
10.18293/SEKE2017-181

Reuse of Fixture Setup between Test Classes

Lucas Pereira da Silva
Informatics and Statistics Department
Federal University of Santa Catarina

Florianópolis, Brazil
pslucasps@gmail.com

Patrícia Vilain
Informatics and Statistics Department
Federal University of Santa Catarina

Florianópolis, Brazil
patricia.vilain@ufsc.br

Abstract—In this paper, we describe commonly used fixture setup
strategies as well as their disadvantages and advantages. We
propose a dependency model and a test fixture sharing model
that allow the definition of a new fixture setup strategy. This
strategy promotes code reuse by sharing fixture setups between
test classes. The models are evaluated through a case study where
the new fixture setup strategy presented a reduction of 47,62% in
the fixture setup code.

Keywords-software testing, unit testing, fixture setup; test
fixture; test dependencies; test code reuse

I. INTRODUCTION
Software testing is an important activity of the software

development process. The notion of its importance has evolved
in recent years. Software testing is no longer an activity that
would only start after the coding phase. It is now carried out
during the entire development process [4]. In that sense,
software testing incorporates other purposes, such as to prevent
bug inclusion [1], and to be a way for specification [3] and
documentation design [9]. According to [12], tests should be
easy to run (automated, self-checking and repeatable), easy to
write/understand (simple, expressive and with separation of
concerns), and easy to maintain (robust). The satisfaction of
these requirements is important to ensure a cost-effective
testing activity.

When the software testing starts at early stages of
development, some extra challenges appear. According to [11],
not only the production code, but also the test code must be
maintained. So, it is also necessary to maintain the tests
throughout the entire development process [5] [14]. Test
maintenance may end up having a high impact on overall
testing costs, even higher than the cost of their initial
implementation [2]. Therefore, test requirements mentioned
above become even more important.

According to [8], the success of automated testing is
strongly influenced by the maintainability of the test code. To
promote maintainability, the tests should be clearly structured,
well named and small in size [8]. Furthermore, code
duplication across the tests must be avoided [8]. Tests that are
hard to write and understand may suggest a poor system
design.

According to [7], each test case is usually separated in a test
method. A test case simulates a use scenario of the SUT. In this
sense, a test case has to put the SUT in a state that represents
the use scenario, that is, a state of interest to the test [11]. This

is done through the execution of the test fixture setup code.
According to [12], a test fixture represents anything necessary
to exercise the SUT. The code where test fixtures are created is
called fixture setup.

Reference [12] presents several strategies for fixture setups.
Among these strategies, we highlight the inline setup, implicit
setup and delegate setup. Each strategy has a different impact
in the following properties of the test code: simplicity (tests
should be small and verify one thing at a time), expressiveness
(tests should communicate intention, i.e., should be easy to
understand what behavior a test wants to verify), separation of
concerns (each test should focus only on a single concern of the
system) and robustness (overlap between tests should be
avoided in such a way that small changes on the production
code do not affect a large amount of tests). It is important to
note that the robustness is directly influenced by code
duplication. Thus, avoiding the duplication of test code can
help to reduce the development effort and, consequently, to
create tests with better maintainability.

The objective of this work is to propose a new fixture setup
strategy that may be used as an option to promote better
robustness of the testing code without affecting its other
properties. We also propose a model to represent this new
fixture setup strategy. Thus, test frameworks may incorporate
this fixture setup strategy by implementing the proposed
model. It is important to point out that our intention is not to
propose a strategy that is superior to the others, but to present a
new strategy that helps developers to create better tests with
less effort.

The sections of this paper are organized as follows: in
Section 2 we present the most known fixture setup strategies in
the literature; in Section 3 we propose a model that allows the
reuse of fixture setups between test classes; in Section 4 we
present a case study; in Section 5 we evaluate, through the use
of framework Story implemented, the proposed model; and in
Section 6 we present the conclusions of our work.

