
Software Defect Prediction Using Dictionary
Learning

Hongyan Wan1,2, Guoqing Wu1,2, Ming Cheng1,2, Qing Huang1,2 , Rui Wang1,2 and Mengting Yuan1,2*
1. State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China

2. School of Computer, Wuhan University, Wuhan 430072, China
E-mail: { why0511, wgq, chengming, qh,wangrui1989,ymt }@whu.edu.cn

Abstract—With the popularization of software version control
system and defect tracking tools, large amounts of software
development data is recorded. How to effectively use these
data to improve the quality of software development, has become
a hot topic in recent years. Software defect prediction technology
can take full advantage of the historical data to build predictive
models and automatically detect defective modules for efficient
software test to improve the quality of a software system. But the
class-imbalanced data makes the prediction model classifying a
modules as a defective-free one easily, while the misclassification
of defective modules generally incurs much higher cost risk than
the misclassification of defective-free ones. To resolve this
problem, we propose a cost-sensitive software defect prediction
method using dictionary learning. It iteratively optimizes the
classifier parameters and the dictionary atoms, to ensure that the
extracted features (sparse representation) are optimal for the
trained classifier; Moreover, we take the different
misclassification costs into account, increasing the punishment
on misclassification defective modules in the procedure of
dictionary learning, making classification inclining to classify a
module as a defective one. Experimental results on the 10 class-
imbalanced data sets of NASA show that our method is more
effective than other methods.

Keywords- Software defect prediction; Dictionary learning;
Cost-sensitive; Bilevel optimization; Sparse coding

I. INTRODUCTION
In recent years, soft version control system and defect

tracking system have widely used in software project, so
that each code submission, each defect report comments are
fully recorded. How to make use of these data to measure
the efficiency, calculate the cost, and predict the quality of
the products becoming a hot topic in the software
development of big data background [1]. The software
defect prediction technology can take full advantage of the
software historical data to build the prediction model, which
can accurately predicts whether the software module
contains the defect and allocate the test resource to analyze
the defective module in the early stage of the system
development, thus reducing the software development and
maintenance cost [2].
The traditional software defect prediction mainly uses the

classification technology of machine learning [3][4] ，
generally divided into two stages: the first stage is the
feature extraction, analysis the attribute feature of input
software model (such as Halstead, McCabe and others)，
generate feature vector. The second stage is the defect
identification, using the previously trained classifier model

to discriminate whether the input software module is
defective. Commonly used method include Support Vector
Machine (SVM) [5], Naive Bayesian (NB) [6], Neural
Network [7] and so on. The performance of the traditional
method is seriously limited by the software features, and the
feature selection is the difficulty of software defect
prediction, lack of common feature representation and
feature selection algorithms. Through in-depth research on
the characteristics of defect prediction tasks and defect data,
we can find that sparseness is a general nature of defect
prediction: 1) in general, the defect module is distributed
sparsely in the software data set, that is, the number of
defective modules is far less than defective-free modules in
the software system, which makes the defect data has the
class-imbalance characteristics[8][9]; 2) the software
module to be tested is usually similar to the historical data
of the project and belongs to the same, so it can be sparsely
represented by a specific similar historical software module.
With the development of theory and application in Sparse

Representation based Classification (SRC), it has been
widely applied in pattern recognition, image classification,
defect prediction, and so on[10][11][12]. Compared with
the traditional classification algorithms, SRC has better
discrimination and robustness, it consists of three parts: one
is over-complete dictionary; the second is the linear
representation under a specific sparse constraints based on
the over-complete dictionary; the third is the classification
according to the over-complete dictionary and the sparse
coefficient of the input data. Wright et al. [13] proposed a
SRC-based face recognition method that achieved good
results. Jing et al. [14] are the first to apply the dictionary
learning technology to the field of software defect
prediction, and achieved good results by using the over-
complete dictionary prediction defect software module.
However, the classification loss function of the method was
defined as data sample reconstruction error, making the
classification performance mainly dependent on the quality
of the training data.
Based on the sparseness principle of software defects,

this paper proposes a software defect prediction model
based on cost-sensitive dictionary learning (CSDL) under
the background of large data, and designs a projection first-
order stochastic gradient descent algorithm based on
sparseness. The algorithm solves the objective function and
verifies the validity of the above model and algorithm on
the 10 class-imbalanced data sets provided by NASA. The
method is divided into two stages: 1) training the over-
complete dictionary, extract the features (sparse coding); 2)

