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Abstract—In this paper, we describe commonly used fixture setup 
strategies as well as their disadvantages and advantages. We 
propose a dependency model and a test fixture sharing model 
that allow the definition of a new fixture setup strategy. This 
strategy promotes code reuse by sharing fixture setups between 
test classes. The models are evaluated through a case study where 
the new fixture setup strategy presented a reduction of 47,62% in 
the fixture setup code. 
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I.  INTRODUCTION 
Software testing is an important activity of the software 

development process. The notion of its importance has evolved 
in recent years. Software testing is no longer an activity that 
would only start after the coding phase. It is now carried out 
during the entire development process [4]. In that sense, 
software testing incorporates other purposes, such as to prevent 
bug inclusion [1], and to be a way for specification [3] and 
documentation design [9]. According to [12], tests should be 
easy to run (automated, self-checking and repeatable), easy to 
write/understand (simple, expressive and with separation of 
concerns), and easy to maintain (robust). The satisfaction of 
these requirements is important to ensure a cost-effective 
testing activity. 

When the software testing starts at early stages of 
development, some extra challenges appear. According to [11], 
not only the production code, but also the test code must be 
maintained. So, it is also necessary to maintain the tests 
throughout the entire development process [5] [14]. Test 
maintenance may end up having a high impact on overall 
testing costs, even higher than the cost of their initial 
implementation [2]. Therefore, test requirements mentioned 
above become even more important. 

According to [8], the success of automated testing is 
strongly influenced by the maintainability of the test code. To 
promote maintainability, the tests should be clearly structured, 
well named and small in size [8]. Furthermore, code 
duplication across the tests must be avoided [8]. Tests that are 
hard to write and understand may suggest a poor system 
design.  

According to [7], each test case is usually separated in a test 
method. A test case simulates a use scenario of the SUT. In this 
sense, a test case has to put the SUT in a state that represents 
the use scenario, that is, a state of interest to the test [11]. This 

is done through the execution of the test fixture setup code. 
According to [12], a test fixture represents anything necessary 
to exercise the SUT. The code where test fixtures are created is 
called fixture setup. 

Reference [12] presents several strategies for fixture setups. 
Among these strategies, we highlight the inline setup, implicit 
setup and delegate setup. Each strategy has a different impact 
in the following properties of the test code: simplicity (tests 
should be small and verify one thing at a time), expressiveness 
(tests should communicate intention, i.e., should be easy to 
understand what behavior a test wants to verify), separation of 
concerns (each test should focus only on a single concern of the 
system) and robustness (overlap between tests should be 
avoided in such a way that small changes on the production 
code do not affect a large amount of tests). It is important to 
note that the robustness is directly influenced by code 
duplication. Thus, avoiding the duplication of test code can 
help to reduce the development effort and, consequently, to 
create tests with better maintainability. 

The objective of this work is to propose a new fixture setup 
strategy that may be used as an option to promote better 
robustness of the testing code without affecting its other 
properties. We also propose a model to represent this new 
fixture setup strategy. Thus, test frameworks may incorporate 
this fixture setup strategy by implementing the proposed 
model. It is important to point out that our intention is not to 
propose a strategy that is superior to the others, but to present a 
new strategy that helps developers to create better tests with 
less effort. 

The sections of this paper are organized as follows: in 
Section 2 we present the most known fixture setup strategies in 
the literature; in Section 3 we propose a model that allows the 
reuse of fixture setups between test classes; in Section 4 we 
present a case study; in Section 5 we evaluate, through the use 
of framework Story implemented, the proposed model; and in 
Section 6 we present the conclusions of our work. 

II. FIXTURE SETUP STRATEGIES 
Meszaros [12] introduces the most used fixture setup 

strategies, mainly in the frameworks of xUnit family. The 
strategies are categorized as fresh fixture setup, where the 
fixture setup is run before at each test, or as shared fixture 
construction, where the fixture setup is run only once before a 
given group of tests. Both categories have strategies that allow 
the reuse of fixture setups (i.e., reuse of code). However, only 



 

 

in the shared fixture construction is possible to reuse test 
fixtures (i.e., reuse of execution). 

A. Fresh Fixture Setup 
The fresh fixture setup category is composed by three 

strategies: inline setup, implicit setup and delegate setup. 
According to [12], an adequate combination of these three 
strategies may increase the code reuse and, even so, preserve 
the desired properties of simplicity, expressiveness and 
separation of concerns. Next, these three strategies are 
presented, as well the main advantages and disadvantages of 
each one. 