II. FIXTURE SETUP STRATEGIES
Meszaros [12] introduces the most used fixture setup

strategies, mainly in the frameworks of xUnit family. The
strategies are categorized as fresh fixture setup, where the
fixture setup is run before at each test, or as shared fixture
construction, where the fixture setup is run only once before a
given group of tests. Both categories have strategies that allow
the reuse of fixture setups (i.e., reuse of code). However, only

in the shared fixture construction is possible to reuse test
fixtures (i.e., reuse of execution).

A. Fresh Fixture Setup
The fresh fixture setup category is composed by three

strategies: inline setup, implicit setup and delegate setup.
According to [12], an adequate combination of these three
strategies may increase the code reuse and, even so, preserve
the desired properties of simplicity, expressiveness and
separation of concerns. Next, these three strategies are
presented, as well the main advantages and disadvantages of
each one.

1) Inline Setup: in this strategy the fixture setup is placed
inside the test method. In general, this strategy is chosen when
a test needs a very specific test fixture or during the beginning
of the development of the test code when duplication of code
does not exist yet. An advantage of this strategy is a better
understanding of the relationship between the test fixtures and
the behavior that the test is verifying, since the fixture setup is
near to the test verifications. However, its major disadvantage
is the duplication of code among test methods.

2) Implicit Setup: In this strategy the fixture setup is
placed in a special method (usually called setup method) of the
test class. The test framework is responsible for running the
setup method before the execution of each test method
existing in the test class. The reuse of the fixture setup is the
major advantage of this strategy. However, higher is the
amount of test methods in the same test class, harder is to
preserve the properties of simplicity, expressiveness and
separation of concerns. When many test methods are created,
it is more difficult to understand the relationship between the
test fixtures and the intention of each test, once some test
fixtures may not be needed to all tests.

3) Delegate Setup: in delegate setup, the code is placed in
helper methods. In general, these methods are put in auxiliary
classes, apart the test methods. Promoting fixture setup reuse
between distinct test classes is the major advantage of this
strategy. However, this strategy may demand high labor.
Helper methods and classes must be created and maintained
by developers. Thus, well-named helper methods are essential
in order to preserve the expressiveness. Furthermore, in
contrast with inline setup and implicit setup strategies, the
framework does not call automatically the delegate setup.

B. Shared Fixture Setup
The strategies of the shared fixture category depend on a

place to save test fixtures that are created. This place may be a
file system, a database or even a static field. The fixture setup
runs once for a given group of tests and then the created test
fixtures are saved. Thus, the tests of that given group may
access the test fixtures. The definition of when the fixture setup
will be run varies according to each strategy.

III. PROPOSAL
Test code duplication is related to the robustness property,

which in its turn is related to test code maintainability. Thus,
reducing the test code duplication may improve the test code

maintainability without impacting negatively in simplicity,
expressiveness and separation of concerns. Strategies as
implicit setup and delegate setup help to reduce the test code
duplication. However, sometimes, to reduce the duplication of
test code without affecting other properties may be a hard task.
Higher is the amount of tests, harder is to maximize the test
code reuse by clustering test classes according to the test
fixtures (implicit setup) and harder is to maximize the test code
reuse by creating many helper methods as test fixtures needed
(delegate setup).

In this work we propose the definition of a model to
represent the dependence between test classes in order to create
a new fixture setup strategy. The proposed model allows the
reuse of fixture setups between different test classes. The main
objective is to increase the tests robustness by increasing the
reuse of fixture setups without reducing the general tests
maintainability.

The central assumption of our proposal comes from the
simple observation that a given fixture setup execution may
drives the SUT exactly to a specific state of another test class.
It is crucial to clarify that the explicit definition of dependence
between test classes, proposed by this work, does not break the
independence principle described in [13].

A. Dependency Model between Test Classes
The dependency model between test classes considers that a

test class may depend on one or more test classes. The
definition of dependence must be done in the dependent class.
The dependency/dependent relationship between two test
classes means that the dependency class has the fixture setup
required by the dependent class.

