
DOI reference number: 10.18293/SEKE2017-193 

Applying Probability Model to The Genetic 

Algorithm Based Cloud Rendering Task Scheduling 

Guobin Zhang1,3, Huahu Xu1,3 

1. School of Computer Engineering and Science, 

Shanghai University, 200444 Shanghai, P.R. China 

3. Shanghai Shang Da Hai Run Information System Co., 

Ltd, Shanghai 200444,  

mr_zhang2011@163.com 

 

Honghao Gao1,2 , Ankang Liu4 

2. Computing Center, Shanghai University, 200444 

Shanghai, P.R. China 

4. Department of Mathematics, Shanghai University, 

200444 Shanghai, P.R. China 

 
Abstract—There are huge amount of tasks and data to be 

processed in cloud rendering environment. How to effectively 

schedule them is the key to ensure the overall performance of the 

cloud rendering environment. In this paper, an improved task 

scheduling algorithm based on genetic algorithm (PMGA) and 

probability model is proposed, which aims to minimize the total 

time and cost of task scheduling . First, the fitness function relating 

to the total time and task cost is improved under the consideration 

of the user’s satisfaction to the rendering services. Then, a 

probability model is constructed for the scheduling algorithm, 

which is used to achieve the non-linear adaptive adjustment of the 

crossover rate function and the mutation rate function. As a result, 

the evolutionary ability of poor individuals in the population can 

be enhanced, avoiding the stagnation in the early stages. Finally, 

experiments are performed to demonstrate that PMGA has a 

better ability of optimization than that of traditional adaptive 

genetic algorithm (AGA). Our approach contributes to reduce the 

total time and the scheduling cost of the cloud rendering tasks. 

Keywords-Cloud Rendering; Task scheduling; Genetic 

Algorithm; The Fitness Function; Probability Model; The Crossover 

Rate; The Mutation Rate 

I.  INTRODUCTION 

Due to the advantages of cloud computing, cloud rendering 
is considered as a promising application, focusing on the 
rendering services and providing the computing and data 
resources. The basic principle of cloud rendering is that the 
cloud rendering system divides tasks submitted by users into 
some independent subtasks, and dynamically allocates the 
subtasks to resource nodes based on appropriate scheduling 
strategies. After all tasks are completed, the rendering results 
will be merged together and returned to the users [1,2].  

Most cloud computing platforms adopt MapReduce [3] to 
support distributed computing. Many studies have shown that 
the problem of task scheduling under cloud environment is an 
NP-complete problem [4]. Cao et.al., [5] proposed a task 
scheduling optimization algorithm based on ABC algorithm, 
which reduces the total time of completion task. Xu et.al., [6] 
proposed a multi-adaptive particle swarm optimization strategy 
for task scheduling in cloud, which has taken into account the 
task completion time, the operating cost and the balancing of 
resource load. Jie et.al., [7] proposed a genetic simulated 
annealing algorithm for task scheduling with dual fitness, which 
effectively balances the demands of the users and improve the 

users’ satisfaction. Liu et.al., [8] proposed a task scheduling 
algorithm based on genetic algorithm and ant colony algorithm, 
which improves the speed of getting the optimal solution. 

However, due to the heterogeneity of the cloud computing 
platform, any single intelligent group algorithm is easy to fall 
into the local optimum, premature and other defects. The 
improvement is mainly focused on the nature of the algorithm 
itself, ignoring the guiding role of the information in the process 
of evolution. The adaptability of these algorithm are not robust 
enough, and the scheduling time and cost can not be balanced 
well. The efficient task scheduling algorithm is still a long-term 
challenge in the research of cloud computing. 

Genetic algorithm was proposed by Professor John Holland 
of the University of Michigan in the 1970s. It is a global 
optimization probabilistic search algorithm based on the natural 
evolution process including selection, crossover and mutation 
operations on the genes of individuals or potential solutions [9]. 
The basic principle is to apply a coding technique to the 
individual in the population, then simulate the evolutionary 
process of the population. The standard genetic algorithm (SGA) 
usually has only one population, the crossover rate and the 
mutation rate are fixed ones, resulting in its slow convergence.  

