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Abstract

Software metrics are essential resources in software en-
terprises. They can be used to support decision-making and,
consequently, reduce costs, improve the productivity of the
team and the quality of products delivered. On the other
hand, this is only possible if the metrics are valid. Although
there are studies related to software metrics validity, none
present a solution to represent the uncertainties of the met-
rics selected to measure the attributes of the entities. In this
paper, we present a process to build Bayesian networks to
represent the uncertainties of software metrics-based mod-
els. The proposed solution is composed of two activities and
focuses on the selection and validation of metrics to con-
struct the Bayesian networks. We validated the model with
simulated scenarios. Given the successful results, we con-
cluded that the proposed solution is promising. This paper
complements the state of the art by showing how to com-
plement a popular metric selection technique, GOM, with
information to model uncertainties of the metrics using the
concepts of metric validation and Bayesian networks.

Software metrics selection; Software metrics valida-
tion; Goal-Question-Metric; Validation criteria; Bayesian
networks.

1 Introduction

According to Finkelstein and Leaning [9], measurement
is the objective representation of an empirical knowledge
of a real-world entity. According to Mathias et al [13], a
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measurement occurs when an attribute is measured, that is,
when a value is assigned to it. By combining this measure
with useful information, we have a metric (e.g., average
number of defects per module). In practice, the terms “met-
ric” and “measure” are often used interchangeably [13]. In
this paper, we use the definitions presented by Mathias et
al. [13]. However, we consider that each measure is a met-
ric and this, in turn, may be composed of more than one
measures.

There are many applications in the field of software met-
rics such as quality assessment and prediction. For in-
stance, Quamoco [19] focuses on measuring product quality
and Hearty et al. [11], on predicting the velocity of an XP
project.

Despite the benefits of using metrics and the various re-
searches on software metrics undertaken in recent years, the
acceptance and use of metrics in practice is still an ongoing
concern: more than 80% of software measurement initia-
tives fail within the first 18 months. One possible explana-
tion for this phenomenon is the difficulty to understand and
use metrics [20].

According to Fenton and Neil [7], metrics have been
used successfully to quantify, but they have not been prop-
erly used to support decision-making. A reason for the lim-
ited adoption with this purpose is the lack of trustworthi-
ness on the validity of metrics. For instance, Chidamber-
Kemerer (CK) metrics are popularly used to evaluate Object
Oriented-based software. On the other hand, Kitchenham
[12] discusses that two of the proposed metrics (Lack of
Cohesion and Coupling Between Objects) are theoretically
invalid. In other words, they do not represent the attributes
of the entities in which they were proposed to. Using in-
valid metrics result in meaningless (i.e., totally arbitrary)
decisions.

There are studies that propose criteria to evaluate the va-
lidity of software metrics. In Meneely et al. [14], results



of a systematic literature review are presented, in which 47
criteria were identified. On the other hand, there are no pro-
posed solutions to, given an attribute of an entity that needs
to be measured, calculate how representative (i.e., valid) is
the set of metrics selected to measure it. In the context of
Goal Question Metric (GQM), a popular software metrics
paradigm, there is no solution to model the uncertainty of
the set of metrics used to answer a question using the crite-
ria presented in Meneely et al. [14].

In this paper, we present a process to build Bayesian
networks to represent the uncertainties of software metrics-
based models. The process is composed of two activities:
(1) metrics selection and (ii) metrics validation. The first
activity is composed of three steps: characterization of the
environment, acquisition of knowledge through abstraction
sheets and construction of the Bayesian network. The sec-
ond activity is composed of two steps: execution of the
validation method from validation criteria and update the
Bayesian network.

We used Bayesian networks because they are flexible to
be learned from data or elicited from domain experts. Since
metric models can be applied in contexts in which there are
historical data and in which there are not, this flexibility
is crucial. Furthermore, it can deal with different types of
data (e.g., discrete, continuous, Boolean and ordinal), which
adds flexibility to the types of metrics to be used. Finally, it
deals with uncertainty and enables the modeling of cause-
consequence relationships, which enables the modeling of
the validity of metrics and build GQM-based models.

To validate our solution, we used ten simulated scenar-
ios. Based on the results, we concluded that it is a promis-
ing approach to assist on the construction of interpretation-
oriented metric programs. We plan to complement our pro-
cess with threshold definition techniques [17] and metrics
reliability activities [15]. This paper complements the state
of the art by showing how to complement a popular metric
selection technique, GQM, with information to model un-
certainties of the metrics using the concepts of metric vali-
dation and Bayesian networks.

