
DOI reference number: 10.18293/SEKE2017-168

Self-adaptive Systems Driven by Runtime Models
A Systematic Literature Review of Approaches

Dr. Marcello Thiry

Technological Science Center of Earth and Sea (CTTMar)

University of Vale do Itajaí (UNIVALI)

Florianópolis, Brazil

marcello.thiry@gmail.com

Roger Anderson Schmidt

Technological Science Center of Earth and Sea (CTTMar)

University of Vale do Itajaí (UNIVALI)

Florianópolis, Brazil

rasflp@gmail.com

Abstract— Model-Driven Software Engineering (MDSE)

represents a promising research area with a variety of challenging

issues open for discussion. Expanding the limits of the MDSE

paradigm, runtime models keep abstract representations of the

running system in order to trigger on-the-fly software

reconfigurations. One of the most popular applications of runtime

models are self-adaptive systems, since abstractions can be fine-

tuned not only in the development phases, but also in runtime. As

this kind of system needs to modify its behavior during execution,

this can be achieved by means of high-level model interventions.

The objective of this article is to present relevant approaches of

self-adaptive systems driven by runtime models. This article can

help practitioners to get an overall picture of current approaches,

in terms of methods, techniques and tools. Researchers can also be

inspired to create new or to extend current approaches, facing the

challenges identified here. To that end, we conducted a rigorous

Systematic Literature Review based on the guidelines proposed by

Kitchenham. This paper provides answers for four research

questions, based on 16 selected articles. In the conclusion, we

present some considerations and challenges based on the results

obtained from this review.

Keywords-Self-Adaptive System; Runtime Model; Model-Driven

Software Engineering; Systematic Literature Review

I. INTRODUCTION

Modern software execution environments have become
increasingly decentralized, heterogeneous, uncertain and
changing. Fully adequate for these scenarios, mobile sensor-
based devices have been providing significant computational
power in various domains. From their assorted sensors, a huge
amount of data can be collected resulting in a rich environmental
context. Reacting to changes in this context, mobile applications
for remote environments, such as daily life objects from the
Internet of Things (IoT) [1] or small devices connected to
Wireless Sensor Networks [2] should dynamically adapt
themselves to a new external configuration. Thanks to this,
Context-Aware and Mobile (CAM) applications [3] that explore
Pervasive Computing techniques [4] have been receiving special
interest in the recent years.

This background has been leading the software engineering
community to propose innovative ways for building, running
and managing systems and services [5]. Besides that, the
boundaries between design and runtime have to be changed, as
designers can not anticipate all possible circumstances that
might appear during the execution of an application [1].

In order to meet those demanding expectations, dynamic
adaptive systems represent a turning point for responding to
changes, as software becomes capable of reconfiguring itself,
without the need of being rebuilt. In addition, systems should be
able to adapt its structure and/or behavior in response to changes
in the execution context and varying user needs. For this
purpose, dynamic reconfiguration should be applied at runtime
whenever it is needed [5] [6] [7].

However, a particularly important problem arises from the
complexity to manage self-adaptive systems. A promising
approach to deal with this complexity is to develop adaptation
mechanisms that leverage software models, referred to as
models@run.time, or runtime models [8]. Conceptually, a
runtime model is defined as an abstraction of a running system
that is being manipulated during its execution for a specific
purpose. Runtime models are also a causally connected self-
representation of the system that emphasizes the structure,
behavior or goals from a problem space perspective [9].

Therefore, the combination of runtime models and self-
adaptive systems opens the possibility of using abstractions at
different levels to change the behavior of running systems. The
"model-driven" approaches based on runtime models raise the
importance of modeling activities. As identified by [9] [10] and
several others, both topics present important problems to be
addressed, which increases the relevancy of research in this
field.

In this paper, a literary research was undertaken on the
proposals of approaches for development, execution, change
monitoring and reconfiguration of self-adaptive systems through
runtime models. For the purpose of clarification, the
understanding of an “approach” assumed by this paper is
characterized in Sect. II.C. In order to identify, evaluate and
interpret all the available papers relevant to our research
questions, we choose the Systematic Literature Review (SLR)
research method.