* Corresponding author.
DOI reference number: 10.18293/SEKE2017-188

training classifier according to the extracted features.
Training dictionary to solve the sparse coding or training
classifier parameters alone cannot get the ideal
classification effect. In this paper, we propose a method to
iteratively optimize the parameters of the classifier and the
dictionary atom to ensure the feature extraction (sparse
representation) under the optimal classification performance.
At the same time, we take full account of the impact of
different misclassification in the process of learning the
dictionary, improve the cost of misclassifies a defective
module as defective-free one, so that the resulting
dictionary is more inclined to classification defect module.
Because sparseness is a kind of non-related and versatile
features, the model and algorithm proposed in this paper are
superior to other traditional methods.

II. RALATED WORK

The purpose of software defect prediction is to
automatically identify software modules that contain defects,
which are critical to ensuring software quality.
Menzies et al. [15] argue that software engineering data

sets are class-imbalanced, using data sampling and lifting
algorithms to improve the performance of the model.
However, the sampling strategy will change the distribution
of the source data, affecting the effect of the prediction. Sun
et al. [16] proposed a coding-based integrated learning
approach that transforms the class-imbalanced defect data
into multi-class balanced data to avoid the class-imbalance
problem by specific coding strategies. Jiang et al. [17]
pointed out that the performance of the defect prediction
model is affected by different misclassification cost. In this
paper, on the one hand, cost-sensitive learning method is
used to produce the smallest misclassification cost, which
makes it easy to classify the defective module with higher
misclassification cost, and reduce the class-imbalance
problem. On the other hand, considering the different
misclassification cost, so that the prediction model is more
inclined to classify the defect module, thus improve the
prediction performance of the model.
In the sparse representation based classification method,

it is necessary to set the dictionary in advance. Wright et al.
[13] used all classes of training samples as a dictionary
coding test sample, and classify the test samples through
minimizing the reconstruction errors. However, the
dictionary which they proposed cannot represent test data
efficiently due to the presence of noise in the original data
set. In addition, the number of dictionary atoms is too large
to increase the complexity of coding. Mariral et al. [18]
proposed a discriminant dictionary learning method by
training the classifier coding coefficients and validating
them in the digital recognition and texture classification. As
the classification loss function in the SRC is usually defined
as a reconstruction error of data samples. Therefore, the
performance of the classifier mainly depends on the quality
of training data and cannot achieve good classification
effect. Jiang et al. [19] integrated the identification of sparse
coding error and classification error into a target function to
improve the representation and discriminant of the
dictionary, joint the learning dictionary with a linear
classifier. Although the above methods can achieve better
classification accuracy in the corresponding fields, the

imbalanced defect data in the field of software defect
prediction makes the learning dictionary tendency
classification module as defect-free, and the cost of the
misclassified defect module is far more than the defect-free
module. Therefore, full consideration of this information
can be more effective in improving the performance of
defect prediction.
In this paper, we optimize the classifier parameters and

dictionary atoms iteratively in the process of dictionary
learning, to ensure that the feature (sparse representation) is
extracted under the optimal classification performance.

