
Conceptual Integrity without Concepts

Giorgio Grasso
Department of Cognitive Science

University of Messina
gmgrasso@unime.it

Alice Plebe
Department of Mathematics and Computer Science

University of Catania
alice.plebe@gmail.com

Abstract

It is commonly asserted that one of the most crucial fac-
tors in software design is the adoption of consistent and ap-
propriate concepts. This widespread assumption, underly-
ing several researches in software engineering, tacitly pos-
tulates the very existence of concepts. What, then, if con-
cepts do not exist? This is the question asked in this paper,
where the articulation of possible answers is attempted. As
weird as it might sound, doubts on the existence of concepts
have been recently cast by few distinguished philosophers
of mind, with compelling arguments. One such argument is
the heterogeneity of cognitive assets that can be referred to
a single concept, and we show that it might be the case for
design concepts in the example of Blender, a 3D computer
graphics software.

1. Introduction

There is a widely perceived view that there exists some-
thing that we call “concept”. Concepts are allegedly used
to categorize the world, to store knowledge, for reasoning,
and for drawing analogies. This is certainly the view held by
Frederick Brooks when he famously stated that the success
of software system design rely heavily on the precise identi-
fication and preservation of “concepts” [4]. It is reasonable
to assume that the integrity of design concepts throughout
software development was based on the implicit postulate
that concepts are objective and stable entities. We will show
that in fact this is not always a necessary requirement, but it
is certailny usuallly assumed.

This tacit confidence on the ontology of concepts has
surrounded all the research domain in conceptual design for
software engineering that followed Brooks’ ideas [9, 2, 8].
Moreover, even the precise nature of concepts, with very
few exception [16], has never been inquired.

Yet, the ontological status of concepts is highly contro-

DOI reference number: 10.18293/SEKE2017-203

versial, and, recently, compelling arguments have been pro-
posed to challenge the very existence of something we call
“concepts” [20, 21, 25]. The difficulties in finding a suitable
ontological status for concepts, and the reasons for eventu-
ally denying any such status, will be briefly reviewed in §2.

While not entering into this debate as such, this paper
questions how the issue of conceptual integrity in software
design will fare, if it turns out that concepts in fact do not
exist. One of the main troubles affecting concepts, as tra-
ditionally conceived, is their heterogeneity, that will be dis-
cussed in §2.1. If a linguistic label used to refer to a specific
design concept actually corresponds to a plurality of het-
erogeneous cognitive assets, then, arguably, a serious threat
undermines the whole idea of conceptual integrity. Schol-
ars arguing for the elimination of concepts have also pro-
posed new theoretical entities, more congruent with the cur-
rent knowledge of human cognition. One, here discussed in
§2.2, is that of “unicept”, a sort of concept unique for a hu-
man agent. The trouble for conceptual integrity can be now
traced to the simple fact that, unlike concepts, unicepts are
not objective entities, thus cannot be generalized across in-
dividuals.

In §3 we will show that it may be the case for Blender,
a popular open-source software for 3D computer graphics.
This software is developed under a wide collaborative basis,
and it is built on to a set of firm design concepts concern-
ing its user interface. Yet, Blender is often not regarded
as easy to use, even by experienced graphics developers fa-
miliar with other software applications. We argue this is a
case of heterogeneous cognitive assets of, apparently, same
concepts, nothing exceptional if concepts do not exist.

However, we argue that the lack of a well-founded on-
tology for concepts does not undermine completely the need
and practice of conceptual integrity, as will be demonstrated
in the case of the software Blender. Rather, it requires
awareness that design concepts are not necessarily carved
on stone tablets just because they are expressed in words,
therefore the ideas of software architects may not coincide
with those expected by implementers or users.



2. Do concepts exist?

Doubts about the existence of concepts were raised by
the extreme difficulties found in every attempts to define
exactly what concepts are, and how they work.