1) Inline Setup: in this strategy the fixture setup is placed 
inside the test method. In general, this strategy is chosen when 
a test needs a very specific test fixture or during the beginning 
of the development of the test code when duplication of code 
does not exist yet. An advantage of this strategy is a better 
understanding of the relationship between the test fixtures and 
the behavior that the test is verifying, since the fixture setup is 
near to the test verifications. However, its major disadvantage 
is the duplication of code among test methods. 

2) Implicit Setup: In this strategy the fixture setup is 
placed in a special method (usually called setup method) of the 
test class. The test framework is responsible for running the 
setup method before the execution of each test method 
existing in the test class. The reuse of the fixture setup is the 
major advantage of this strategy. However, higher is the 
amount of test methods in the same test class, harder is to 
preserve the properties of simplicity, expressiveness and 
separation of concerns. When many test methods are created, 
it is more difficult to understand the relationship between the 
test fixtures and the intention of each test, once some test 
fixtures may not be needed to all tests. 

3) Delegate Setup: in delegate setup, the code is placed in 
helper methods. In general, these methods are put in auxiliary 
classes, apart the test methods. Promoting fixture setup reuse 
between distinct test classes is the major advantage of this 
strategy. However, this strategy may demand high labor. 
Helper methods and classes must be created and maintained 
by developers. Thus, well-named helper methods are essential 
in order to preserve the expressiveness. Furthermore, in 
contrast with inline setup and implicit setup strategies, the 
framework does not call automatically the delegate setup. 

B. Shared Fixture Setup 
The strategies of the shared fixture category depend on a 

place to save test fixtures that are created. This place may be a 
file system, a database or even a static field. The fixture setup 
runs once for a given group of tests and then the created test 
fixtures are saved. Thus, the tests of that given group may 
access the test fixtures. The definition of when the fixture setup 
will be run varies according to each strategy. 

III. PROPOSAL 
Test code duplication is related to the robustness property, 

which in its turn is related to test code maintainability. Thus, 
reducing the test code duplication may improve the test code 

maintainability without impacting negatively in simplicity, 
expressiveness and separation of concerns. Strategies as 
implicit setup and delegate setup help to reduce the test code 
duplication. However, sometimes, to reduce the duplication of 
test code without affecting other properties may be a hard task. 
Higher is the amount of tests, harder is to maximize the test 
code reuse by clustering test classes according to the test 
fixtures (implicit setup) and harder is to maximize the test code 
reuse by creating many helper methods as test fixtures needed 
(delegate setup). 

In this work we propose the definition of a model to 
represent the dependence between test classes in order to create 
a new fixture setup strategy. The proposed model allows the 
reuse of fixture setups between different test classes. The main 
objective is to increase the tests robustness by increasing the 
reuse of fixture setups without reducing the general tests 
maintainability. 

The central assumption of our proposal comes from the 
simple observation that a given fixture setup execution may 
drives the SUT exactly to a specific state of another test class. 
It is crucial to clarify that the explicit definition of dependence 
between test classes, proposed by this work, does not break the 
independence principle described in [13]. 

A. Dependency Model between Test Classes 
The dependency model between test classes considers that a 

test class may depend on one or more test classes. The 
definition of dependence must be done in the dependent class. 
The dependency/dependent relationship between two test 
classes means that the dependency class has the fixture setup 
required by the dependent class. 

Fig. 1 shows a hypothetical implementation of the 
dependency model, using the Java language. The annotation 
@FixtureSetup is placed in the declaration of the test class 
UserTest (dependent) to indicate a dependency with the test 
class CleanDatabaseTest (dependency). Thus, each test run of 
the dependent class should be preceded, in the given order, first 
by the run of the fixture setup of the class CleanDatabaseTest 
and then by the run of the fixture setup of the test class 
UserTest. This enables the reuse of fixture setup between 
different test classes. 

 
Figure 1.  Annotation @FixtureSetup. 

B. Independence Principle  
Independence principle, described in [13], says that each 

test should be independent. It should be possible to run each 
test individually or through a suite of tests in an arbitrary order. 
This principle is justified by the fact that a given test run should 
not affect another test run. If a test fails because a previously 
test had let the SUT in an inconsistent state, then the 
independence principle is violated.  