Fig. 1 shows a hypothetical implementation of the
dependency model, using the Java language. The annotation
@FixtureSetup is placed in the declaration of the test class
UserTest (dependent) to indicate a dependency with the test
class CleanDatabaseTest (dependency). Thus, each test run of
the dependent class should be preceded, in the given order, first
by the run of the fixture setup of the class CleanDatabaseTest
and then by the run of the fixture setup of the test class
UserTest. This enables the reuse of fixture setup between
different test classes.

Figure 1. Annotation @FixtureSetup.

B. Independence Principle
Independence principle, described in [13], says that each

test should be independent. It should be possible to run each
test individually or through a suite of tests in an arbitrary order.
This principle is justified by the fact that a given test run should
not affect another test run. If a test fails because a previously
test had let the SUT in an inconsistent state, then the
independence principle is violated.

It is important to clarify that the proposed dependency
model does not violate the independence principle. The
dependency model implies only in dependence between test
classes, but not between tests. In the dependency model, before

@FixtureSetup(CleanDatabaseTest.class)
class UserTest { ... }

each test run, the test framework has to run all the needed
fixture setup.

C. Multiple Dependencies
Fig. 2 shows an example where a test class depends on two

test classes. Fixture setup run will follow the order in which the
dependency classes are declared (i.e. the order of the
dependency classes in the annotation @FixtureSetup).

Fixture setups defined in different test classes can be
combined to construct a new fixture setup. In the dependency
model, this combination is achieved without any change in the
dependency classes.

Figure 2. Multiple dependencies in annotation @FixtureSetup.

D. Multiple Dependencies
The dependence relationship between test classes is

transitive. Thus, it is possible to create a chained sequence of
test classes. Each test run of a given test class will be preceded
by the recursive execution of the fixture setups.

Test class sequences may be especially useful for
implementation of evolutionary acceptance test specifications.
Acceptance tests, also known as story tests [10], are user tests
that verify if a system satisfies the acceptance criteria defined
by a client [3]. In an evolutionary specification, the automated
acceptance tests model use scenarios of the system where each
test has as start point in a previously scenario [6].

E. Test Fixture Sharing Model between Test Classes
In the dependency model, a test class may reuse the fixture

setup of another test class. The fixture setup of a given test
class is the code that prepares the SUT in order to run the tests
included in the test class. Test fixtures are the elements
necessary to the tests and are created by the fixture setup run,
such as: an object, a record in a database, a file, etc.

The nature of both test fixture and fixture setup strategy
determines the way in which the test fixture is available to the
test. In the inline setup, implicit setup and delegate setup
strategies the ways the test fixture are available are,
respectively, a local variable, a test class and a return of the
helper method call.

The contributions of the work proposed in [11] were used
here. That work presents a tool, called Picon, to promote code
reuse in an isolated file. Each fixture setup is associated with a
qualifier. The fixture setup run consists in injecting an object in
a field (named with the same qualifier) of the test class. The
injected object contains the test fixtures described in the fixture
setup.The qualifier should be simple and, at the same time,
express the fixture setup configuration [11]. Thus, the authors
claim that the developer may quickly identify a given fixture
setup just reading the qualifier.

Besides the dependency model, we also define a test fixture
sharing model between test classes. The purpose of this model
is to make the test fixtures of a given test class available to tests

of a different test class. A sharing mechanism allows sharing
class fields and test fixture qualifiers. So, tests of a dependent
class may access a test fixture associated to a field in a
dependency class through the declaration of a field named with
the desired test fixture qualifier created in the dependent class.
Thus, the test framework must inject the field of the
dependency class in the field of the dependent class.