In modern philosophy extensive work on the nature and
origin of concepts was carried by the English empiricists,
especially John Locke [19] and David Hume [15]. In their
idiom concepts were called “ideas”, similarly to Frederick
Brooks who, in his books, uses “design ideas” as a per-
fect equivalent of “design concepts”. Ideas, for Locke and
Hume, are perceptually based, and reason gets its contents
from the senses. The empiricist position has been often re-
futed in the history of philosophy, but recently proposed in a
modernized account supported by cognitive and neurocog-
nitive evidences [29].

A large body of work on concepts was carried out by psy-
chologists in the second half of last century, but marginally
concerned with a precise characterizations of what con-
cepts are. Concepts are often conflated with categories [23],
knowledge [1], and representations [33].

In most contemporary philosophy of mind and philos-
ophy of language “concepts” are used as a non technical
equivalent for “propositional attitudes” [27, 10, 22, 29], i.e.
propositions that, like beliefs, can be true or false, or, like
desires, can be satisfied or unsatisfied. Most of the times
philosophers content themselves with this account of con-
cept, and their effort is in explaining how concepts are
individuated. For instance, they are supposed to explain
what distinguishes our capacity to have propositional atti-
tudes about keyboards as such from our capacity to have
propositional attitudes about hard-disks as such. Even if
the focus of philosophy and psychology on concepts is
different, in the last decades the discussions become en-
trenched, with philosophers evaluating the virtues of psy-
chological theories of concepts with respect to their own
criteria [10, 24, 29].

2.1. (Too) Many concepts of “concept”

Details of the countless theories of concepts in psychol-
ogy and philosophy are out of the scope of this work, but
the diversity of existing theories is at the very core of con-
cerns related to the existence of concepts. For sure, both
philosophers and psychologists have always acknowledged
the wild differences between concepts and between kinds
of concepts, but the received view is that, over and beyond
the differences between concepts and between kinds of con-
cepts, there is a set of common relevant properties [26, 13].
Few have proposed that the apparent divergence between
concepts is due to a pluralism in scope, for example few
properties could be shared by cats and computer keyboards
because biological kinds and artifacts have little in common

[18]. Others have argued for a pluralism of competences,
different kinds of concept are involved in different cognitive
competences [28], for example a concept of keyboard used
when we categorize visually an object as keyboard could
have little in common with a concept of keyboard when rea-
soning about developing the software driver module for a
keyboard.

A different line is held by Machery with his “heterogene-
ity hypothesis” [21], the proposal that most categories of
physical objects, most types of event, and most substances
are represented by several concepts that belong to kinds that
have little in common. There are at least four different the-
oretical entities that have been conceived as theories of con-
cepts, and they have little in common.

The classical theory states that a concept is the set of
properties which are separately necessary and jointly suf-
ficient for an object to belong to the class of that concept
[32], this theory has been largely endorsed before the end
the 1960s [17]. Notably, the classical theory had profound
influence on computer science, it has been assumed as the
foundation for the domain of formal concept analysis. One
of the most favored mathematization of concepts in com-
puter science is by sets of objects and attributes, that define,
respectively, the extension and the intention of a concept,
and the interdependence of concepts is formalized by math-
ematical lattice structures [12]. This formalization of con-
cepts has proven fruitful in several applications, including
text retrieval and mining [7], support in software engineer-
ing for identification of object-oriented structures or refac-
toring activities [34]. While formal concept analysis is still
today an active domain of research, his underlying classi-
cal theory of concepts has been mostly abandoned in phi-
losophy for decades. It was replaced in the 1970s by the
prototype paradigm, assuming that we have in mind some
properties that are believed to be typically possessed by the
members of a class [31, 14]. Few years later a different
paradigm of concepts was proposed, that of exemplar [5],
the idea is that concepts are sets of exemplars, which are
bodies of properties believed to be possessed by few par-
ticular members of a class. The fourth theory is the theory
paradigm [6, 30], proposing that concepts are some kind of
folk theories, knowledge that can explain the properties of
category members. Machery compellingly illustrated how
all those theoretical paradigms of concept have little in com-
mon, from both the point of view of the types of knowl-
edge they encode, and the kinds of cognitive process they
involve.