This paper is organized as follows. Section 2 presents
an overview on Bayesian networks. Section 3 presents our
proposed solution. Section 4 presents our validation and
Section 5 presents our final remarks.

2 Bayesian Networks

Bayesian networks are probabilistic graph models used
to represent knowledge about an uncertain domain [2]. A
Bayesian network, N, is a directed acyclic graph that rep-
resents a joint probability distribution over a set of ran-
dom variables V' [10]. The network is defined by the pair
N = {G,©}. G is the directed acyclic graph in which the
nodes X1, ..., X, represent random variables and the arcs
represent the direct dependencies between these variables.

O represents the set of the probability functions. This set
contains the parameter 6, ., = Py (z;|m;) for each x; in
X; conditioned by m;, the set of the parameters of X; in G.
Equation 1 presents the joint distribution defined by N over
V.
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Bayesian networks have many advantages such as suit-
ability for small and incomplete data sets, structural learn-
ing possibility, combination of different sources of knowl-
edge, explicit treatment of uncertainty, support for decision
analysis, and fast responses [18]. Furthermore, they can
combine the knowledge of domain experts and historical
data to build more realistic models in an approach called
smart-data [4]. To construct the Bayesian networks pre-
sented in this study we used AgenaRisk'.

This technique has been applied to build software
metrics-based models for several purposes in software engi-
neering such as risk management [6], product quality man-
agement [19], effort prediction [11] and process manage-
ment [15].

To reduce the effort of defining the Node Probability Ta-
bles (NPTs) through elicitation of knowledge from domain
experts, Fenton et al. [8] proposed the concept of ranked
nodes, which is based on the doubly truncated Normal dis-
tribution (TNormal) limited in the [0, 1] region. We used
ranked nodes because the goal is to give meaning to the
metric. Therefore, we used an ordinal scale. An advantage
of ranked nodes, when compared to other approaches to de-
fine NPT for ordinal variables, is the explicit configuration
of the confidence in the result (i.e., variance).

3 Proposed Process

The goal of the proposed solution is to represent the un-
certainties of software metrics-based models. For this pur-
pose, we used Bayesian networks. It is composed of two ac-
tivities: (i) metrics selection and (ii) metrics validation. The
first activity is composed of three steps: characterization of
the environment, acquisition of knowledge through abstrac-
tion sheets and construction of the Bayesian network. The
second activity is composed of two steps: execution of the
validation method from validation criteria and update the
Bayesian network. In Figure 1, we present an activity dia-
gram representing the process.

3.1 Software Metrics Selection

To select the metrics, we use the GQM [1] paradigm.
First, it is necessary to identify the project context (i.e.,

Uhttp://www.agenarisk.com/
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Figure 1. Process overview.

application domain and development process) from the do-
main experts. For instance, semi-structured interviews with
project leaders might be performed.

With the context defined, the next step is to apply the
GQM process with the goal of capturing the experience of
the viewpoints and selecting the software metrics. For this
purpose, abstraction sheets must be used as knowledge ac-
quisition instrument during interviews [3].

A set of goals is defined as G = {g1,...,9|q|}, where
g; represents a project goal. For each goal, an abstraction
sheet, which is composed of four quadrants, must be used.
A set of questions, @), and metrics, M, must be extracted
from the first quadrant, which corresponds to the quality fo-
cus. ¢; € Q and m; € M represent, respectively, a question
and a metric related to a project goal.

The second quadrant corresponds to the variation factors,
which are factors that impact the quality focus, considering
the defined goal. More questions ¢ and metrics m can be
extracted from this quadrant.

The third quadrant corresponds to the possible values of
the extracted metrics from the first quadrant. These values
are important because they demonstrate the usefulness of
the measurement process. By analyzing them, we can detect
discrepancies between expectations and realities.

Finally, the last quadrant of the abstraction sheet corre-
sponds to the impact of the variation factors on the extracted
metrics from the first quadrant. The description of this im-
pact serves as motivation for the inclusion of the variation
factor in the abstraction sheet. If the project leader does not
know how to inform the impact of a variation factor, this
factor should be excluded from the sheet.