It is important to clarify that the proposed dependency 
model does not violate the independence principle. The 
dependency model implies only in dependence between test 
classes, but not between tests. In the dependency model, before 

@FixtureSetup(CleanDatabaseTest.class) 
class UserTest { ... } 



 

 

each test run, the test framework has to run all the needed 
fixture setup.  

C. Multiple Dependencies 
Fig. 2 shows an example where a test class depends on two 

test classes. Fixture setup run will follow the order in which the 
dependency classes are declared (i.e. the order of the 
dependency classes in the annotation @FixtureSetup). 

Fixture setups defined in different test classes can be 
combined to construct a new fixture setup. In the dependency 
model, this combination is achieved without any change in the 
dependency classes.  

 
Figure 2.  Multiple dependencies in annotation @FixtureSetup. 

D. Multiple Dependencies 
The dependence relationship between test classes is 

transitive. Thus, it is possible to create a chained sequence of 
test classes. Each test run of a given test class will be preceded 
by the recursive execution of the fixture setups. 

Test class sequences may be especially useful for 
implementation of evolutionary acceptance test specifications. 
Acceptance tests, also known as story tests [10], are user tests 
that verify if a system satisfies the acceptance criteria defined 
by a client [3]. In an evolutionary specification, the automated 
acceptance tests model use scenarios of the system where each 
test has as start point in a previously scenario [6].  

E. Test Fixture Sharing Model between Test Classes 
In the dependency model, a test class may reuse the fixture 

setup of another test class. The fixture setup of a given test 
class is the code that prepares the SUT in order to run the tests 
included in the test class. Test fixtures are the elements 
necessary to the tests and are created by the fixture setup run, 
such as: an object, a record in a database, a file, etc. 

The nature of both test fixture and fixture setup strategy 
determines the way in which the test fixture is available to the 
test. In the inline setup, implicit setup and delegate setup 
strategies the ways the test fixture are available are, 
respectively, a local variable, a test class and a return of the 
helper method call. 

The contributions of the work proposed in [11] were used 
here. That work presents a tool, called Picon, to promote code 
reuse in an isolated file. Each fixture setup is associated with a 
qualifier. The fixture setup run consists in injecting an object in 
a field (named with the same qualifier) of the test class. The 
injected object contains the test fixtures described in the fixture 
setup.The qualifier should be simple and, at the same time, 
express the fixture setup configuration [11]. Thus, the authors 
claim that the developer may quickly identify a given fixture 
setup just reading the qualifier.  

Besides the dependency model, we also define a test fixture 
sharing model between test classes. The purpose of this model 
is to make the test fixtures of a given test class available to tests 

of a different test class. A sharing mechanism allows sharing 
class fields and test fixture qualifiers. So, tests of a dependent 
class may access a test fixture associated to a field in a 
dependency class through the declaration of a field named with 
the desired test fixture qualifier created in the dependent class. 
Thus, the test framework must inject the field of the 
dependency class in the field of the dependent class. 

F. Graph Model 
In the dependency model, each test class can have as many 

dependency classes as needed. Furthermore, the dependency 
relationship is transitive. Thus, a directed graph is defined to 
represent test classes and dependency relationships. The 
digraph 𝒢 = (𝑽, 𝑬) is defined as follow: 

𝑽 = {𝒸 | 𝒸 is a test class} 

𝑬 = {(𝒸, 𝒹) | 𝒸 directly depends on 𝒹} 

We call 𝒢 as Static Dependence Graph (SDG). The set 𝑽 
contains all test classes of the system. However, sometimes it is 
convenient to include only test classes involved in a given test 
run. Therefore, the subgraph ℋ = (𝑾, 𝑭) is defined from the 
SDG as follow: 

𝑾 = {𝒸 ∈ 𝑽 | 𝒸 is a test class of the running test or 𝒸 is a 
dependency class of the running test} 

𝑭 = {(𝒸, 𝒹) | 𝒸 directly depends on 𝒹} 

We will call ℋ as Dependence Execution Graph (DEG). 
Both SDG and DEG are digraphs. Thus, the arrow points from 
the dependent class to the dependency class. In the DEG of the 
Fig. 3, the vertex 𝓣𝓓 is the test class of the running test. The 
𝓣𝓐, 𝓣𝓑 e 𝓣𝓒 vertices are the dependency classes of 𝓣𝓓. A 
depth first search starting from 𝓣𝓓 gives the Fixture Setup 
Execution Sequence (FSES) needed for the running test. The 
FSES gives the order in which the fixture setups should be run 
to prepare the SUT for the test. The depth first search can visit 
a vertex more than once. There are two valid FSES for the 
DEG shown in Fig. 3: 