2.2. Unicepts

The elimination of concepts for Machery is a conse-
quence of the perplexing heterogeneity of theoretical con-
strues, reviewed above, which in fact denote heterogeneous



Figure 1. The Blender interface, with highlighted in red five “Editors”: Info (1), 3D View (2), Outliner (3), Properties (4) and
Timeline (5).

ways in which the mental/neural vehicles hold information
about things and properties of things. It is this heterogene-
ity that led Millikan to introduce a new notion different from
“concept”, as the fundamental units of cognition: the “uni-
cept”. In her words:

“Uni” is for one, of course, and “cept” is from Latin
capera, to take or to hold. One’s unicept for an ob-
ject, or property, or kind, or relation etc., takes in many
proximal stimulations and holds them as one distal en-
tity. A developed unicept reaches through a radical di-
versity of sensory impressions to find the same distal
thing again. [. . . ] A unicept is a specific individual fac-
ulty developed for a very specific purpose, the purpose
of collecting and integrating information about some
particular thing. [25, p.16]

This new theoretical entity differs from “concept” in sev-
eral ways, which are not essential in this paper. What count
here is that, unlike the common view on concepts, unicepts
are not entities that people share. Every individual has
his/her own private stock of unicepts. In most cases uni-
cepts of different people succeed in gathering information
about exactly the same things in the world, but they do this
in different ways, sometimes using overlapping cognitive
strategies, but also many that are distinct. Moreover, having
a unicept involves having a certain kind of ability or capac-
ity to deal, successfully, with an aspect of the world, and
there is no genuine unicept unless what it pulls information
about is indeed a precise entity in the world. Otherwise,

in the words of Millikan, “if it pulls together information
about many things, using this as though it were about one
thing, then [. . . ] it is an empty unicept or at best an equivo-
cal unicept.

3. Unicepts in Blender

In order to illustrate cases where design concepts are
much better defined in terms of Millikan’s unicepts, rather
than traditional, universal, concepts, we analyize the user
interface of Blender (www.blender.org), a widely used
open-source computer graphics software [3]. Originally de-
veloped in 1995 by Ton Roosendaal as an in-house tool, in
2002 turned into an open source project, that since 2007 has
been coordinated by the Blender Institute in Amsterdam,
under Roosendaal direction.

Elements in the interface of Blender are organized in
strict hierarchical manner, based on the following “con-
cepts”:

Window ⇒
Screen ⇒

Areas ⇒
Editors ⇒

Regions ⇒
Tabs ⇒

Panels ⇒
Controls

“Screens” are window layouts, Blender offers a set of
pre-defined possible layouts, but it is possible to customize



Figure 2. Comparison with interfaces of other 3D computer graphics software: Maya on the left, 3Ds Max on the right.

any of them. Screens are divided up into a number of
re-sizable “Areas”, each of which containing a particular
type of “Editor”, like a 3D View Editor (the main inter-
action with the 3D scene), an Outliner (the overview of
scene graphs hierarchy), a Graph Editor (for keyframe
interpolation), a Node Editor (node-based shading and
compositing tools), and so on. In Fig. 1 a screenshot of
the “Window” is given, with a layout of 5 “Areas” hosting
different “Editors”. “Editors” in turn are split into “Re-
gions”, portions of the space inside the “Area” containing
smaller structuring elements like tabs and panels with
buttons, controls and widgets placed within them. Blender
uses a peculiar screen-splitting approach to arrange areas:
the “Window” can be divided into an arbitrary number of
smaller adjacent “Areas”, and each “Area” is always fully
visible, and it is straightforward to work in one area and
hop over to work in another.

3.1. What “Editor” means

Most of the words here quoted to address the main “con-
cepts” of Blender’s interface are of common usage among
professional sofware, and not only in the computer graph-
ics domain. The point is that several of this words, even
if including properties shared by other software, are charac-
terized by aspects of meaning, and usage, which are distinc-
tive in Blender. For sexample, in the two main alternative
to Blender, Maya and 3Ds Max (see Fig. 2) there is a sharp
distinction between “editors” and other tools like toolbox
shelves (Maya) or ribbons (3Ds Max). In Blender, every
instance of an “Area” contains an “Editor”, words that, ar-
guably, refers to an unicept, kind of concept held by accus-
tomed users of Blender, and by its developers, but diverges
considerably from the set of properties and features other
users include in their unicept of “editor”.