Srinivas et.al., [10] proposed an adaptive genetic algorithm 
(AGA). It took a dynamic automatic adjustment for crossover 
rate and mutation rate, which is based on the fitness value and 
the convergence level of the current group. This algorithm 
improved the convergence speed of the genetic algorithm, 
however, it is slightly slow at the beginning of the evolution 
process. Beyond that, only one fitness function is used to 
measure the adaptation of individual to different environment. 

In order to improve the efficiency of task scheduling in the 

cloud rendering platform, an improved adaptive genetic 

algorithm based on probability model is proposed. The fitness 

function is established for the total time and total cost of the 

rendering tasks, which aims to achieve the minimum time and 

minimum cost. Then, the crossover rate function and mutation 

rate function is improved by applying the probability model, 

which effectively retains the excellent individuals in the 

evolution process of population and enhances the crossover rate 

and mutation rate of poor individuals. 
The rest of this paper is as follows: In Section II, it describes 

the problem of tasks scheduling in cloud rendering environment, 
and gives the allocation pattern of tasks and the calculation 
method of total completion time and total cost of cloud tasks. In 

mailto:mr_zhang2011@163.com


Section III, the implementation and process of PMGA are 
introduced in details. In Section IV, PMGA and AGA are 
compared and analyzed under the same experimental 
environment. The experimental results proves that the 
performance of cloud rendering is improved by using PMGA for 
task scheduling. Finally, in Section V, we conclude this research 
and discuss future works. 

II. DESCRIPTIONS ABOUT THE CLOUD RENDERING TASK 

SCHEDULING 

Cloud rendering task scheduling is to distribute the tasks to 
the compute nodes by applying appropriate scheduling strategies, 
which enables to minimize the time, lower the cost, and keep the 
load balancing of resources [11].  

Assuming that the cloud rendering system user submits T 
tasks, the system has R resources. Then, the total subtask number 

of the task t is defined as ( )taskNum t , the total subtask number 

is defined as subTaskNum . Then 

1

( )
T

t

subTaskNum taskNum t


                     (1) 

Subtasks are numbered according to the sub-sequence 
numbering method. If the sequence number of jth subtask of ith 
task is m, then 

-1

1

( )
i

k

m taskNum k j


                                  (2) 

The ETC matrix [12] is used to record the execution time of 

each sub task, the ECC matrix is used to record the execution 

cost of each sub task. Consequently, the total time and total cost 
of all the sub tasks are as follows: 

( )
1

1

 ( , )
nR

time x
r

i

F ma x Time r i




                        . (3) 

R

( )
1

1

 ( , )
n

cost x
r

i

F ma x Cost r i




                            (4) 

Where ( , )Time r i and ( , )Cost r i represents the execution 

time and cost of ith subtask on rth resource, n is the subtask 

number on rth resource. ( , )Cost r i  is defined as follows: 

- -

- -

( , ) ( , ) ( , )

( , ) ( , )

cpu i cpu menmory i menmory

storage i storage bandwidth i bandwidth

Cost r i w Cost r i w Cost r i

w Cost r i w Cost r i

  


        (5)  

Where 
i cpuCost 

,
menmoryCost ,

storageCost  and bandwidthCost  are 

the cost of CPU, Memory, Storage and Bandwidth, respectively. 

cpuw ,
menmoryw , 

storagew  and bandwidthw  are weighing coefficients 

of the four kind of resource costs, respectively. They are both in 
[0,1], and satisfy the following equation: 

1cpu menmory storage bandwidthw w w w                            (6)  

The value of weighing coefficient can be set differently to 
measure the user satisfaction of scheduling results. They are all 
fixed to 0.25 in our experiments to balance the resources costs. 