This article is structured as follows: Sect. II provides some
background about the research topics. Sect. III presents some
summarized information about the research method definition
that guided this review. In Sect. IV, the outcomes from the
research process execution are exposed. Sect. V shows the data
extraction and synthesis. Then, the next section presents analysis
and discussion based on the research questions. Finally, we
conclude this review in Sect. VII.

mailto:models@run.time

II. BACKGROUND

A. Runtime Models inside the MDSE Context

In the literature, there is no consensus about the concept of
MDSE. MDSE can be defined as a methodology for applying
the advantages of modeling to software engineering activities,
which comprises the following aspects: concepts, notations,
process and rules, and tools [11]. MDSE is also defined as a
family of development processes that focuses on the model as
primary development artifact [12].

Traditionally, the MDSE area has primarily focused on using
models at design, implementation and deployment phases of the
software development life cycle. However, as systems become
more adaptable, reconfigurable and self-manageable, runtime
models are needed to tackle the complexity of dynamic
adaptations by keeping an abstract model of the running system.
It pushes the idea of reflection one-step further by synchronizing
the abstract model with the actual system, so a change performed
on the model is automatically accommodated by the system [1].

B. Self-Adaptive Systems (SAS)

A dynamically adaptive system should be able to adapt its
structure and/or behavior in response to changes in the execution
context and varying user needs. For this purpose, dynamic re-
configuration should be applied at runtime whenever it is
needed, in an anticipated or unanticipated form. This determines
if the reconfiguration is caused by expected changes in
requirements, so it can be considered and planned before being
needed, otherwise it is impossible to predict [7].

In addition, reconfiguration actions can be either
architectural or behavioral. Architectural reconfigurations
consist of modifying the system structure such as add, remove,
start, stop, replace and migrate components/connections. On the
other hand, behavioral reconfigurations are limited to modify
properties of components or connections [7] .

C. Characterization of an “Approach” for this SLR

This paper considers an approach the documented
integration of the following components:

 Process: an overall workflow definition

 Abstractions: meta-meta-models, meta-models, models

 Transformations: models-to-text, text-to-models, final
or intermediate code generation

 Self-adaptive Infrastructure: framework, middleware,
or model-based approach [13] that provides low-level
services for SAS development and execution

 Tools: developed or integrated supporting tools

III. DEFINITION OF THE SYSTEMATIC LITERATURE REVIEW

Our research methodology is inspired by Kitchenham et al.
guidelines [14] and procedures [15], which are specifically
proposed for Systematic Literature Reviews (SLR) in software
engineering. To that end, three main phases are defined: 1.
Planning the Review (identify the need for a review and develop
a review protocol – Sect. III); 2. Conducting the Review
(identify the research, select primary studies, assess the study

quality, extract, monitor and synthesize the data – Sects. IV and
V); and 3. Reporting the Review (present the results of the
review and its dissemination to the interested parties – Sects. VI
and VII). We started from the identification of the need for a
review, as it follows.

A. Related Work

When starting the planning phase of our research
methodology, we checked the need for a systematic review.
Therefore, a search for SLRs on the main topics was conducted
online through selected databases, from 2012 to 2017 (up to Jan
30). The basic terms in the search string for SLRs were
“systematic literature review”, “self-adaptive”, “model-driven”
and several other variations. As a result, we found 55 reviews.
After grouping and removing the duplicates, 31 distinct SLRs
remained. Then, the SLRs were filtered by metadata evaluation,
a stage in which 28 were dismissed for being out of context (8)
or too specific in topics such as, security (4), processes (3), DSLs
(2), formal verifications (2), and another 9 different topics.

Finally, 3 SLRs remained for full text evaluation. Firstly, the
review conducted by Svetits and Zdun [9] presented a
comprehensive research on models at runtime literature,
classifying the articles in terms of: objectives, architectures,
techniques, and kinds of models. Secondly, the SLR conducted
by Giachetti et al. [16] focused on interoperability in MDD
processes, by evaluating five related features from selected
approaches. Finally, Becker et al. [17] focused on model-driven
performance engineering, classifying approaches into
adaptation, architecture, performance analysis, and applicability
criteria.

