. McConnell, "7: Lifecycle Planning", in Rapid Development:
Taming Wild Software Schedules. Microsoft Press., 1996.