III. TASK SCHEDULING OF PMGA IN CLOUD RENDERING  

A. Encoding and Decoding 

As for the solution of cloud task scheduling based on PMGA, 
it needs to establish a mapping relationship between the solution 
of the problem and the individual of the algorithm. The current 
encoding modes of chromosome always include direct encoding 
and indirect encoding. This paper adopts indirect encoding mode 

to encode the node occupied by each sub task, taking into 
account the division of the operation under cloud rendering. The 
length of the chromosome depends on the number of sub tasks, 
therefore, a chromosome corresponds to a task scheduling 
strategy. The length of the individual chromosome equals to the 
total number of tasks, the value of the chromosome gene is the 
cloud resource number occupied by the task at that location.  

For example, if users submit 3 tasks in a certain time, the 
resource number of cloud rendering system is 3. Task 1 is 
divided into 1, 2, 3 three subtasks. Task 2 is divided into 4,5,6 
three subtasks, Task 3 is divided into 7,8,9,10 four subtasks. The 
chromosome length is 10, the value of each gene is [1,3]. Then 
The chromosome {1,2,1,2,1,3,2,1,2,3} is a feasible scheduling 
strategy as shown in Table I. 

TABLE I.  ENCODING MODE OF CHROMOSOMES 

Subtask 1 2 3 4 5 6 7 8 9 10 

Resource 1 2 1 2 1 3 2 1 2 3 

It is necessary to decode them to obtain the distribution of 
the subtasks on each node. After that, the subtask performed on 
resource 1 is {1,3,5,8}, the subtask executed on resource 2 is 
{2,4,7,9}, the subtask executed on resource 3 is {6,10}. 

B. Initialization of the Population 

Assuming that the initial size of the population is SCALE , 

the total number of subtask is M , the number of resources is
RESOURCE , the initialization of the population can be 

described as follows: the system randomly produce SCALE

chromosomes, the length of the chromosome is M , the values 

of genes are  1, RESOURCE , the chromosomal gene is 

generated randomly within this range. 

C. Double Fitness Function Model 

The fitness function generates a fitness value of each 
chromosome. The value indicates how suitable for solving a task 
scheduling problem a chromosome is. The fitness function for 
SGA and AGA is only based on execution time of tasks. But, 
task scheduling problems in cloud rendering are different from 
general task scheduling problems because rendering services in 
cloud rendering environment are offered between cloud users 

and providers. Therefore, this paper defines ( )timeFIT i as the 

fitness function of the total completion time of the tasks, and

( )costFIT i  as the fitness function of the total cost of the tasks. The 

calculation formula of this two function is as follows: 

 1
( )

1 ( )
time

i j

FIT i
Time R




                            (7) 

c

1
( )

1 ( )
ost

i j

FIT i
Cost R




                             (8) 

Where
jR is the jth resource of the ith individual, ( )iTime R j

is the completion time of the ith individual. ( )iCost R j is the cost 

of the ith individual. Formula (9) is used as the fitness function 
of the algorithm. 

c c( ) ( ) ( )
osttime time ostFit i w FIT i w FIT i                  (9) 

In the formula, timew  and costw  are weighing coefficients, 

and 1time costw w  , which can be set according to the user’s 

needs. timew  and costw  are both set to 0.5 in our experiments in 



order to balance the proportion of the total time and the total 
cost of the task. 

D. Probability Model and Generic Operation 

1) Individual Selection Based On Double Fitness Function 

Model  
This paper adopts the roulette wheel selection method [13] 

to do the selection operation. The selection probability of each 
individual was calculated according to the fitness function (7) 
and fitness function (8), and give the equations: 

1

1

( )
( )

( )

time

SCALE

time

j

FIT i
P i

FIT j





                                (10) 

2

1

( )
( )

( )

Cost

SCALE

Cost

j

FIT i
P i

FIT j





                         (11) 

When choosing the next generation of individuals, one of the 

probability is selected from 
1P  and 

2P  to choose populations 

with probability 1c  and 2c  respectively, and 1 2 1c c  . In this 

way, the population both contains individual with shortest 
completion time and minimum cost, which provides good 

foundation for the next generation. 1c  and 2c  are both set to 0.5 

in our experiments. 