In contrast to the cited works, this review is exclusively
focused on self-adaptive systems driven by runtime models, with
the adoption of a well-defined criteria of what is considered an
approach. Besides that, its covers articles published until 2017.

B. Research Questions

As suggested by [14] and [16], the PICO(C) criteria [18] was
applied in order to frame and structure our research questions.
The values of each criterion are the following:

 Population: Domain experts, software architects, and
systems analysts. In short, model designers.

 Intervention: Approaches for dynamic reconfigurations
of self-adaptive systems through runtime models.

 Comparison: evaluation of different approaches
applying defined criteria.

 Outcomes: processes, methods and techniques, model
types and transformations, reconfiguration strategies,
context-awareness and consistency checking, etc.

 Context: development and execution phases of self-
adaptive systems.

After taking into consideration the five viewpoints presented
in the PICO(C) model, it became easier to identify the research
questions that follow:

RQ1. What is the central point of each proposal in order to
support dynamic reconfigurations of self-adaptive

systems through runtime models? What are the most
predominant methods or techniques applied?

RQ2. What levels of abstraction are provided for the model
designer? Do the studies suggest an assignment of
modeling tasks to different roles according to their
skills (e.g. domain expert, software engineer)?

RQ3. Do the studies present an overview of the suggested
process? How are they composed in terms of
metamodeling, model languages and transformations
(code generation included) and related tools?

RQ4. What are the strategies for model changes monitoring
and adaptive system dynamic reconfigurations? Does
the adaptation engine implemented by or integrated
with the studies support anticipated and unanticipated
context changes?

C. Literature Selection Criteria

During the research protocol definition, we specified a
reliable study selecting criteria in order to ensure that all primary
studies provide direct evidence about the research question [14].

1) Inclusion criteria

 Articles published from January 1, 2012 to January 20,
2017 (around 5 years range)

 Articles found in selected electronic databases

 Articles published in peer-reviewed journals,
conferences and workshops

2) Exclusion criteria

 Studies not reported in English

 Publications without abstracts

 Books, web sites, technical reports, and master thesis

 Publications in which the research topics are not clearly
established and documented, or that explore the term
“model” outside the context of software development

D. Data sources

The search strategy for this review included four electronic
databases (TABLE I), selected in terms of relevancy in the
research areas of Computer Science and Engineering.

TABLE I. Results from search on databases

Database

Total

amount of

records a

SLRs

(the need of

a review)

Primary

Studies (initial

search)

SCOPUS (Elsevier)
Over 60
million

21 111

Association for Computing

Machinery (ACM) Guide to

Computing Literature

2,625,656 17 71

IEEE Xplore Digital Library 4,145,171 10 33

ScienceDirect (Elsevier)
Over 14
million

7 9

Total 55 224

a. Data collected on January 30, 2017

E. Search String Composition

After the database selection, we started to compose the
search string by defining its components and keywords. Besides,
we had to explore thoroughly every engine mechanism in order
to produce a consistent query for each database [19]. During this
process, we were aware of the variations of the research
concepts, as shown in TABLE II. After many testing iterations,
our search string was defined by aggregating the key topics for
this review.

TABLE II. Search keywords

Concept Keyword and synonymous

P = Self-Adaptive Systems
“self-adaptive", "self adaptive", "adaptive

system", "adaptive software"

Q = Model-Driven
Software Engineering

"model-driven", "model driven", "mde",
“mdse", “mdd"

S = Runtime Models

"models at runtime", "models@runtime",

"models@run.time", "models for runtime",
"runtime models"

Result (P ˅ Q ˅ S)

IV. EXECUTION OF THE SLR

A. Literature Search Process

The literature search process that guided our review is
presented in Figure 1, which shows the outcomes from every
activity of the process, highlighting the articles selected and
dismissed due to related reasons. Initially, we submitted the final
versions of them to each selected electronic database (1). Then
the metadata of all returned articles (title, abstract and keywords)
was exported to BibTeX format, which is accepted by the
Mendeley import tool. Next, we proceeded with a careful
metadata checking of every single article against the literature
selection criteria (2). As a result, 150 articles were selected.
After grouping and duplicates removal (3), 134 articles
remained.