It is noteworthy that despite this deviation of several con-
cepts from their account in other software, Blender achieved
in its user interface a remarkable integrity. There is a high
consistency of interaction across all “Editors”, with several
non-modal tools, that can be accessed efficiently without
taking time to select them according to the type of editing.
Inside every “Editor” there is a consistent and predictable
usage of mouse and keyboard actions for interaction.

For example, most single-key commands have their re-
verse action with the same key pressed together with the
Altmodifier. The key Ameans the selection of “All”, where
this quantifier can refer to a variety of entities depending
on the “Editor”, like 3D meshes in the case of 3D View,
keyframes in the case of Graph Editor, nodes in the Node
Editor, and so on. These features are among the most ap-
preciated in the community of Blender users, who find the
working efficiency offered by its interface unsurpassed.

Therfore, it is possible to state that Blender, in its user
interface, is a good example of, say, Uniceptual Integrity.
This integrity, which is certainly an important reason of
its success, comes at a price. Unicepts are not universally
shared, and users that formed their concepts of editor and
the likes via mediate inference and practical learning over
time on different graphic software of their acquaintance,
will find themself discomforted and confused working with
Blender. Arguably, the amount of overlap of unicepts be-
tween people is a matter of degrees, in the case of software
we may have groups of users where the amount of sharing
is high, and other gropus where is it minimal. We believe
that the case of Blender is rather unexceptional, that in most
complex software there can be examples of unicepts, that
may or may not be succesfully preserved in their integrity,
but can be alien to unicepts named with the same words in
other software.



4. Conclusions

This article takes on the issue of how conceptual integrity
in software design can be pursued, under the assumption
that there is no such thing as “concepts”. We addressed
this issue not as a logic exercise of counterfactual reason-
ing, but because recently a few distinguished philosophers
have argued against the very existence of concepts. In trying
to articulate the consequences for conceptual integrity, we
adopted one of the best alternatives, in our view, proposed
so far: Millikan’s “unicept”. It is a mental entity that is
built by collecting and integrating information about some
thing of the world, in a large variety of ways, and differs
substantially from concepts in that unicepts are not shared
as such by people. We analyzed the case of Blender soft-
ware, and the items ordinary called “concepts” that char-
acterize its user interface, arguing that they are better con-
strued as “unicepts”, because, despite the same verbal la-
bels, differ intrinsically from those used in other graphics
software. However, the lack of generality does not hamper
the software design to pursue a high degree of integrity, that
now we can call uniceptual integrity. It is probably an in-
tegrity less ambitious of that fostered by Frederick Brooks,
that works well for group of users that share, at least, an
important part of the unicepts founding the design, and not
for others. It is our opinion that the reasoning carried out
in this paper has a relevance for application in software en-
gineering, especially when large teams of developer are in-
volved and the conceptual integrity issues have a significant
impact.

References

[1] L. W. Barsalou. Perceptual symbol systems. Behavioral and
Brain Science, 22:577–660, 1999.

[2] G. A. Blaauw and F. P. Brooks. Computer Architecture:
Concepts and Evolution. Addison Wesley, Reading (MA),
1997.

[3] A. Brito. Blender 3D: Architecture, Buildings, and Scenery:
Create photorealistic 3D architectural visualizations of
buildings, interiors, and environmental scenery. Packt Pub-
lishing Ltd, Birmingham (UK), 2008.

[4] F. Brooks. The Mythical Man-Month: Essays on Software
Engineering. Addison Wesley, Reading (MA), 1975.

[5] L. Brooks. Nonanalytic concept formation and memory for
instances. In E. Rosch and B. B. Lloyd, editors, Cogni-
tion and concepts, pages 169–211. Lawrence Erlbaum As-
sociates, Mahwah (NJ), 1978.

[6] S. Carey. Conceptual change in childhood. MIT Press, Cam-
bridge (MA), 1985.