F. Graph Model
In the dependency model, each test class can have as many

dependency classes as needed. Furthermore, the dependency
relationship is transitive. Thus, a directed graph is defined to
represent test classes and dependency relationships. The
digraph 𝒢 = (𝑽, 𝑬) is defined as follow:

𝑽 = {𝒸 | 𝒸 is a test class}

𝑬 = {(𝒸, 𝒹) | 𝒸 directly depends on 𝒹}

We call 𝒢 as Static Dependence Graph (SDG). The set 𝑽
contains all test classes of the system. However, sometimes it is
convenient to include only test classes involved in a given test
run. Therefore, the subgraph ℋ = (𝑾, 𝑭) is defined from the
SDG as follow:

𝑾 = {𝒸 ∈ 𝑽 | 𝒸 is a test class of the running test or 𝒸 is a
dependency class of the running test}

𝑭 = {(𝒸, 𝒹) | 𝒸 directly depends on 𝒹}

We will call ℋ as Dependence Execution Graph (DEG).
Both SDG and DEG are digraphs. Thus, the arrow points from
the dependent class to the dependency class. In the DEG of the
Fig. 3, the vertex 𝓣𝓓 is the test class of the running test. The
𝓣𝓐, 𝓣𝓑 e 𝓣𝓒 vertices are the dependency classes of 𝓣𝓓. A
depth first search starting from 𝓣𝓓 gives the Fixture Setup
Execution Sequence (FSES) needed for the running test. The
FSES gives the order in which the fixture setups should be run
to prepare the SUT for the test. The depth first search can visit
a vertex more than once. There are two valid FSES for the
DEG shown in Fig. 3:

𝐒𝟏 = (𝓣𝓐, 𝓣𝓑, 𝓣𝓐, 𝓣𝓒, 𝓣𝓓)

𝐒𝟐 = (𝓣𝓐, 𝓣𝓑, 𝓣𝓒, 𝓣𝓓)

In 𝐒𝟏 the approach includes each vertex 𝒗 whenever 𝒗 is
found. So, the fixture setup run of 𝓣𝓐 is included twice. In
other side, in 𝐒𝟐 the approach includes each vertex 𝒗 only the
first time that 𝒗 is found.

Figure 3. Dependence Execution Graph.

G. Oneness of Fixture Setup
A given fixture setup has the oneness property when it

should run only once during a same test run. To repeat a fixture
setup run when the oneness property is true can cause an
unwanted failure in the test. The dependency model will add

@FixtureSetup({
 UserTest.class,
 EventTest.class
})
class UserEventTest { ... }

two new constraints: (1) the default value for the oneness
property of a fixture setup is false; and (2) if the oneness
property of a fixture setup is true, then it should be explicitly
declared in the test class. In the framework Story, to define as
true the oneness property we have to annotate the test class
with the annotation @Singular.

IV. CASE STUDY
This section presents a case study where the proposal of

this work was applied. Fig. 4, 5, 6 and 7 present test classes of
a system for event scheduling and tracking. Many users can
participate of one event and each user should inform his
available schedule for the given event. Only the tests for the
entities User and Event where considered in this case study.
The test classes used in the case study were specifically chosen
in order to exemplify the most important aspects of the
proposal. Our intention is to show how the approach could be
applied in a real development scenario.

The tests for the entities User and Event are included in test
class UserTest (Fig. 4) and test class EventTest (Fig. 5),
respectively. The test class UserEventTest (Fig. 6) contains the
tests for the associative entity UserEvent.

The fixture setup UserTest is defined by the implicit setup
method createAndInsertJohn(). Both tests of the test class
UserTest depend on having the test fixture john registered in
the database. The registration of the test fixture john is done by
the UserTest fixture setup.

Figure 4. UserTest test class.

The tests of the test class UserTest have, as starting point, a
scenario where the database is empty. This scenario is expected
in order to have a greater control over the tests and to avoid
fragile tests [12]. There are two common approaches to put the
SUT in the expected starting scenario: (1) clean all database
before each test run; or (2) remove the persisted entities after
each test run. The second approach could be achieved with the
use of the @After JUnit annotation. This annotation is
analogous to @Before but the difference is that @After is run
after the test method. To simplify the study case, we do not
take into account the use of the @After annotation in this work.
The annotation, however, could be easily applied to the
dependency model. To do that, it would be only necessary to
run the methods annotated with @After in the inverse order of
the methods annotated with the @Before.

Figure 5. UserTest test class.