III. COST-SENSITIVE DICTIONARY LEARNING METHOD
FOR BIG DATA

This section describes the defect prediction process of
CSLD method in two stages, and the concrete process is
shown in Figure 1. The first stage is to optimize dictionary
and the classifier parameters iteratively; the second stage is
the classification. In software defect prediction, a test
module is usually similar to a partial history module and
belongs to the same class (defect or defect-free class), that
is, the test module can be compressed as a linear
combination of a small number of the same class of
modules in historical training data, this representation is
usually sparseness. However, classification loss function in
the SRC is usually defined as the reconstruction error of the
data samples, it is heavily rely on the data quality, and
cannot achieve good classification effect. Therefore, this
paper presents a dictionary learning method, which
optimize the dictionary atoms and classifier parameters
iteratively, and applies it to the task of software defect
prediction. In addition, there are two types of
misclassification errors in the software defect prediction.
The type I misclassifies a defective-free module as
defective module, while the type II misclassified a defective
module as defective-free module, the cost of them is
different. In the process of dictionary learning, we fully
consider the misclassification costs of type I and II errors to
reduce the minimum misclassification cost and improve the
prediction performance.

Figure 1. The predict process of CSDL model
The main process of CSLD method is shown in Figure 1.

First, using KSVD [20] technology to initialize over-
complete dictionary D . In the iterative optimization stage,
the sparse coding (feature extraction) a of training
samples x in over-complete dictionaryD is solved and used
to optimize the parameters of the classifier; at the same time,
in order to ensure that the sparse coding is under the
premise of the optimal classification performance, we apply
the algorithm 1 which is proposed in this paper to update

the over-complete dictionary iteratively. In the test
classification phase, the test sample solves the sparse
coding in the optimized dictionary and inputs it into the
optimization classifier. We use logic loss function as the
objective function of the classifier.
Sparse coding depends on the over-complete dictionary, its

representation is 1 2(, , ,), ()m
p iD d d d d m p ,

where id represents a base vector in the dictionary, referred to
as atom. Each sample x can be combined linearly by
dictionary atoms, pa is the coefficient of sparse
representation of x in the dictionary, it is solved by Elastic
Net [21].
A. Feature Extraction based on Sparse Coding
Assuming that the software module sample space is X , the

label space is Y , the training sample set
is 1 2{ , , , } ,m n

nX x x x X X , where n is the number
of sample modules, m is the number of attributes of the
sample. The module label iy Y indicates the label of the

software module ix . In the software defect prediction model
{ 1, 1}Y Y , where “+1” denotes a defective module, “-1”

denotes a defective-free module. Given training sample
set 1 1{(,), ,(,)}(1, ,)i iL x y x y i n , 1 2(, , ,) m p

pD d d d
is the learned over-complete dictionary, 1 2(, , ,) p n

nA a a a
is the sparse coding based on D , the sparseness is guaranteed
by the 1l norm of the matrix as a regularization term. It should
be noted that each sub-dictionary should have the same
number of dictionary atoms, in general, the number of sub-
dictionary atoms is equal to the dimension of the data. Elastic
Net is used to solve sparse coding coefficients:

2 2

1 21

1
argmin

2 iF FiA
A X DA a A (1)

It can also be expressed as a sparse coding for a single
sample , namely:

2 2

1 22 1 2

1
argmin

2i
i i i i ia
a x Da a a (2)

where 1 and 2 are the regularization of the parameters

used to balance these three terms. When set 2 0 , the above

formula is a 1l sparse decomposition problem. It should be

noted that, must set 2 0 , to ensure that the objective
function is differentiable.
B.Cost-Sensitive Dictionary Learning
In this paper, an optimal classification model is obtained

according to the input feature for the minimum classification
loss, and the cost of different misclassification is considered
in the process of dictionary construction [22]. In the task of
software defect prediction, we use Cost(+1) to represent the
cost of misclassifying a defective module as defective-free
module, and Cost(-1) represents the cost of misclassifying a
defective-free module as defective module.
Using the iterative optimization sparse coding (,)i ia x D to

train the classifier parameter W , and using logistic loss as a

classifier objective function. Therefore, the loss function can
be defined as:

1
((,),) (, , (,))n

i i ii
T A X D W y W a x D

 (3)

Where (,)(, , (,)) ()log(1)
T

i i iyW a x D
i i i iy W a x D Cost y e is a

weighting logic loss function, (,)i ia x D is the sparse coding

of sample ix in dictionary D , ()iCost y is the cost of
misclassification.