[7] C. Carpineto and G. Romano. Using concept lattices for text
retrieval and mining. In Formal Concept Analysis – Founda-
tions and Applications [11], pages 161–179.

[8] F. Détienne. Software design: cognitive aspects. Springer-
Verlag, Berlin, 2002.

[9] J. Dvorak. Conceptual entropy and its effect on class hierar-
chies. IEEE Computer, 27:59–63, 1994.

[10] J. Fodor. Concepts: A potboiler. Cognition, 50:95–113,
1994.

[11] B. Ganter, G. Stumme, and R. Wille. Formal Concept Analy-
sis – Foundations and Applications. Springer-Verlag, Berlin,
2005.

[12] B. Ganter and R. Wille. Formal concept analysis: mathe-
matical foundations. Springer-Verlag, Berlin, 1999.

[13] R. L. Goldstone and A. Kersten. Concepts and categoriza-
tion. In I. B. Weiner, editor, Handbook of psychology. John
Wiley, New York, 2003.

[14] J. Hampton. Prototype models of concept representation. In
I. Van Mechelen, J. Hampton, R. S. Michalski, and P. The-
uns, editors, Categories and concepts: Theoretical views
and inductive data analysis, pages 67–95. Academic Press,
New York, 1993.

[15] D. Hume. An Enquiry Concerning Human Understanding.
A. Millar, London, 1748.

[16] D. Jackson. Towards a theory of conceptual design for soft-
ware. In ACM International Symposium on New Ideas, New
Paradigms and reflections on programming and software –
Onward!, pages 282–296. ACM, 2015.

[17] J. Katz and J. Fodor. The structure of a semantic theory.
Language, 39:170–210, 1963.

[18] L. K.Komatsu. Recent views of conceptual structure. Psy-
chological Bulletin, 112:500–526, 1992.

[19] J. Locke. An essay concerning human understanding.
Meridian Books, Cleveland, 1690.

[20] E. Machery. Concepts are not a natural kind. Philosophy of
Science, 72:444–467, 2005.

[21] E. Machery. Doing without concepts. Oxford University
Press, Oxford (UK), 2009.

[22] E. Margolis and S. Laurence, editors. Concepts: Core read-
ings. MIT Press, Cambridge (MA), 1999.

[23] E. M. Markman. Knowledge representation. Lawrence Erl-
baum Associates, Mahwah (NJ), 1999.

[24] R. G. Millikan. On Clar and Confused Ideas: An Essay
About Substance Concepts. Cambridge University Press,
Cambridge (UK), 2000.

[25] R. G. Millikan. An epistemology for phenomenology?
In R. Brown, editor, Consciousness Inside and Out: Phe-
nomenology, Neuroscience, and the Nature of Experience,
pages 13–26. Springer-Verlag, Berlin, 2014.

[26] G. L. Murphy. The big book of concepts. Cambridge Uni-
versity Press, Cambridge (UK), 2002.

[27] C. Peacocke. A study of concepts. MIT Press, Cambridge
(MA), 1992.

[28] G. Piccinini and S. Scott. Splitting concepts. Philosophy of
Science, 75:390–409, 2006.

[29] J. Prinz. Furnishing the Mind – Concepts and Their Percep-
tual Basis. MIT Press, Cambridge (MA), 2002.

[30] L. J. Rips. The current status of research on concept combi-
nation. Minds and Language, 10:72–104, 1995.

[31] E. Rosch. Principles of categorization. In E. Rosch and
B. Lloyd, editors, Cognition and Categorization. Lawrence
Erlbaum Associates, Mahwah (NJ), 1978.

[32] K. L. Smoke. An objective study of concept formation. Psy-
chological Monographs, 42:1–46, 1932.



[33] K. Solomon, D. L. Medin, and E. Lynch. Concepts do more
than categorize. Trends in Cognitive Sciences, 3:99–105,
1999.

[34] T. Tilley, R. Cole, P. Becker, and P. Eklund. A survey of for-
mal concept analysis support for software engineering activ-
ities. In Formal Concept Analysis – Foundations and Appli-
cations [11], pages 250–271.