Figure 1. Literature Search Process

The final selection of articles was performed after full text
reading and evaluation (4). In this stage, we especially focused
on the compliance with the approach characterized in Sect. II.C.
As a result, the 16 articles presented in TABLE III were selected
for data extraction and synthesis (5).

TABLE III. Selected Studies

ID Reference

S1

S. Loukil, S. Kallel, and M. Jmaiel, “An approach based on runtime

models for developing dynamically adaptive systems,” Futur. Gener.

Comput. Syst., vol. 68, pp. 365–375, 2017.

ID Reference

S2

F. Moyano, C. Fernandez-Gago, and J. Lopez, “A Model-driven

Approach for Engineering Trust and Reputation into Software
Services,” J. Netw. Comput. Appl., vol. 69, no. C, pp. 134–151, 2016.

S3

B. Djoudi, C. Bouanaka, and N. Zeghib, “A formal framework for

context-aware systems specification and verification,” J. Syst. Softw.,
vol. 122, pp. 445–462, 2016.

S4

J. M. T. Portocarrero, F. C. Delicato, P. F. Pires, T. C. Rodrigues, and

T. V. Batista, “SAMSON: Self-adaptive middleware for wireless

sensor networks,” in Proceedings of the ACM Symposium on Applied
Computing, vol. April 04–08, pp. 1315–1322, 2016.

S5

M. Hussein, R. Nouacer, and A. Radermacher, “A Model-Driven

Approach for Validating Safe Adaptive Behaviors,” in Proceedings of
the 19th Euromicro Conference on Digital System Design, pp. 75–81,

2016.

S6

J. Yu, Q. Sheng, J. K. Y. Swee, J. Han, C. Liu, and T. H. Noor,

“Model-driven development of adaptive web service processes with

aspects and rules,” J. Comput. Syst. Sci., vol. 81, no. 3, pp. 533–552,

2015.

S7

P. A. de S. Duarte, F. M. Barreto, F. A. de A. Gomes, W. V. de

Carvalho, and F. A. M. Trinta, “CRITiCAL: A Configuration Tool for

Context Aware and mobiLe Applications,” in Proceedings of the 2015
IEEE 39th Annual Computer Software and Applications Conference –

Volume 02, pp. 159–168, 2015.

S8

J. Bocanegra, J. Pavlich-Mariscal, and A. Carillo-Ramos, “MiDAS: A
model-driven approach for adaptive software,” in Proceedings of the

WEBIST 2015 – 11th International Conference on Web Information

Systems and Technologies, pp. 281–286, 2015.

S9

D. B. Abeywickrama, N. Hoch, and F. Zambonelli, “An integrated

Eclipse plug-in for engineering and implementing self-adaptive

systems,” in Proceedings of the Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises, pp. 3–8, 2014.

S10

M. Hussein, J. Han, J. Yu, and A. Colman, “Enabling Runtime

Evolution of Context-Aware Adaptive Services,” in Proceedings of the

2013 IEEE International Conference on Services Computing, pp. 248–
255, 2013.

ID Reference

S11

M. Luckey and G. Engels, “High-quality specification of self-adaptive

software systems,” in ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems, pp. 143–152, 2013.

S12

N. Ferry, F. Chauvel, A. Rossini, B. Morin, and A. Solberg,

“Managing multi-cloud systems with CloudMF,” in ACM
International Conference Proceeding Series, pp. 38–45, 2013.

S13

C. Ghezzi, L. S. Pinto, P. Spoletini, and G. Tamburrelli, “Managing

non-functional uncertainty via model-driven adaptivity,” in

Proceedings of International Conference on Software Engineering, pp.
33–42, 2013.