Finally, the joint minimization objective function
proposed in this paper can be expressed by the two-level
optimization model [23]:

2

2,

2 2
1 21

min (,)
2
1. . argmin
2

D W

iF FiA

vT A W W

s t A X DA a A

(4)

In the test phase, each test sample is sparsely encoded on the
dictionary D according to the formula (2), and then the
resulting sparse coefficients is used as the input of the previous
optimal classifier. Finally, the test samples are classified
according to the formula (4).
C. Optimization Algorithm
We constructing the projection first-order stochastic gradient

descent algorithm (SGD) to solve the formula (4), using KSVD
technology to initialize sub-dictionary for each class, as shown
in algorithm 1. It consists of an outer SGD loop that
increments the sample training data, each time the gradient of
the classifier parameters W and dictionary D for sample is
solved, and update W andD .
Algorithm 1 Stochastic Gradient Descent Algorithm (SGD)

to solve formula (4)
Input: 1 2 0 0(,); , , ; ,X Y v D W (the initial dictionary and
classifier parameters)； Iter (the number of iterations)；

0 ,t (learning rate)
Output: ,D W
1. For t=1 to Iter do
2. Draw a subset (,)t tX Y from (,)X Y ;
3. Sparse coding: computer *A using Feature -Sign

algorithm:
2 2* 2

1 1

1
argmin

2 2t iF FiA
A X DA a A

 ;

4. Compute the active set: (the nonzero suport of
A);

5. Compute * :Set * 0C

 and
* 1

2() [(,)]T
AD D I T A W

 ;

6. Choose the learning rate:
 0min ,t t t ;

7. Update D and W by a projected gradient step:

* *

((,))
(())
t WW

T T
t tD

W W T A W vW
D D D A X DA

 ,

where W and D are respectively
orthogonal projections on the embedding space of
W and D ;

8. end for
9. return W and D .

In practice, the distribution of data is usually unknown, we
sample in a random sorted training set. In addition, in order to
allow each iteration to sample more samples rather than
sampling only a single sample, this paper adopts the minibatch
strategy. In order to get stable results in the experiment, 200
samples were sampled at each time.

IV. EXPERIMENT AND RESULT ANALYSIS

This section introduces the experimental setup in detail,
including the dataset, the evaluation metric and the analysis of
the experimental results.
A. Experimental Subject

Table I. NASA DATASET
dataset No.attr No.def Defect modules
CM1 38 42 12.21%
JM1 21 1759 18.34%
KC1 21 325 15.54%
KC3 40 36 18.00%
MC2 40 44 34.65%
MW1 20 27 10.23%
PC1 20 61 8.04%
PC3 20 140 12.44%
PC4 38 178 12.72%
PC5 39 503 2.96%

The experimental data for this paper are based on 10 class-
imbalanced data sets provided by NASA, as shown in table II.
The NASA project is the software system or subsystem of
NASA, which contains static code metrics for software
modules and the corresponding defect labels (defective
software modules are labeled as “Y” , and defective-free
module are labeled as“N”). The ratio of the class-imbalance,
that is, the percentage of the number of minority classes and
the number of majority classes ranges from 2.96% to 34.65%,
the size of the data set namely the number of software modules
is between 127~17001.
B. Performance Evaluation
Generally, the performance of the prediction model is

evaluated synthetically by using recall, precision, type I error
rate (Err1), type II error rate (Err2) and F1 value.
The metrics of model evaluation are defined as follows:
Recall: The ratio of the number of modules correctly

predicted as defect to the number of real defective modules.
TP

recall
TP FN

(5)

Precision: The ratio of the number of modules correctly
predicted as defect to the number of modules predicted as
defect.