The test class NoDataTest (Fig. 7) contains tests that verify
the SUT when the persistence layer is empty. For this, the
fixture setup of the test class NoDataTest removes all possible
entities persisted in the database. It is noteworthy that the
starting point expected by the test class UserTest is exactly the
state of the SUT after running the fixture setup of the test class
NoDataTest. Initially, two strategies are considered in order to
promote code reuse: (1) move the tests of the test class
UserEventTest to the test class NoDataTest; or (2) extract the
fixture setup of the test class NoDataTest to a helper class and
promote the code reuse through a delegate setup. The first
approach has some limitations regarding the organization of the
test classes. Besides this, the implicit setup method
createAndInsertJohn cannot be used because it would cause an
unwanted failure in the test method emptyData(). The second
approach requires an effort to create auxiliary code artifacts.
Furthermore, the approach can contribute with obscure tests,
since the fixture setup of the test class NoDataTest should be
moved to a different place from that where it was originally
defined. This makes harder to understand the relationship
between the test fixture and the expected behavior of the test.

Using the dependency model we are proposing, the test
class UserTest can reuse the fixture setup NoDataTest without
affecting the structure of the involved test classes. In the
example, this is achieved using the annotation @FixtureSetup.
The annotation @FixtureSetup indicates to the test framework
that the run of the fixture setup of the test class NoDataTest
should be done before each test run of the test class UserTest.
We highlight the fact that the test fixture userDao is created in
the fixture setup NoDataTest and is shared with the tests of the
test class UserTest through the class fields. The class field
UserTest.userDao is annotated with the annotation @Fixture
and is named according to the test fixture qualifier userDao.
The test fixture userDao is associated to the class field
NoDataTest.userDao during the run of the fixture setup
NoDataTest. After that, the test framework has to inject the
class field NoDataTest.userDao into the class field
UserTest.userDao.

The test class EventTest is analogous to the test class
UserTest, then the same considerations about the test class
UserTest are also applied to the test class EventTest.

@FixtureSetup(NoDataTest.class)
class UserTest {
 @Fixture UserDao userDao;
 User john;
 Long id;

 @Before void createAndInsertJohn() {
 john = new User();
 john.setName(“John”);
 john.setCareer(“Teacher”);
 id = userDao.insert(john);
 assertNotNull(id);
 }

 @Test void get() {
 User user = userDao.getEntity(id);
 assertEquals(id,user.id());
 ... }

 @Test void list() {
 List<User> list = userDao.list();
 ...}
}

@FixtureSetup(NoDataTest.class)
class EventTest {
 @Fixture EventDao eventDao;
 Event lecture;
 Long id;

 @Before void configure() {
 lecture = new Event();
 lecture.setName(“Lecture”);
 id = service.insert(lecture);
 assertNotNull(id);
 }

 @Test void get() {
 Evento event = eventDao.entity(id);
 assertEquals(id,event.id());
 assertEquals(lecture.id(),event.id());
 assertEquals(“Lecture”,event.name());
}

 @Test void list() {
 List<Event> list = eventDao.list();
 ... }
}

The tests of the test class UserEventTest depend on the test
fixtures john and lecture. The test fixture john is created in the
fixture setup UserTest and the test fixture lecture is created in
the fixture setup EventTest. Using the dependency model, the
test class UserEventTest can incorporate the needed fixture
setups and, thus, increase code reuse.

Figure 6. UserTest test class.

The test class NoDataTest has a particularity regarding the
other test classes. Its fixture setup has the oneness property (i.e.
the fixture setup run should not repeat for a same test run). The
annotation @Singular is used in order to declare the oneness
property of the fixture setup NoDataTest. The absence of the
annotation causes an unwanted failure at the tests of the test
class UserEventTest because the NoDataTest fixture setup run
would be run twice: before the fixture setup UserTest and
before the fixture setup EventTest. In this case, the second run
of fixture setup NoDataTest would remove the test fixture john
(persisted in the UserTest fixture setup run). The annotation
@Singular prevents the test framework from repeating the
NoDataTest fixture setup run, avoiding the test fixture john be
removed.

Figure 7. UserTest test class.