S14

J. Floch, C. Frà, R. Fricke, K. Geihs, M. Wagner, J. Lorenzo, E.

Soladana, S. Mehlhase, N. Paspallis, H. Rahnama, P. A. Ruiz, and U.
Scholz, “Playing MUSIC - Building context-aware and self-adaptive

mobile applications,” Softw. - Pract. Exp., vol. 43, no. 3, pp. 359–388,

2013.

S15

S. Hallsteinsen, K. Geihs, N. Paspallis, F. Eliassen, G. Horn, J.

Lorenzo, A. Mamelli, and G. A. Papadopoulos, “A development

framework and methodology for self-adapting applications in
ubiquitous computing environments,” J. Syst. Softw., vol. 85, no. 12,

pp. 2840–2859, 2012.

S16

M. Amoui, M. Derakhshanmanesh, J. Ebert, and L. Tahvildari,
“Achieving dynamic adaptation via management and interpretation of

runtime models,” J. Syst. Softw., vol. 85, no. 12, pp. 2720–2737, 2012.

V. DATA EXTRACTION AND SYNTHESIS

In consonance with the research questions presented in Sect.
III.B, relevant information was extracted from the selected
studies. The overall answers to the first question (RQ1) are
presented in Table IV. In relation to the third question (RQ3),
Table V and Table VI present data extracted.

Table IV. Overview of the selected studies (RQ1)

ID Central Point Main Methods or Techniques

S1
Middleware responsible for monitoring the system and performing architectural reconfiguration by Aspect

Oriented Software Development. Concurrency between reconfigurations is supported.

Architecture Description Language

(ADL), AOSD

S2

Framework for trust and reputation that allows developers to implement different types of security models in

a high level of abstraction thanks to the usage of metamodeling techniques.

Kevoree Distributed Dynamic

Component Model Integration

S3
Framework for specification and verification of context-aware systems. A DSL is provided to allow designers
to specify context entities, states and actions. It also provides a tool with several features.

CBSE, Formal Methods,
Maude-based DSL

S4
Process to generate an instance of a Reference Architecture from its specification. Model-driven

transformations are used to map elements and to generate the source code to be deployed in a WSN platform.

Reference Architecture (RA),

Middleware Instantiation, MAPE-K

S5
Approach to facilitate the validation of the adaptive behavior of embedded software in the fully electric
vehicles domain. Fault injection and monitoring techniques are applied on a virtual self-adaptive platform.

Architecture Description Language
(ADL)

S6
Approach to support the development of dynamically adaptive WS-BPEL based systems. To that end, an

aspect-oriented method is developed in order to perform runtime changes.

AOSD, WS-BPEL, Web Ontology

Language (OWL)

S7
Approach for developing Context-Aware and Mobile (CAM) applications, by modelling contextual

information and rule-based behaviour by using a visual notation.
OSGi, Middleware (LOCCAM), DSL

S8
Framework that provides a new language for requirements (with uncertainty support), a method to derive

concrete implementations in specific architectures, besides a mechanism for traceability and sincronization.
DSL, Traceability

S9
An integrated Eclipse plug-in tool to architect, engineer and implement self-adaptive systems through a

feedback loop-based approach. Also provides modeling, simulation and code generation features.
FCL-Based, MAPE-K

S10
Approach to enable runtime evolution of context-aware adaptive services in response to unanticipated changes
in their environments or functionalities. Differences between running and its evolved model are computed.

SAS Runtime Evolution

S11
Method for software specification by using UML based concern-specific modeling language. It allows

separated and explicit specification of self-adaptivity concerns.
SoC, MAPE-K

S12
Framework for modeling dynamically cloud-based adaptive systems by enabling adaptation at runtime. It

consists of a tool-supporting DSL and a models@runtime environment.
Cloud Computing, DSL

S13
Framework to support the development and execution of software that tolerates manifestations of uncertainty,

in order to satisfy certain non-functional requirements divided into two classes Threshold-based and Max/Min.

Probability Theory, Markov Decision

Process (MDP)

S14
Description of typical context and adaptation features relevant for the development of context-aware and self-

adaptive mobile applications, based on several demonstrations of the MUSIC adaptation framework.