2) Improved crossover operation and mutation operation 

based on the probability model  
Crossover operation is to match the individuals from the 

population randomly in pairs, and exchange their partial gene 
with a probability by following a particular probability rule for 
each individual. The mutation operation is to change the genetic 
value of a certain locus on each individual in the population to 
other alleles at a certain probability. 

The crossover rate function 
cP  and the mutation rate 

function
mP determine the speed of updating and searching for 

the population. In SGA, 
cP and 

mP  are both constant values. 

SGA is inefficient and is easy to be precocious for complex 
multivariable optimization problem. AGA had made some 

improvements based on the fitness value [10]. 
cP  and 

mP  in 

AGA are defined as follows:  

1 max

max

3

( ')
, '

( )
, '

avg

avgC

avg

k f f
f f

f fP
f f

k




 




                               

2 max

max

4

( )
,

( )
,

avg

avgm

avg

k f f
f f

f fP
f f

k




 




                               

Where maxf is the maximum fitness of the population, 
avgf is 

the average fitness of the population, 'f is the greater fitness of 

the two individuals which are to have cross operation, f is the 

fitness value of the mutation individual that are to have mutation 

operation. 1k , 2k , 3k , 4k are [0,1]. In literature [10], 1k = 3k  =1.0, 

2k = 4k =0.5. 

cP  and  
mP  in AGA perform a linear change according to  

the average fitness and maximum fitness of individual as shown 

in Fig. 1 and Fig. 2 . 
cP  and 

mP are equal to zero when the fitness 

value is relatively large. However, at the beginning of the 
algorithm, the individuals with higher fitness in the population 
may not be the optimal solution. Thus, it may lead to the 
occurrence of a local optimal solution.  

    
Figure 1. The Cross Rate of AGA           Figure 2. The Mutation Rate of  AGA  

The probability calculated by the probability model is 
applied to the crossover rate function and the mutation rate 
function in PMGA. The definition of the crossover rate and 
mutation rate function in PMGA are as follows: 

 
 

 
 

'

max

'
max

max

- 

max
-

1 max

- 

max
-

2

( ) '
2

( ) '
2

'

c

avg

c

avg

f f
M avg

f f
c ck ck pro c

f f
M avg

f f
C c ck ck pro c avg

ck avg

f f
k P P P f f

f f
P k P P P f f

P f f

 
  
 
 

 
 
 
 
 

   
      
  

 
          

   


 



，

，

，

       (14) 

 

 

 

 

max

max

max

max

- 

max
-

1 max

- 

max
-

2

( ) ,
2

( ) ,
2

m

avg

m

avg

f f
M avg

f f
m mk mk pro m

f f
M avg

f f
m m mk mk pro m avg

mk avg

f f
k P P P f f

f f
P k P P P f f

P f f

 
 
 
 

 
 
 
 

   
      

 
 

          
   








，

      (15) 

Where 
maxf , 

avgf , 'f , f  are the same as them in  equation 

(12) and equation (13). 1ck , 
2ck , 1mk , 

2mk are constant values 

in [0,1], they are used to control the control the changing speed 

of cP  and mP . 
pro cP 

 and 
pro mP 

represents the value of the cross 

operation probability and the mutation operation probability 

calculated by the probability model. cM  and mM are constant 

values in [1, ] . The larger value they are, the higher crossover 

rate and the mutation rate the optimal individual has. When the 

fitness value is smaller than 
avgf , the crossover rate is kcP , the 

mutation rate is mkP . The value of 1ck , 2ck , 1mk , 2mk , ckP  and 

mkP  can be adjusted according to the practical problems. The 

graph of 
cP  and 

mP  in PMGA are shown in Fig. 3 and Fig. 4, 

respectively. 