Given that each question must be associated with at least
one goal, a set of relationships between goals and questions,
T, should be created. (g, ¢) means the goal g and question
q are related. An hierarchical structure example of the GQM
model is illustrated in Figure 2.

For the example shown in Figure 2, the given goal is to

“Analyze the software product with respect to its quality for
the purpose of characterization from the developer’s point
of view”. For quality focus, the question “How many un-
wanted behaviors does the product have?” was defined. For
the variation factor, the question “What is the quality of the
test?” was defined. An example of an abstraction sheet is
illustrated in Figure 3.

By analyzing first quadrant of the abstraction sheet
presented in Figure 3, it is possible to identify metrics
such as number of detected failures, proportion of criti-
cal/uncritical failures and number of detected faults. Given
that the goal, questions and metrics for the quality of focus
are defined, the Bayesian network can be built. For our ap-
proach, all node should be modelled as ranked. If a metric
is collected using a numerical scale, thresholds must be de-
fined to convert it into an ordinal scale. For this purpose,
statistics-based approach [17] can be used or data must be
collected from domain experts.

After the construction of the directed acyclic graph, the
NPT of the goal node must be defined. Assuming that the
goal was modeled as a ranked node, we can create a truth
table to collect data from a domain expert and define the
NPT. For the given example, given that there is a one-to-one
relationship between g and ¢, the truth table is not necessary
and the NPT must be calibrated as an identity matrix, in
which the diagonal elements are 1 and the remaining are 0.

3.2 Software Metrics Validation

The validation of the metrics ensures that they are rep-
resentative of the measured attributes. In the literature,
there are many researches on the validation of software met-
rics [16, 12, 14]. Meneely et al. [14] performed a system-
atic review about validation criteria for software metrics and
identified 47 criteria. In Table 1, we present ten criteria
identified by Meneely et al. [14].

Monotonicity
Metric Reliability
Non-collinearity
Non-exploitability
Non-uniformity

A priori validity
Actionability
Appropriate Continuity
Appropriate Granularity
Association

Table 1. List of 10 validation criteria found in
the review [14].

Defining the purpose of using a metric is a critical step to
validate it. In addition, when the project leader makes a de-
cision, he can specify properties of the metrics that are most
appropriate to use. According to Meneely et al. [14] this is
called advantage. For instance, be able to show that a metric
is a significant representation and that it can be applied to a
development process are considered advantages.
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Abstraction Sheet Instance

1. Number of detected failures
2. Proportion of critical/uncritical failures
3. Number of detected faults

Object of Study Purpose Quality Focus Viewpoint Context
Unit test Prediction Effectiveness Tester Project X
Quality focus Variation factors

1. Quality of test cases

2. Test method used

3. Test method conformance

4. Experience of testers with tools

Baseline hypothesis

1.30
2.2/3
3.40

Variations hypothesis

1. The higher the quality of the test cases, the more
failures detected

2. Different testing methods detect diferent numbers
of failures

3. The better the method conformance, the more
failures detected.

Figure 3. Abstraction sheet instance.

To execute this activity, we consider the validation crite-
ria presented in Meneely et al. [14] due to its completeness.
For each metric m related to the quality focus, the following
steps must be performed:

1. Determine the intended use of the metric.

2. Highlight the advantages that are appropriate for the
intended use chosen in the previous step. Some
of these advantages are: mathematical soundness,
practicality, correctness, efficiency and hypothesis-
strengthening [14].

3. Look up the validation criteria that are tied to the ad-
vantages shown in Table 2.

4. Carefully choose validation criteria while considering
the purpose of the metrics and the relationships and
motivations among the criteria.

5. Analyze if the metric follows the chosen validation cri-
teria.
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1 A Priori Validity X

2 Actionability X

3 | Appropriate Continuity | X

4 | Appropriate Granularity

5 Association

Table 2. Example of mapping from criteria to
advantages [14].



Given the concept of variance of ranked nodes, we can
model the confidence in the validity of a set of metrics de-
fined to answer a question. The greater the confidence that
a set of metrics is valid to represent an attribute, the smaller
that variance. To define the variance, the given rules of
thumb should be used:

Rule 1: If the metric follows 100% of the validation cri-
teria related to it, the variance must be equal to 521074, the
smallest value possible in AgenaRisk;

Rule 2: If the metric follows between 50% and 99%
of the validation criteria related to it, the variance must be
equal to 5210~ 3;

Rule 3: If the metric follows between 1% and 49% of the
validation criteria related to it, the variance must be equal to
52107 2;

Rule 4: If the metric does not follow any validation cri-
teria related to it, the variance must be equal to 52107 1;

These intervals are recommendations for the first cali-
bration of the Bayesian network and are restricted to Age-
naRisk, which is currently the only software that supports
ranked nodes. Another approach is to use the validation cri-
teria as a reference and elicit knowledge from the domain
expert to calibrate the variance. Furthermore, it is possi-
ble to, after applying the model, refine the calibration of the
NPTs given knowledge from experts and collected data.