Context-awareness, Self-adaptation,

MUSIC framework

S15
Discussion of the motivation, technical approach, and results of the MUSIC project, which provides a software
development framework for self-adaptive applications that operate in ubiquitous and dynamic environments.

OSGi, MUSIC framework, MAPE-K

S16
Approach for realizing fine-grained dynamic adaptation in software systems by managing and interpreting

graph-based models of software at runtime. Includes a comprehesive case study presented in detail.
AOSD, MAPE-K, TGraph Approach

Table V. External tools applied (RQ3)

Name Type Studies

Ocarina Distribute Applications Generator S1

Kevoree Distributed Reconfigurable Software Dev. S2

Papyrus Model-Based Engineering tool S5

Acceleo Transformation Tool S3

UNISIM-VP Virtual Platform for Simulator Environment S5

Drools Business Rules Engine S6

BPEL Execution Language Engine S6

LOCCAM Self-Adaptive Middleware S7

JET Template Engine for Code Generating S9

ROAD Apache Axis2 Extension for adapting services S10

PRISM Probabilistic Model Checker S13

MUSIC Self-Adaptive Framework S14, S15

MOFScript Transformation Builder S14, S15

JGraLab API for Processing TGraphs S16

Table VI. Languages and Notations applied (RQ3)

Name Purpose Studies

UML General-purpose Modeling
S5, S9,

S13, S16

OWL Semantic Web
S6, S14,

S15

OCL Object Constraint S1, S3

Drools Business Rule S6, S10

AADL Architecture Analysis and Design S1

AO4AADL Aspect Oriented Extension for AADL S1

Schematron Rule-based XML Validation S1

Kevscript Kevoree Reflection Layer Scripting S2

Pi-ADL Formal Description S4

EAST-ADL Architecture Description S5

BPMN Business Process Description S6

UML AL UML Action Profile S9

DMM Graph-transformation S11

ATN Automata Theory S13

MUSIC UML Profile for Adaptation Modeling S15

GReQL Graph Repository Query Language S16

GReTL Graph Repository Transformation Language S16

VI. ANALYSIS AND DISCUSSION

In this section, we analyzed each research question with the
purpose of achieving the defined goals.

RQ1. What is the central point of each proposal in order to
support dynamic reconfigurations of self-adaptive systems

through runtime models? What are the most predominant
methods or techniques applied?

A recurring method found in the studies is the MAPE-K
reference model, which served as basis for their autonomic
feedback loop implementation (S4, S9, S11, S15, S16). It is also
important to highlight that the Component-Based Software
Engineering (CBSE), in general or specifically related to the
OSGi dynamic component model, had significate representation
among the studies (S2, S3, S6, S7, S15, S16). This approach has
been commonly used to support the Separation of Concerns
(SoC) design principle and to provide dynamic architectural
reconfigurations in the proposed self-adaptive systems. Towards
similar goals, Aspect Oriented Software Development (AOSD)
is found in a representative number of studies as well (S1, S6,
S16).

RQ2. What levels of abstraction are provided for the models
designer? Do the studies suggest an assignment of modeling
tasks to different roles according to their skills (e.g. domain
expert, software engineer)?

Ten studies present a high-level business model for runtime
interventions (S1-S8, S10, S13). In general, the studies propose
a clear separation between business logic, context awareness and
adaptation concerns, by using models (S1, S3, S5, S6, S7, S10,
S15), API (S2), reference architecture (S4) and language (S11).
Two studies present a specific model for invariants specification
(S1, S3). Less than half of the studies suggest well-defined
separated roles for each abstraction level (S1, S4-S8, S11). In
relation to the number of architectural layers, studies present two
(S1, S2, S5, S7, S13), three (S4, S6, S8, S10) and four (S3, S16).

RQ3. Do the studies present an overview of the suggested
process? How are they composed in terms of metamodeling,
model languages and transformations (code generation
included) and related tools?