     

Figure 3. Crossover rate of PMGA       Figure 4. Crossover rate of PMGA 



When 
avgf f , 

cP and
mP  in PMGA is a relatively large 

fixed value, enabling the individuals to evolve faster. When 

max

2

avg

avg

f f
f f


  , 

cP  and 
mP  decrease slowly with the 

increase of fitness value. When max

max
2

avgf f
f f


  , 

cP and 
mP

become smaller rapidly and decrease with the increase of fitness 
value, when the fitness reaches its maximum value, the value of 

cP  and 
mP  are equals to 

c pro cK P 
and 

m pro mK P 
, respectively, 

which are very close to zero. Therefore, the crossover rate and 
mutation rate in PGMA both have the ability to find the best 
solution quickly and the randomness property. When the fitness 

is relatively large, the value of 
cP  and 

mP  are not an absolute 

zero value, so that the algorithm will not be in a low searching 
speed in the early process of evolution. 

3) Generating and Computing of Probability Model  
Probability model refers to a type of random system models 

with Markov characteristics, which is proposed by the Russian 
scientist Markov in 1970. According to the state space and the 
nature of the parameters, it can be divided into discrete time 
Markov chain, continuous time Markov chain, Markov decision 
process. 

Discrete time Markov chain is a kind of Markov random 
process with discrete state space and discrete time. It can be 

defined as:  , , ,initD S S P L , S  is a set of finite nonempty 

states, indicates all possible configuration status of the modeled 

system. [0,1]P S  is the migration probability function 

matrix, represents the probability of the migration between the 

modeled system states, 
'

, ( ', ) 1
s S

s S P s s


   . : 2APL S  is a 

label function with atomic propositions. 
The process of PMGA is a continuous random process of 

selection, crossover and mutation operations. It is related to the 
state of the current population, regardless of the previous 
population status. In addition, PMGA is homogeneous, there 
exists a limit probability distribution in PMGA, and the 
transition probability is independent of time. As a result, 
discrete time Markov chain (DTMC) is chosen to model it.  

The adaptive genetic algorithm based on probability model 
is described as follows: 

1) Initialize computing node of cloud rendering system 
rendering, go to 2)  

2) Initialize parameters of cloud rendering task scheduling, 
then go to 3).  

3) Encode parameters into chromosomes. 
4) Initialize the population, go to 6). 
5) The cloud rendering system error or program exception. 
6) Calculate the fitness of each individual and determine 

whether the individual satisfies the optimal condition. 
Then go to step 12), if not, go to 7). 

7) Do select operation, that is, according to the individual 
selection rules, select some excellent individuals from the 
current population as the new population, then go to 8). 

8) Calculate the crossover rate 
cP , do cross operation with  

probability 
cP , go to 9), skip cross operation with 

probability 1-
cP  go to 10). 

9) Do crossover operation, and generate a new population,  
then go to 10). 

10) Calculate the mutation rate
mP , do mutation operation 

with probability
mP , go to 11), skip mutation operation with 

probability 1-
mP , go to 6). 

11) Do mutation operation, and generate a new population, 
then go to 6). 

12) Decode the chromosome and get the optimal solution. 
According to the above process description, the state 

transition diagram of PMGA is shown in Fig. 5. 

S0S1S2S3

S4

S8S7 S9

P0-1P1-2P2-3

S6

S5

S12

P1-5

P2-5

P3-5

P0-5

P3-4

S10

S11

P4-6

P7-8 P8-9

P9-10

P10-11

P10-6

P11-6

P6-7

P6-12

P10-5

P9-5

P8-5

P11-5

P7-5

P4-5

{ Mutation  Operation }

{ Crossover Operation }

{ Individual Selection }

{ Abnormal state }

{ Decode chromosomes and 

get the optimal solution }

{ Compare and determine}

{ Initialize the population }

{Encoding parameters into 

chromosomes}

{ Intialize parameters } { Intialize computing nodes} { Start }

{  Calculate the probability 

of mutation operation}

{ Calculate the probability 

of crossover operation}

  
  Figure 5. The State Transition Diagram of PMGA 

PMGA has the properties of discrete time Markov chain. It 

is defined as a discrete time Markov chain D, ( , , , )initD S S P L , 

each element is described as follows: 

 0 1 2 3 4 5 6 7 8 9 10 11 12{ , , , , , , , , , , , , ,}S S S S S S S S S S S S S S . 