TPprecision
TP FP

(6)

Recall and precision are a contradictory measure, so it is not
appropriate to use only one of them to evaluate the
performance of the prediction model. The F1-measure can
combine them to evaluate models, F1-measure is widely used
in performance evaluation of prediction model and other
software engineering research fields [12]. The calculation
formula of F1-measure is the harmonic mean of recall and
precision:

2
1

recall precision
F

recall precision

(7)

Type I error rate (Err1): The ratio of the number of falsely
predicted as defective modules and the number of defective-
free modules in real.

1

FP
Err

TN FP

(8)

Type II error rate (Err2): The ratio of the number of falsely
predicted as defective-free modules and the number of
defective modules in real.

2

FN
Err

TP FN

(9)

From the above ratio relationship can be seen, Err1 is
relative to the real defective-free module predict as defective
module, and Err2 is relative to the real defective module
predict as defective-free module, both of them should be used
simultaneously. Due to the different costs of detection and
maintenance of Err1 and Err2, the influence of the cost of
misclassification on the model is defined by the Expect Cost of
Misclassification (ECM) as shown in equation (10), where C1
and C2 are the cost of Err1 and Err2 respectively, corresponds
to Cost (-1) and Cost (+1) in the cost matrix, Pndf and Pdf
represent the prior probabilities of the defective-free modules
and defective modules, respectively. In many cases, as the
misclassification cost of a single class is difficult to obtain, the
influence of different misclassification costs on prediction
model is often analyzed by using the misclassification cost
ratio instead of a single misclassification cost, as shown in
equation (11).

1 1 2 2ndf dfECM C Err P C Err P (10)

1 22 1(/)ndf dfNECM Err P Err PC C (11)

C. Parameter Settings
Similar to previous work in literature [16], the parameters
1 and 2 , regularization parameter v , and learning rate of

Elastic-net are determined by cross validation, we use
heuristics to reduce the search space of these parameters. The
specific process is as follows: Firstly, we need 2 >0 when
we prove that the objective function is different, and the
choice of small 2 value is a necessary condition for the
convergence of the algorithm. However, the experimental
results show that the better sparse representation can be
obtained when setting 2 =0; Secondly, we can achieve better

reconstruction results when the parameter 1 is near 0.025,
therefore we test in the given range
1 0.025 0.0125 ({ 3, ,3})k k to achieve the

parameter 1 ; Thirdly, when there are a large number of
training samples, the regularization parameter v can be set as
an arbitrary small value, such as setting v =10-5, without
enough training samples, this parameter is set by cross
validation; Finally, the maximum number of iterations is set to
500. In addition, similar to the literature [14], in order to
emphasize the influence of risk costs on the prediction model,
according to the actual situation of the project, we set different
C2/C1 values of misclassification costs.

In all experiments, if not specified, CSDL parameter settings
are obtained through 10-fold cross validation, so as to avoid
over-learning. Although our experiments verify that the choice
of these parameters can achieve better prediction results, the
finer parameter adjustment can further improve the
performance of the algorithm.
D. Experimental Design
We designed different experiments to evaluate the proposed

CSDL algorithm, and compared it with the defect prediction
algorithms which are proposed in recent years, including
Cost-sensitive Discriminative Dictionary Learning (CDDL)
[14], SVM [5], NB [6]，Coding based Ensemble Learning
(CEL)[16] and Cost-Sensitive Boosting Neural Network
(CSBNN)[17].
Experiment one. Comparison of experimental results. The

experiment was used to explore the effectiveness of the
proposed method, and verify the performance of the CSDL
algorithm. It was running on the 10 NASA datasets, and
compared with 5 defect predictive algorithms which were
proposed in recent years. We try to follow the parameters of
the algorithm in the original document.
Experiment two. The impact analysis of different