In the case study, we observe that the dependency model
and the test fixture sharing model facilitate the development of
tests in an iterative and evolutionary approach. It allows
reusing fixture setups between test classes without affecting
their structures.

V. EVALUATION
In order to evaluate the applicability of the dependency

model and the test fixture sharing model we realized an
experiment. The aim of the evaluation was to identify any
difference between the code reuse of a set of tests using the
conventional fixture setup strategies and the code reuse of a set
of equivalent tests using the proposed fixture setup strategy.
This experiment was realized through the development of the
system presented in Section IV.

The experiment was conducted as follow. First of all, tests
were developed following an iterative development. The tests
should run in the framework JUnit and use the conventional
test fixture setup strategies. The conclusion of the system
resulted in 77 tests and 11 test classes. A subset, composed by
24 tests and 4 test classes, was selected from the total tests.
This subset was named as control group. The tests selected to
be included in the control group should include real database
operations. Then, the control group was manually rewritten in
order to use the dependency model and the test fixture sharing
model of the framework Story, that implements our proposal.
The set of rewritten tests, named as experimental group, was
composed by 24 tests, 14 test classes and 1 helper class. The
creation of the experimental group had consider the following
constraints: (1) for each test of the control group should exist
an equivalent test in the experimental group; (2) the test
coverage should not change between the two groups; (3) the
test fixture set and assertion set for each test of the control
group should be the same for the equivalent test in the
experimental group; (4) names of variables, methods and class
fields should be preserved whenever possible; (5) Story
annotations should be placed in an individual line; and (6) the
tests can be freely reorganized since the previous restrictions
are respected.

After the experiment, the follow measurements were
collected in the control group and experimental group: (1)
amount of code lines of test classes and helper classes; (2) sum
of the amount of repeated lines, excluding assertions; (3) sum
of distinct repetitions, excluding assertions; (4) sum of the
amount of repeated lines, including assertions; and (5) sum of
distinct repetitions, including assertions. In all measurements
we ignored: blank lines, package declarations and import
declarations. In the measurements 2, 3, 4 and 5 the following
symbols were not counted as repetitions: annotation @Test,
annotation @Before, annotation @Fixture, identic method
declaration and block delimiter symbol.

Fig. 8 shows the results for the execution of the three
distinct test groups: (a) tests of the control group; (b) tests of
the experimental group; and (c) tests of both groups. As we can
see in Fig. 8 (a) and in Fig. 8 (b), the test execution time
between the two groups is consistently alike. This behavior is a
reasonable proof that the third restriction was not violated.

The experiment results are shown in Fig. 9. Each time
reported is the result of a single execution. Black bars represent
control group measurements while gray bars represent the
experimental group measurements. The experimental group
had an amount of test code lines slightly larger. The extra
annotations of Story can justify the increase in the amount of
test code lines. However, the experimental group presented a

@FixtureSetup({
 UserTest.class,
 EventTest.class
})
class UserEventTest {
 @Fixture User john;
 @Fixture Event lecture;
 @Fixture UserEventDao dao;
 UserEvent johnLecture;
 Long id;

 @Before void configure() {
 johnLecture = new UserEvent();
 johnLecture.setUser(john);
 johnLecture.setEvent(lecture);
 id = dao.insert(johnLecture);
 assertNotNull(id);
 }

 @Test void get() {
 UserEvent entity = dao.entity(id);
 ... }

 @Test void list() {
 List<UserEvent> list = dao.list();
 ... }
}

@Singular
class NoDataTest {
 EventDao eventDao;
 UserDao userDao;
 EventUserDao dao;

 @Before void configure() {
 eventDao = new EventDao();
 userDao = new UserDao();
 dao = new EventUserDao();
 eventDao.removeAll();
 userDao.removeAll();
 dao.removeAll();
 }

 @Test void emptyData() {
 assertTrue(eventDao.list().isEmpty());
 assertTrue(userDao.list().isEmpty());
 assertTrue(dao.list().isEmpty());
 } }

considerable reduction in the amount of repeated lines (126 for
the control group and 66 for the experimental group).
Considering the proportionality of test code lines, the control
group had 40,91% of repeated lines while the experimental
group had 20,37%. Comparing the control group with the
experimental group, the last one had, considering absolute
values, a reduction of 47,62% of the repeated lines.