𝐒𝟏 = (𝓣𝓐, 𝓣𝓑, 𝓣𝓐, 𝓣𝓒, 𝓣𝓓) 

𝐒𝟐 = (𝓣𝓐, 𝓣𝓑, 𝓣𝓒, 𝓣𝓓) 

In 𝐒𝟏 the approach includes each vertex 𝒗 whenever 𝒗 is 
found. So, the fixture setup run of 𝓣𝓐 is included twice. In 
other side, in 𝐒𝟐 the approach includes each vertex 𝒗 only the 
first time that 𝒗 is found. 

 
Figure 3.  Dependence Execution Graph. 

G. Oneness of Fixture Setup 
A given fixture setup has the oneness property when it 

should run only once during a same test run. To repeat a fixture 
setup run when the oneness property is true can cause an 
unwanted failure in the test. The dependency model will add 

@FixtureSetup({ 
 UserTest.class, 
 EventTest.class 
}) 
class UserEventTest { ... } 



 

 

two new constraints: (1) the default value for the oneness 
property of a fixture setup is false; and (2) if the oneness 
property of a fixture setup is true, then it should be explicitly 
declared in the test class. In the framework Story, to define as 
true the oneness property we have to annotate the test class 
with the annotation @Singular. 

IV. CASE STUDY 
This section presents a case study where the proposal of 

this work was applied. Fig. 4, 5, 6 and 7 present test classes of 
a system for event scheduling and tracking. Many users can 
participate of one event and each user should inform his 
available schedule for the given event. Only the tests for the 
entities User and Event where considered in this case study. 
The test classes used in the case study were specifically chosen 
in order to exemplify the most important aspects of the 
proposal. Our intention is to show how the approach could be 
applied in a real development scenario. 

The tests for the entities User and Event are included in test 
class UserTest (Fig. 4) and test class EventTest (Fig. 5), 
respectively. The test class UserEventTest (Fig. 6) contains the 
tests for the associative entity UserEvent. 

The fixture setup UserTest is defined by the implicit setup 
method createAndInsertJohn(). Both tests of the test class 
UserTest depend on having the test fixture john registered in 
the database. The registration of the test fixture john is done by 
the UserTest fixture setup. 

 
Figure 4.  UserTest test class. 

The tests of the test class UserTest have, as starting point, a 
scenario where the database is empty. This scenario is expected 
in order to have a greater control over the tests and to avoid 
fragile tests [12]. There are two common approaches to put the 
SUT in the expected starting scenario: (1) clean all database 
before each test run; or (2) remove the persisted entities after 
each test run. The second approach could be achieved with the 
use of the @After JUnit annotation. This annotation is 
analogous to @Before but the difference is that @After is run 
after the test method. To simplify the study case, we do not 
take into account the use of the @After annotation in this work. 
The annotation, however, could be easily applied to the 
dependency model. To do that, it would be only necessary to 
run the methods annotated with @After in the inverse order of 
the methods annotated with the @Before. 

 
Figure 5.  UserTest test class. 

The test class NoDataTest (Fig. 7) contains tests that verify 
the SUT when the persistence layer is empty. For this, the 
fixture setup of the test class NoDataTest removes all possible 
entities persisted in the database. It is noteworthy that the 
starting point expected by the test class UserTest is exactly the 
state of the SUT after running the fixture setup of the test class 
NoDataTest. Initially, two strategies are considered in order to 
promote code reuse: (1) move the tests of the test class 
UserEventTest to the test class NoDataTest; or (2) extract the 
fixture setup of the test class NoDataTest to a helper class and 
promote the code reuse through a delegate setup. The first 
approach has some limitations regarding the organization of the 
test classes. Besides this, the implicit setup method 
createAndInsertJohn cannot be used because it would cause an 
unwanted failure in the test method emptyData(). The second 
approach requires an effort to create auxiliary code artifacts. 
Furthermore, the approach can contribute with obscure tests, 
since the fixture setup of the test class NoDataTest should be 
moved to a different place from that where it was originally 
defined. This makes harder to understand the relationship 
between the test fixture and the expected behavior of the test. 