misclassification costs rate, which explore the effect of
predicted model performance under the different rate of
misclassification costs. We set the misclassification costs rate
of C2/C1 range from 1 to 10.
E. Experimental Results and Analysis
We compared the CSDL with SVM, NB, CEL, CSBNN

and CDDL, using 10-fold cross validation on the 10 NASA
datasets, and calculate 10 sets of evaluation indicators (the
value of F1) respectively. We focus on the study of optimal
performance of the algorithm corresponding to other two cost-
sensitive algorithms CSBNN and CDDL, so it is not need to
have the same misclassification costs among them. The results
are shown in TABLE II. The last row of table shows the
average F1 on all the experimental datasets, the best F1 are
presented with boldface.
From Table II, we see that the average F1-measure of

CSDL is the highest. Firstly, we compared CSDL with NB,
SVM and CEL, CSDL can obtain the best F1-measure in all
of the experimental data sets. For example, in the KC1 data
set, the F1-measure of NB, SVM and CEL are 0.376, 0.295
and 0.352 respectively, while the F1-measure of CSDL is
0.446.
Secondly, we compared CSDL with two cost-sensitive

algorithm CSBNN and CDDL. In order to obtain the optimal
predict performance, we select different misclassification
costs to different projects. Compared with CSBNN, among
all of the NASA data sets, CSDL can obtain the better predict
performance through adjustment corresponding
misclassification cost rate. For example, in the PC3 data set,
the optimal F1-measure of CSDL is 0.435, which is higher
than CSBNN’s 0.382. While the F1-measure of CSDL are
not all higher than CDDL. For example, in the JM1 data set,
the optimal F1-measure of CSDL is 0.380, which is less than
CDDL’ s 0.395. In most cases, the F1-measure of CSDL is
higher than CDDL.
In order to evaluate the performance of CSDL fairly and

objectively, we make use of Wilcoxon signed rank sums test
method to analysis the experimental results of F1-measure at a
5% significance level. That is, the performance difference
between two comparison methods were statistically

significant when p is less than 0.05. As shown in Table III, in
all NASA data sets, only one value of p is larger than 0.05.
Thus, the performance difference between CSDL and other
five methods were statistically significant.

TABLE II. F1-MEASURE OF DIFFERENT METHODS
DATASET NB SVM CEL CSBNN CDDL CSDL

CM1 0.325 0.214 0.279 0.312 0.366 0.398
JM1 0.332 0.311 0.341 0.383 0.395 0.380
KC1 0.376 0.295 0.352 0.405 0.435 0.446
KC3 0.385 0.382 0.353 0.384 0.421 0.455
MC2 0.456 0.521 0.501 0.567 0.632 0.618
MW1 0.312 0.275 0.278 0.336 0.382 0.395
PC1 0.284 0.362 0.327 0.315 0.415 0.421
PC3 0.291 0.87 0.365 0.382 0.413 0.435
PC4 0.367 0.475 0.492 0.463 0.541 0.577
PC5 0.331 0.176 0.357 0.365 0.600 0.576