 0initS S  

 

0 1 0 5

1 2 1 5

2 3 2 5

3 4 3 5

4 5 4 6

6 7 6 12

7 5 7 8

8 5 8 9 8 10

9 5 9 10

1

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0

 

P P

P P

P P

P P

P P

P P

P P

P P P

P P

P

P

 

 

 

 

 

 

 

  

 



0 1 0 5

1 2 1 5

2 3 2 5

3 4 3 5

4 5 4 6

6 7 6 12

7 5 7 8

8 6 8 5 8 10

9 5 9

0 5 10 6 10 11

11 5 11 6

1

1

1

1

1

1

1

1

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

P P

P P

P P

P P

P P

and P P

P P

P P P

P P

P P

P P

 

 

 

 

 

 

 

  



  

 

 
 

  
   
 

  
   
 

  
 

  
   
 
    
 

 
 
 
 
 
 

10

10 5 10 6 10-11

11 5 11 6

1

1

1

P P P

P P



 

 
















   


 

 

 

0

1

2

3

4

5

6

( ) { }

( ) {   }

( ) {  }

( ) {   inf  }

( ) {   }

( ) {  }

( ) {    

L S Start

L S Intialize computing nodes

L S Intialize parameters

L S Encoding parameters o chromosome

L S Initialize the population

L S Abnormal state

L S Compare the fitness v















7

8

9

10

       }

( ) {  }

( ) {      }

( ) {  }

( ) {    

alues and determine whether get the optimal solution

L S Individual Selection

L S Calculate the probability of crossover operation

L S Crossover Operation

L S Calculate the probability of









11

12

   }

( ) {  }

( ) {       }

mutation operation

L S Mutation Operation

L S Decode chromosomes and get the optimal solution
























 

The probability of the boundary reachability in the Markov 
chain is defined as the probability of reaching the state set T 



from state S within K step transition. It is expressed as:

( , )kProbReach S T , The formula is expressed as follow: 

   1

'

1,

( , ) 0  ,  0 &  

, ' ob ', ,  0 &  

k

k

s S

k T

ProbReach S T k s T

P s s Pr Reach s T k s T



 









  



  



 (16)  

In probability model, 
pro cP 

 is the probability from state 0S  

to 9S , 
pro mP 

 is the probability from state 0S  to 11S . The 

probability between states in the model can be obtained by the 

running log of the cloud rendering system. The formula of 

pro cP 
 and 

pro mP 
 is:  

  0 7,k

pro cP ProbReach S T S

                    (17) 

  0 11,k

pro mP ProbReach S T S

                    (18) 

IV. EXPERIMENT AND ANALYSIS 

A. Experimental Environment 

The experiments are based on the comprehensive cloud 
computing service platform, which is made up of five clusters, 
consisting of 25 compute nodes. The tasks scheduled in the 
experiment are mainly the rendering of pictures and video key 
frames. The configuration of cloud rendering system compute 
node is shown in Table II. 

TABLE II.  COMPUTE NODE CONFIGURATION PARAMETERS OF CLOUD 

RENDERING SYSTEM 

Cluster 

The 

number 

of nodes 

Operating 

system 
CPU  GPU Memory 

1 6 Cent OS i3-4160 GT720 4GB 

2 6 Cent OS i5-4460 GT720 8GB 

3 5 Cent OS i5-4590 GT720 8GB 

4 5 Windows i5-6500 GT720 4GB 

5 3 Windows i5-7500 GT960 8GB 

B. Experimental Results and Performance Analysis 

In experiment 1, the total time and total completion cost 
using AGA and PMGA for task scheduling are compared. Then, 
the average fitness value of the current new population in AGA 
and PMGA are compared.   