Using the dependency model we are proposing, the test 
class UserTest can reuse the fixture setup NoDataTest without 
affecting the structure of the involved test classes. In the 
example, this is achieved using the annotation @FixtureSetup. 
The annotation @FixtureSetup indicates to the test framework 
that the run of the fixture setup of the test class NoDataTest 
should be done before each test run of the test class UserTest. 
We highlight the fact that the test fixture userDao is created in 
the fixture setup NoDataTest and is shared with the tests of the 
test class UserTest through the class fields. The class field 
UserTest.userDao is annotated with the annotation @Fixture 
and is named according to the test fixture qualifier userDao. 
The test fixture userDao is associated to the class field 
NoDataTest.userDao during the run of the fixture setup 
NoDataTest. After that, the test framework has to inject the 
class field NoDataTest.userDao into the class field 
UserTest.userDao. 

The test class EventTest is analogous to the test class 
UserTest, then the same considerations about the test class 
UserTest are also applied to the test class EventTest. 

@FixtureSetup(NoDataTest.class) 
class UserTest { 
 @Fixture UserDao userDao; 
 User john; 
 Long id; 
 
 @Before void createAndInsertJohn() { 
  john = new User(); 
  john.setName(“John”); 
  john.setCareer(“Teacher”); 
  id = userDao.insert(john); 
  assertNotNull(id); 
 } 
 
 @Test void get() { 
  User user = userDao.getEntity(id); 
  assertEquals(id,user.id()); 
  ... } 
 
 @Test void list() { 
  List<User> list = userDao.list(); 
  ...} 
} 

@FixtureSetup(NoDataTest.class) 
class EventTest { 
 @Fixture EventDao eventDao; 
 Event lecture; 
 Long id; 
 
 @Before void configure() { 
  lecture = new Event(); 
  lecture.setName(“Lecture”); 
  id = service.insert(lecture); 
  assertNotNull(id); 
 } 
 
 @Test void get() { 
  Evento event = eventDao.entity(id); 
  assertEquals(id,event.id()); 
  assertEquals(lecture.id(),event.id()); 
  assertEquals(“Lecture”,event.name()); 
} 
 
 @Test void list() { 
  List<Event> list = eventDao.list(); 
  ... } 
} 



 

 

The tests of the test class UserEventTest depend on the test 
fixtures john and lecture. The test fixture john is created in the 
fixture setup UserTest and the test fixture lecture is created in 
the fixture setup EventTest. Using the dependency model, the 
test class UserEventTest can incorporate the needed fixture 
setups and, thus, increase code reuse. 

 
Figure 6.  UserTest test class. 

The test class NoDataTest has a particularity regarding the 
other test classes. Its fixture setup has the oneness property (i.e. 
the fixture setup run should not repeat for a same test run). The 
annotation @Singular is used in order to declare the oneness 
property of the fixture setup NoDataTest. The absence of the 
annotation causes an unwanted failure at the tests of the test 
class UserEventTest because the NoDataTest fixture setup run 
would be run twice: before the fixture setup UserTest and 
before the fixture setup EventTest. In this case, the second run 
of fixture setup NoDataTest would remove the test fixture john 
(persisted in the UserTest fixture setup run). The annotation 
@Singular prevents the test framework from repeating the 
NoDataTest fixture setup run, avoiding the test fixture john be 
removed. 

 
Figure 7.  UserTest test class. 

In the case study, we observe that the dependency model 
and the test fixture sharing model facilitate the development of 
tests in an iterative and evolutionary approach. It allows 
reusing fixture setups between test classes without affecting 
their structures. 

V. EVALUATION 
In order to evaluate the applicability of the dependency 

model and the test fixture sharing model we realized an 
experiment. The aim of the evaluation was to identify any 
difference between the code reuse of a set of tests using the 
conventional fixture setup strategies and the code reuse of a set 
of equivalent tests using the proposed fixture setup strategy. 
This experiment was realized through the development of the 
system presented in Section IV.  