AVG. 0.346 0.330 0.364 0.391 0.460 0.471

TABLE III. WILCOXON RANK TEST P VALUE OF CSDL AND
OTHERMETHODS

DATASET
CSDL

NB SVM CEL CSBNN CDDL

CM1 2.95×10-9 1.21×10-10 3.71×10-5 6.73×10-7 2.91×10-7

JM1 1.96×10-11 3.92×10-6 6.16×10-9 0.1323 1.54×10-3

KC1 3.66×10-9 9.12×10-11 5.74×10-7 6.21×10-8 9.61×10-6

KC3 7.53×10-5 5.71×10-3 1.19×10-5 3.26×10-6 8.71×10-5

MC2 6.68×10-8 5.69×10-6 3.21×10-6 1.73×10-6 9.91×10-8

MW1 3.19×10-8 2.91×10-5 2.27×10-4 1.88×10-5 2.57×10-8

PC1 1.31×10-4 5.79×10-5 3.29×10-6 3.99×10-8 5.41×10-7

PC3 4.25×10-8 2.73×10-10 4.05×10-6 4.26×10-5 5.89×10-6

PC4 9.37×10-11 4.43×10-8 4.75×10-8 5.42×10-9 4.19×10-7

PC5 4.13×10-13 4.28×10-7 4.63×10-10 4.63×10-11 2.55×10-5

We compared CSDL with other two cost-sensitive
algorithms CSBNN and CDDL, and set different
misclassification cost rate to analysis how it affects the
module performance. We make use of evaluation index Err1,
Err2 and NECM to describe the impact of misclassification
cost rate on the overall cost. The performance of the model is
evaluated synthetically by the F1-measure. Due to space
limitations, only the experiment results of data sets KC1,
CM1 and PC1 under the different misclassification cost rate
are given, we set C2/C1 range from 1 to 10, as shown in Figure
2~5.

Figure 2. The performance comparison of KC1 dataset

Figure 3. The performance comparison of CM1 dataset

Figure 4. The performance comparison of PC1 dataset

Figure 5. The F1-measure comparison on the KC1,CM1 and PC1
Figure 2~4 show that, with the increase in the

misclassification cost rate, more and more defective modules
were successfully detected, while the number of detective-free
modules detect as defective modules also increases. The
CDDL algorithm is more smooth in the Err1, Err2 indicators.
CSDL and CDDL in the performance of NECM is always
better than CSBNN algorithm. In the data sets KC1 and PC1,
when the misclassification cost rate is less than 4, the
performance of NECM on CSDL is not better than CDDL, but
as the misclassification cost rate increase(larger than 5), the
performance of NECM is significantly better than other
methods. In the data set CM1, CSDL can get the best NECM
performance when the misclassification cost rate is lower than
6, but the NECM performance of the CSDL algorithm
decreases with the increase of the misclassification cost rate.
In most cases, CSDL is always able to get the best NECM
performance by effectively adjusting the misclassification cost
rate.
In addition, the performance of three cost-sensitive

algorithms on KC1, PC1, CM1 datasets is evaluated
synthetically using F1-measure. As can be seen from Figure.5,
the F1 performance of the prediction model changes
significantly with the increase of the misclassification cost
rate. Although in some cases, the F1 performance of CSDL is
not optimal, but we can always make CSDL algorithm to
achieve better F1 value by adjustment misclassification cost
rate reasonably. In the actual application scenario, the
software module's misclassification cost rate is difficult to
obtain. As a result, it is often necessary to obtain an optimal
predictive performance through an extensive search process
for the misclassification cost rate.

V. CONCLUSIONS
In this paper, we propose a big data oriented cost-sensitive

dictionary learning method to predict software defect, and use
the logic regression classifier as the final classification
judgment result. We iteratively optimize the dictionary atom
and classifier parameters, and take full account of the different
misclassification cost rate to improve the performance of the
classifier. The experimental results show that our method has
better detection effect than the other five methods, and can
provide better support for software testing.

ACKNOWLEDGMENT

The research in this paper was partially supported by the
National Natural Science Foundation of China under Projects
No. 61373039, No. 61170022, No. 61003071 and No.
91118003.