The initial conditions of experiments are shown as below: 
(1) The number of resource is 25, the number of task is 100. (2) 
Each task is divided into n subtask, n is in [20,80]. 

The termination conditions of experiment are as follows: (1) 

If the number of iterations reaches the maximum maxG ( maxG = 

220), then the algorithm is considered to be terminated. (2) If the 
completion time and the total cost of continuous 40-generation 
are not changed, then the algorithm will be terminated. 

The main parameters of PMGA and AGA in the experiment 
is shown in Table III. 

TABLE III.  MAIN PARAMETERS OF THE PMGA AND AGA 

PMGA AGA 

costw  0.50 1k
 

1.00 

timew
 

0.50 2k
 

0.50 

1ck  0.10 3k
 

1.00 

2ck
 

0.50 4k
 

0.50 

1mk
 

0.10 - - 

2mk
 

0.50 - - 

pro cP 
 

0.40 - - 

pro mP 
 

0.08 - - 

kcP
 

0.90 - - 

mkP
 

0.10 - - 

cM
 

1.00 - - 

mM
 

1.00 - - 

Fig. 6 and Fig.7 show the iterative process of optimal total 
time and lowest total cost by using AGA and PMGA. In Fig. 6 
and Fig. 7, the horizontal axis represents the number of iterations. 
In Fig. 6, the vertical axis represents the task total time. In Fig. 
7, the vertical axis represents the total cost. In the early evolution, 
the convergence speed of AGA is relatively slow, with the 
further evolution, AGA only focuses on the total time, resulting 
in the loss of some potentially good genes. However, PMGA has 
a larger crossover rate and mutation rate for poor individuals, 
and the better individuals still have a small crossover rate and 
mutation rate. At the later stage of evolution, PMGA continues 
to evolve and eventually converges to the global optimal 
solution. While AGA still converges to the local optimum. The 
task completion time of PMGA is smaller than AGA, and the 
cost is significantly less than AGA. The experimental results 
show that PMGA reduces the total time and lowers the cost of 
the scheduling, which is an effective algorithm for the cloud 
rendering task scheduling.  

 
Figure 6. The Total Time for Task Completion 

 
Figure 7. The Total Cost for Task Completion 



Figure 8 shows the comparison of the average fitness value 
of the new population during the process of iteration. The 
horizontal axis represents the number of evolution times, and the 
vertical axis represents the average fitness value. AGA starts to 
premature convergence at about 60th generation, while PMGA 
continues to evolve, because when the average fitness of 
individuals is close to the maximum fitness, the crossover rate 
and mutation rate are not a zero value. Eventually, PMGA has a 
larger fitness value than AGA. The experimental results show 
that PMGA has a better ability to do the global searching. 

 
Figure 8. The Average Fitness Values of Population 

In experiment 2, the number of convergence using PMGA 
and AGA for task scheduling are compared. The algorithm 
parameters are consistent with those in Table III. PMGA and 
AGA are compared for 50 times under the same iterations. The 
average value of each iterations is regarded as the ultimate result. 
Fig. 9 is the comparison chart of the number of convergence 
times using AGA and PMGA. 

 

Figure 9. The Number of Convergence Using PMGA and AGA 

In Fig. 9, the horizontal axis represents evolution times, the 
vertical axis represents the convergence times. It can be seen 
from the figure that the convergence number of PMGA is much 
more than AGA under the same number of iterations. The 
experimental results show that PMGA can improve the 
performance and robustness of the cloud rendering task 
scheduling. 

V. CONCLUSION 

This paper aims to reduce the total time and total cost of task 
scheduling in cloud rendering system, which applies probability 
model to genetic algorithm for rendering task scheduling. The 
algorithm evaluates the excellent degree of the new solution by 
establishing the fitness function considering the total time and 
total cost of the task. As a result, the better individuals will be 

returned, and the diversity of the population will be improved. 
The crossover rate function and mutation rate function are 
improved, which enhances the local search ability and avoids the 
occurring of local convergence. The experimental results show 
that PMGA reduces the total time and minimize the total cost. 
Thus, it is an effective algorithm for scheduling tasks in cloud 
rendering system.  