Figure 8. Execution of test groups through the Story.

VI. CONCLUSION
This work focused on presenting models to help increasing

code reuse without negatively affecting code simplicity,
expressiveness and separation of concerns.

The dependency model and test fixture sharing model
presented in this work contribute with a new fixture setup
strategy. Through this strategy, it is possible to promote test
code reuse without losing the freedom of reorganizing test
classes.

Furthermore, we presented a study case where we
qualitatively evaluate how code simplicity, expressiveness and
separation of concerns are well preserved. Another contribution
was the definition of the oneness property applied to fixture
setups.

Figure 9. Experiment results.

REFERENCES
[1] Beizer, B. 1990. Software Testing Techniques (2nd ed.). Van Nostrand

Reinhold Co., New York, NY, USA.
[2] Berner, S., Weber, R., and Keller, R.K. 2005. Observations and lessons

learned from automated testing. In Proceedings of the 27th International
Conference on Software engineering (ICSE '05). ACM, New York, NY,
USA, 571-579.

[3] Bertolino, A. 2007. Software Testing Research: Achievements,
Challenges, Dreams. In Procedings of the 2007 Future of Software
Engineering (FOSE '07). IEEE Computer Society, Washington, DC,
USA, 85-103.

[4] Borg, R., and Kropp, M. 2011. Automated acceptance test refactoring.
In Proceedings of the 4th Workshop on Refactoring Tools (WRT '11).
ACM, New York, NY, USA, 15-21.

[5] Canfora, G., Cimitile, A., Garcia, F., Piattini, M., and Visaggio, C.A.
2006. Evaluating advantages of test driven development: a controlled
experiment with professionals. In Proceedings of the 2006 ACM/IEEE
International Symposium on Empirical Software Engineering (ISESE
'06). ACM, New York, NY, USA, 364-371.

[6] Freeman, S., and Pryce, N. 2009. Growing Object-Oriented Software,
Guided by Tests (1st ed.). Addison-Wesley Professional.

[7] Zaidman, A., Deursen, A., and Storey, M.A. 2013. Strategies for
avoiding text fixture smells during software evolution. In Proceedings of
the 10th Working Conference on Mining Software Repositories (MSR
'13). IEEE Press, Piscataway, NJ, USA, 387-396.

[8] Hanssen, G.K., Haugset, B. 2009. Automated Acceptance Testing Using
Fit. In Proceedings of the 42nd Hawaii International Conference System
Sciences (HICSS '09). IEEE Computer Society, 1-8.

[9] Kamalrudin, M., Sidek, S., Aiza, M.N., and Robinson, M. 2013.
Automated Acceptance Testing Tools Evaluation. In Agile Software
Development. Sci. Int, 4, 1053-1058.

[10] Longo, D.H., Wilges, B., Vilain, P., and Cislaghi, R. 2015. Fixture Setup
through Object Notation for Implicit Test Fixtures. Journal of Computer
Science 11, 6, 794.

[11] Meszaros. G. 2006. xUnit Test Patterns: Refactoring Test Code. Prentice
Hall PTR, Upper Saddle River, NJ, USA.

[12] Meszaros, G., Smith, S., and Andrea, J. 2003. The test automation
manifesto. In Proceedings of the 3rd XP Universe Conference (XP’03).
New Orleans, LA.

[13] Pinto, L.S., Sinha, S., and Orso, A. 2012. Understanding myths and
realities of test-suite evolution. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software
Engineering (FSE '12). ACM, New York, NY, USA, Article 33, 11
pages.

[14] Tiwari, R., and Goel, N. 2013. Reuse: reducing test effort. SIGSOFT
Softw. Eng. Notes 38, 2 (March 2013), 1-11.

(a) Control group.

(b) Experimental group.

(c) Both control and experimental groups.