Self-adaptive systems driven by runtime models require at
least a two-stage process, since there are not only development
phases, but also runtime dynamics when the system’s
reconfiguration is expected to happen. In general, studies present
a process in the form of an overall workflow (big picture
discussed in detail) for both introduced stages (S1, S3-S7, S10,
S11, S13, S16). In relation to the number of model
transformations, the methods presented by the studies include;
only one (S3, S5, S7, S8), two (S2) or three (S1, S6). Code
generation, which represents a special kind of model
transformation, is explored by the studies aiming to a
platform/programming language, as follow: Java/Java (S1, S2,
S5, S7, S9, S13-S16), AspectJ/Java (S1) and Contiki/C (S4).
Among UML artifacts, Activity Diagram is the most popular
representation applied in the studies as a source for code
generation (S9, S13, S16). Another core concept of MDSE is
metamodeling, which techniques are widely used by the studies
(S1-S5, S7, S10-S12, S16). Some approaches implement
Domain Specific Languages from scratch (S3, S6, S7, S8, S11).
Besides that, several studies provide in-house developed tools
for models, in concern of design (S1, S3, S6, S7, S8, S9, S10,
S12, S14 and S15) and transformation (S3, S6, S8, S10, S13,
S14, S15). To that end, most of these tools are Eclipse EMF-
based. Finally, S1 and S3 present sound techniques for invariants
specification.

RQ4. What are the strategies for model changes monitoring and
adaptive system dynamic reconfigurations? Does the provided
or suggested adaptation engine support anticipated and
unanticipated context changes?

The most identified strategy for model change monitoring
and adaptive system dynamic reconfigurations is the
implementation of a middleware or framework (S1-S3, S5, S8,
S12-S16). Formal methods are used in S3 and S13, but the latter
generates an automaton from UML Activity Diagrams, while the
former defines semantics for a DSL to formalize context-aware
systems structure and behavior. In relation to reconfiguration
actions, architectural (S1, S2, S3, S4, S7, S16) and behavioral
(S3, S13, S6) were recognized. Finally, adaptation engines of
S1, S3 and S10 can cope with unanticipated context changes.

A. Threats to Validity

Publication bias represents a serious threat to the validity of
the conclusions produced by a SLR, since it is likely that
published studies will have more ‘positive’ results, that is,
failures are seldom reported. A common threat during the search
process is not finding relevant studies. We minimized this risk
by selecting four comprehensive databases. Besides that, we
composed a search string with several variations, and we gave
special attention to details of each query tool provided by the
selected databases.

With respect to the influence of personal researchers’
opinions during the selecting process, we defined a very clear
literature selecting criteria during the SLR planning phase.
Lastly, some information not explicitly described in the articles
had to be inferred by the authors. To minimize this threat, we
promoted review sessions, when conflicting or unclear
interpretations were discussed cooperatively.

VII. CONCLUSION

This article presents an overview on approaches for
development and execution of self-adaptive systems driven by
runtime models. As a result of this Systematic Literature
Review, 16 relevant articles were considered, after analyzing
more than 220 initial studies.

From what we observed, the method of consistency checking
between model and system at runtime is not clearly discussed in
the majority of the analyzed articles. Regarding this problem,
few studies demonstrated a rollback behavior when the change
invalidated a constraint or invariant. Consistency checking is
noted by some authors as an important challenge in this field.

Another challenge relies on using the adequate abstract
models to define and perform dynamic reconfiguration. UML
and its extension mechanisms have been widely used in this
direction. Ontologies and Business Process Models have been
explored also. In order to increase the model expressiveness, we
considered the usage of different languages and notations
extremely positive.

Finally, there is a limited range of options available when it
comes to environments for distributed reconfigurable software
development and execution. Furthermore, the existent ones need
to evolve to support traceability, unanticipated changes
(uncertainty levels), models reusability and low-level services
for self-adaptive systems implementation and monitoring.

In reference to future work, we plan to consider more articles
through the “snowballing” practice from references of the
selected papers. Besides this, aligning the research protocol
towards microservices-based approaches as a provider for
architectural reconfigurations, is planned.