If a given node ¢ has more than one parent node (i.e.,
more than one metric), the described rules should be ap-
plied considering the sum of the validation criteria for each
metric.

The next step is to finalize the calibration of the NPT by,
as presented in [8], defining a function to model the cen-
tral tendency of the distribution that represents the NPT. To
define the functions, weights and variance, knowledge must
be elicited from the experts using the approach presented by
Fenton et al. [8] or da Silva et al. [5].

4 Validation

We validated the resulting Bayesian networks in ten sim-
ulated scenarios. For all cases, we assumed that the first step
of the proposed process was successfully executed. Due to
space limitations, we only present the results of one sce-
nario. This scenario describes a simple product quality
model, where the goal is “Effectiveness of unit test’, the
question is “How many unwanted behaviors does the prod-
uct have?’ and the metrics are number of detected failures
and number of detected faults.

In this case, given that the goal of using the metrics num-
ber of opened faults and number of static analysis warn-
ings is to assist on decision-making during the develop-
ment of the software, the advantage highlighted is Decision-
Informing. There are 11 validation criteria associated with
this advantage. On the other hand, say that the metric num-
ber of opened faults conforms to 8 out of 11 criteria and

the metric number of static analysis warnings conforms to
5. Given this, together, both metrics conform to 13 out 22
validation criteria (i.e., 59.09%). Therefore, the second rule
will be followed and the variance of the node Unwanted
behaviors is 510~ 3.

To calibrate the NPT, we used the WMIN function, be-
cause if any of the given metrics are Very low, the answer
to the corresponding question will tend to Very low. On the
other hand, we considered number of opened faults as more
important than number of static analysis warnings. There-
fore, we defined them, respectively, with weights 2 and 1.
We show an example of the calculated results for this sce-
nario in Figure 4.

Software Quality
Very Low
Low+
Medium4] 12.52%
High{ 7] 74.934%
Very High4{] 12.527%

-

Unwanted Behavior
Very Low 4
Low+
Medium 4] 12.52%
High{7] 74.934%
Very High{] 12.527%

Wl AN

Number of open faults Number of static
Very Low Very Low
Low Low
Medium Medium 100%
High
High "
Very High {7271 100% Very High
{Scenario 1 : Medium |

Scenario 1:Very High

Figure 4. Example of a Bayesian network con-
structed using the proposed solution.

By analyzing Figure 4, it is possible to notice that, given
the validity of the metrics used to answer the question, the
confidence in the decision regarding the goal is acceptable.
In case it was not, the probability of the goal would tend to
be more uniform, meaning that a reliable decision could not
be taken given the constructed model.

5 Final Remarks

In this paper, we presented a process to build Bayesian
networks to represent the uncertainties of software metrics-
based models. The process is composed of two activities:
(i) metrics selection and (ii) metrics validation. The first
activity is composed of three steps: characterization of the
environment, acquisition of knowledge through abstraction
sheets and construction of the Bayesian network. The sec-
ond activity is composed of two steps: execution of the
validation method from validation criteria and update the
Bayesian network.

The process shown is based on the concept of ranked
nodes [8] to build the Bayesian networks, with the goal of



adding meaning to metrics. Furthermore, it uses GQM to
assist on the selection of metrics and software metrics val-
idation criteria extracted from Meneely et al. [14]. On the
other hand, if necessary, other types of nodes can be used
such as Boolean, but it will be necessary to define a new
reasoning to map the validity and the NPT definition.

The main limitation is the study’s validation, which is
only conceptual. On future works, we will execute empiri-
cal studies to evaluate our approach by collecting data from
practitioners and tools to assess if the proposed solution im-
proves the accuracy of decision making. Furthermore, we
will complement our solution with additional steps regard-
ing the definition of software metrics thresholds and collec-
tion reliability to assist on the construction of interpretation-
oriented software metrics models.
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