REFERENCES
[1] G. Czibula, Z. Marian, and I. G. Czibula, “Software defect prediction
using relational association rule mining,” Information Sciences, vol. 264, pp.
260–278, 2014.
[2] Pizzi N J. A fuzzy classifier approach to estimating software quality [J].
Information Sciences, 2013, 241: 1-11.
[3] Okutan A, Yildiz OT. Software defect prediction using Bayesian networks,
Empir. Softw. Eng, 2014, 19(1):154-181
[4] Cheng M, Wu G, Wan H, et al. Exploiting Correlation Subspace to Predict
Heterogeneous Cross-Project Defects[J]. International Journal of Software
Engineering and Knowledge Engineering, 2016, 26(09n10): 1571-1580.
[5] Elish K, Elish M. Predicting Defect-prone Software Modules Using
Support Vector Machines. Journal Systems and Software, 2008,81(5): 649-
660
[6] Wang T, Li WH. Naïve Bayes Software Defect Prediction Model. Int.
Conf. Computational Intelligence and Software Engineering. Wuhan: IEEE,
2010.1-4
[7] Zheng J. Cost-sensitive boosting neural networks for software defect
prediction. Expert Systems with Applications,2010,37(6) : 4537–4543
[8] Zhou ZH, Liu XY. Training cost-sensitive neural networks with methods
addressing the class imbalance problem. IEEE Trans. Knowledge and Data
Engineering, 2006, 18(1):63–77
[9] Liu X Y, Wu J, Zhou Z H. Exploratory undersampling for class-imbalance
learning[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 2009, 39(2): 539-550.
[10] Xu Z, Liu Y, Mei L, et al. Semantic based representing and organizing
surveillance big data using video structural description technology[J]. Journal
of Systems and Software, 2015, 102: 217-225.
[11] Liu J, Yu X, Xu Z, et al. A cloud‐based taxi trace mining framework
for smart city[J]. Software: Practice and Experience, 2016.
[12] Zhu G, He C, Shunxiang Z, et al. Weighted Indication-Based Similar
Drug Sensing[J]. International Journal of Software Science and
Computational Intelligence (IJSSCI), 2015, 7(1): 74-88.
[13] Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y. Robust face
recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell.,
2009,31(2):210–227
[14] Jing XY, Ying S, Zhang ZW, Wu SS,Liu J. Dictionary learning based
software defect prediction. In: Proc. of the 36th Int’l Conf. on Software
Engineering. Hyderabad: ACM, 2014. 414–423
[15] Menzies T, Dekhtyar A, Distefano J,Greenwald J. Problems with
precision: A response to comments on data mining static code attributes to
learn defect predictors. IEEE Trans. Softw. Eng., 2007, 33(9):637–640
[16] Sun Z, Song Q, Zhu X. Using coding-based ensemble learning to
improve software defect prediction. Systems, Man, and Cyb ernetics, Part C:
Applications and Reviews, IEEE Transactions on,2012, 42(6):1806–1817
[17] Jiang Y, Cukic B, Menzies T. Cost curve evaluation of fault prediction
models. IEEE Int. 19th International Symposium on Software Reliability
Engineering.Seattle:IEEE,2008.197-206
[18] Mairal J, Bach F, Ponce J. Task-driven dictionary learning. IEEE Trans.
Pattern Anal. Mach. Intell., 2012, 34(2):791–804
[19] Jiang Z, Lin Z, and Davis L. Learning a discriminative dictionary for
sparse coding via label consistent K-SVD. In: Proc. of the Int’l Conf. on
CVPR,Barcelona:IEEE,2011.1697–1704
[20] Aharon M, Elad M, Bruckstein A. k-svd: An algorithm for designing
overcomplete dictionaries for sparse representation. Signal Processing, IEEE
Transactions on, 2006,54(11):4311–4322
[21] Zou H, Hastie T. Regularization and Variable Selection via the Elastic
Net. J. Royal Statistical Soc. Series B, 2005,67(2): 301-320
[22] Cheng M, Wu G, Yuan M, et al. Semi-supervised Software Defect
Prediction Using Task-Driven Dictionary Learning[J]. Chinese Journal of
Electronics, 2016, 25(6): 1089-1096
[23] Colson B, Marcotte P, Savard G.An overview of bilevel optimization.
Ann. Oper. Res., 2007, 153(1):235–256

	INTRODUCTION
	RALATED WORK
	COST-SENSITIVE DICTIONARY LEARNING METHOD FOR BIG
	EXPERIMENT AND RESULT ANALYSIS
	CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