In the future work, the Markov characteristic of PMGA will 
be studied in order to verify the scientific and rationality of 
scheduling algorithm using PMGA. Then, we will focus on the 
load balancing of dynamic task scheduling under cloud 
rendering system environment, and consider the influence of 
data distribution, service quality and other impact factors on the 
task scheduling results. 

ACKNOWLEDGMENT 

This paper is supported by National Natural Science 
Foundation of China under Grant No. 61502294, Natural 
Science Foundation of Shanghai under Grant No.15ZR1415200, 
CERNET Innovation Project under Grant No.NGII20160325, 
and Foundation of Science and Technology Commission of 
Shanghai Municipality under Grant No.14590500500. 

REFERENCES 

[1] Gupta R. Above the Clouds: A View of Cloud Computing[J]. Eecs 
Department University of California Berkeley, 2012, 53(4):50-58. 

[2] Calheiros R N, Ranjan R, Beloglazov A, et al. CloudSim: a toolkit for 
modeling and simulation of cloud computing environments and 
evaluation of resource provisioning algorithms,‖ Software: Practice and 
Experience[J]. Software Practice & Experience, 2010, 41(1):23–50. 

[3] Dean J, Ghemawat S. MapReduce: Simplified Data Processing on Large 
Clusters.[J]. In Proceedings of Operating Systems Design and 
Implementation (OSDI, 2004, 51(1):107-113. 

[4] Ullman J D. NP-complete scheduling problems. J Comput Syst Sci[J]. 
Journal of Computer & System Sciences, 1975, 10(3):384-393. 

[5] Cao Q, Wei Z B, Gong W M. An Optimized Algorithm for Task 
Scheduling Based on Activity Based Costing in Cloud Computing[C]// 
International Conference on Bioinformatics and Biomedical Engineering. 
IEEE, 2009:1-3. 

[6] Xu H, Kang F, Li L. Task scheduling strategy based on multi fitness 
particle swarm optimization in cloud computing[J]. Icic Express Letters, 
2014, 8(11):3165-3170. 

[7] Jie X U, Zhu J C, Ke L U. Task Scheduling Algorithm Based on Dual 
Fitness Genetic Annealing Algorithm in Cloud Computing 
Environment[J]. Dianzi Keji Daxue Xuebao/journal of the University of 
Electronic Science & Technology of China, 2013, 42(6):900-904. 

[8] Liu C Y, Zou C M, Wu P. A Task Scheduling Algorithm Based on Genetic 
Algorithm and Ant Colony Optimization in Cloud Computing[C]// 
International Symposium on Distributed Computing and Applications To 
Business, Engineering and Science. IEEE, 2014:68-72.. 

[9] Holland J H. Adoption in Natural and Artificial System[M]// Adaptation 
in natural and artificial systems. MIT Press, 1975:126–137. 

[10] Srinivas M, Patnaik L M. Adaptive probabilities of crossover and 
mutation in genetic algorithms[J]. IEEE Transactions on Systems Man & 
Cybernetics, 1994, 24(4):656-667. 

[11] Iosup A, Ostermann S, Yigitbasi N, et al. Performance Analysis of Cloud 
Computing Services for Many-Tasks Scientific Computing[J]. IEEE 
Transactions on Parallel & Distributed Systems, 2011, 22(6):931-945. 

[12] Ali S, Siegel H J, Maheswaran M, et al. Representing Task and Machine 
Heterogeneities for Heterogeneous[J]. Tamkang Journal of Science & 
Engineering, 2003, 3(3) 

[13] Lipowski A, Lipowska D. Roulette-wheel selection via stochastic 
acceptance[J]. Physica A Statistical Mechanics & Its Applications, 2012, 
391(6):2193-2196