The experiment was conducted as follow. First of all, tests 
were developed following an iterative development. The tests 
should run in the framework JUnit and use the conventional 
test fixture setup strategies. The conclusion of the system 
resulted in 77 tests and 11 test classes. A subset, composed by 
24 tests and 4 test classes, was selected from the total tests. 
This subset was named as control group. The tests selected to 
be included in the control group should include real database 
operations. Then, the control group was manually rewritten in 
order to use the dependency model and the test fixture sharing 
model of the framework Story, that implements our proposal. 
The set of rewritten tests, named as experimental group, was 
composed by 24 tests, 14 test classes and 1 helper class. The 
creation of the experimental group had consider the following 
constraints: (1) for each test of the control group should exist 
an equivalent test in the experimental group; (2) the test 
coverage should not change between the two groups; (3) the 
test fixture set and assertion set for each test of the control 
group should be the same for the equivalent test in the 
experimental group; (4) names of variables, methods and class 
fields should be preserved whenever possible; (5) Story 
annotations should be placed in an individual line; and (6) the 
tests can be freely reorganized since the previous restrictions 
are respected. 

After the experiment, the follow measurements were 
collected in the control group and experimental group: (1) 
amount of code lines of test classes and helper classes; (2) sum 
of the amount of repeated lines, excluding assertions; (3) sum 
of distinct repetitions, excluding assertions; (4) sum of the 
amount of repeated lines, including assertions; and (5) sum of 
distinct repetitions, including assertions. In all measurements 
we ignored: blank lines, package declarations and import 
declarations. In the measurements 2, 3, 4 and 5 the following 
symbols were not counted as repetitions: annotation @Test, 
annotation @Before, annotation @Fixture, identic method 
declaration and block delimiter symbol. 

Fig. 8 shows the results for the execution of the three 
distinct test groups: (a) tests of the control group; (b) tests of 
the experimental group; and (c) tests of both groups. As we can 
see in Fig. 8 (a) and in Fig. 8 (b), the test execution time 
between the two groups is consistently alike. This behavior is a 
reasonable proof that the third restriction was not violated. 

The experiment results are shown in Fig. 9. Each time 
reported is the result of a single execution. Black bars represent 
control group measurements while gray bars represent the 
experimental group measurements. The experimental group 
had an amount of test code lines slightly larger. The extra 
annotations of Story can justify the increase in the amount of 
test code lines. However, the experimental group presented a 

@FixtureSetup({ 
 UserTest.class, 
 EventTest.class 
}) 
class UserEventTest { 
 @Fixture User john; 
 @Fixture Event lecture; 
 @Fixture UserEventDao dao; 
 UserEvent johnLecture; 
 Long id; 
 
 @Before void configure() { 
  johnLecture = new UserEvent(); 
  johnLecture.setUser(john); 
  johnLecture.setEvent(lecture); 
  id = dao.insert(johnLecture); 
  assertNotNull(id); 
 } 
 
 @Test void get() { 
  UserEvent entity = dao.entity(id); 
  ...   } 
 
 @Test void list() { 
  List<UserEvent> list = dao.list(); 
  ... } 
} 

@Singular 
class NoDataTest { 
 EventDao eventDao; 
 UserDao userDao; 
 EventUserDao dao; 
 
 @Before void configure() { 
  eventDao = new EventDao(); 
  userDao = new UserDao(); 
  dao = new EventUserDao(); 
  eventDao.removeAll(); 
  userDao.removeAll(); 
  dao.removeAll(); 
 } 
 
 @Test void emptyData() { 
  assertTrue(eventDao.list().isEmpty()); 
  assertTrue(userDao.list().isEmpty()); 
  assertTrue(dao.list().isEmpty()); 
 }  } 



 

 

considerable reduction in the amount of repeated lines (126 for 
the control group and 66 for the experimental group). 
Considering the proportionality of test code lines, the control 
group had 40,91% of repeated lines while the experimental 
group had 20,37%. Comparing the control group with the 
experimental group, the last one had, considering absolute 
values, a reduction of 47,62% of the repeated lines. 

 
Figure 8.  Execution of test groups through the Story. 

VI. CONCLUSION 
This work focused on presenting models to help increasing 

code reuse without negatively affecting code simplicity, 
expressiveness and separation of concerns. 

The dependency model and test fixture sharing model 
presented in this work contribute with a new fixture setup 
strategy. Through this strategy, it is possible to promote test 
code reuse without losing the freedom of reorganizing test 
classes. 

Furthermore, we presented a study case where we 
qualitatively evaluate how code simplicity, expressiveness and 
separation of concerns are well preserved. Another contribution 
was the definition of the oneness property applied to fixture 
setups. 

 
Figure 9.  Experiment results. 
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