REFERENCES

[1] F. Moyano, C. Fernandez-Gago, and J. Lopez, “A Model-driven
Approach for Engineering Trust and Reputation into Software Services,”
J. Netw. Comput. Appl., vol. 69, no. C, pp. 134–151, 2016.

[2] J. M. T. Portocarrero, F. C. Delicato, P. F. Pires, T. C. Rodrigues, and T.
V. Batista, “SAMSON: Self-adaptive middleware for wireless sensor
networks,” in Proceedings of the ACM Symposium on Applied
Computing, vol. 04–08, pp. 1315–1322, 2016.

[3] P. A. de S. Duarte, F. M. Barreto, F. A. de A. Gomes, W. V. de Carvalho,
and F. A. M. Trinta, “CRITiCAL: A Configuration Tool for Context
Aware and mobiLe Applications,” in Proceedings of the 2015 IEEE 39th
Annual Computer Software and Applications Conference - Volume 02, pp.
159–168, 2015.

[4] B. Djoudi, C. Bouanaka, and N. Zeghib, “A formal framework for
context-aware systems specification and verification,” J. Syst. Softw., vol.
122, pp. 445–462, 2016.

[5] B. H. C. Cheng, R. De Lemos, H. Giese, P. Inverardi, and J. Magee,
Software Engineering for Self-Adaptive Systems. 2009.

[6] S. Wätzoldt and H. Giese, “Classifying distributed self-∗ systems based
on runtime models and their coupling,” in CEUR Workshop Proceedings,
2014, vol. 1270, pp. 11–20.

[7] S. Loukil, S. Kallel, and M. Jmaiel, “An approach based on runtime
models for developing dynamically adaptive systems,” Futur. Gener.
Comput. Syst., vol. 68, pp. 365–375, 2017.

[8] G. Blair, N. Bencomo, and R. B. France, “MODELS@RUN.TIME
Introduction,” Computer (Long. Beach. Calif)., vol. 42, no. 10, pp. 22–27,
2009.

[9] M. Szvetits and U. Zdun, “Systematic literature review of the objectives,
techniques, kinds, and architectures of models at runtime,” Softw. Syst.
Model., pp. 1–39, 2013.

[10] M. Goulão, V. Amaral, and M. Mernik, “Quality in model-driven
engineering: a tertiary study,” Softw. Qual. J., vol. 24, no. 3, pp. 601–633,
2016.

[11] M. Brambilla, J. Cabot, and M. Wimmer, Model-driven software
engineering in practice. Morgan & Claypool Publishers, 2012.

[12] N. Macedo, T. Jorge, and A. Cunha, “A Feature-based Classification of
Model Repair Approaches,” IEEE Trans. Softw. Eng., vol. PP, no. 99, p.
1, 2016.

[13] F. Křikava, P. Collet, and R. B. France, “ACTRESS: Domain-specific
modeling of self-adaptive software architectures,” in Proceedings of the
ACM Symposium on Applied Computing, pp. 391–398, 2014.

[14] B. Kitchenham, D. Budgen, and P. Brereton, “Guidelines for performing
systematic literature reviews in software engineering,” Int. Conf. Soft.
Engin., vol. 45, no. 4ve, p. 1051, 2006.

[15] B. Kitchenham, “Procedures for performing systematic reviews,” Keele,
UK, Keele Univ., vol. 33, no. TR/SE-0401, p. 28, 2004.

[16] G. . Giachetti, F. Valverde, and B. Marín, “Interoperability for model-
driven development: Current state and future challenges,” in Proceedings
- International Conference on Research Challenges in Information
Science, 2012.

[17] M. Becker, M. Luckey, and S. Becker, “Model-driven performance
engineering of self-adaptive systems: A survey,” in QoSA’12 -
Proceedings of the 8th International ACM SIGSOFT Conference on the
Quality of Software Architectures, pp. 117–122, 2012.

[18] M. Petticrew and H. Roberts, Systematic Reviews in the Social Sciences:
A Practical Guide. 2006.

[19] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,
“Lessons from applying the systematic literature review process within
the software engineering domain,” J. Syst. Softw., vol. 80, no. 4, pp. 571–
583, 2007.

