
Analyzing duplication on code generated by Scaffolding frameworks for
Graphical user interfaces

André M. Andrade Rodrigo A. Vilar Anderson A. Lima, Hyggo
Almeida, Angelo Perkusich

Crateús Campus Exact Sciences Department Embedded Systems and
Pervasive Comp. Lab.

Fed. Univ. of Ceará Fed. Univ. of Paraı́ba Fed. Univ. of Campina Grande
andre@crateus.ufc.br rodrigovilar@dce.

ufpb.br
anderson.lima,hyggo,
perkusic@embedded.

ufcg.edu.br

Abstract

Scaffolding is an approach used by some modern web
frameworks in order to generate an initial version of ap-
plications code based on domain model meta data. Since
this temporary code should be customized by programmers
to implement real systems, its quality metrics are important
aspects. In this paper, a methodology is proposed and ap-
plied in order to relate domain model size and a quality
metric — amount of duplicated code — focusing on Graph-
ical user interface implementation. Results show that code
duplication grows at least linearly with the growth of the
number of entities in domain model. There are also some
scenarios where quadratic proportions were found. These
observations suggest that, for large domain models, code
quality and its evolution would be affected when scaffold-
ing frameworks are used.

Keywords - Code generation, Scaffolding frameworks,
Code duplication, Meta data

1 Introduction

Automatic generation is an approach that has been
widely used on modern web frameworks, e.g. Ruby on
Rails, Grails, Yeoman and Spring Roo1. These frameworks
implement a technique, called Scaffolding [13], with algo-
rithms and templates that generate application initial code
and configuration, based on domain model meta data. Af-
ter generation, developers evolve and maintain source code
in order to implement real applications. In doing so, pro-

1rubyonrails.org, grails.org, yeoman.io, projects.spring.io/spring-roo
DOI: 10.18293/SEKE2017-164

grammers would expect that Scaffolding frameworks pro-
duce code with good quality metrics, to ease their work.
This means that code smells, like duplication and coupling,
should be avoided by scaffolding algorithms.

In this paper, an experiment was designed, performed
and analyzed to measure duplication on code produced by
two popular web frameworks, Ruby on Rails and Spring
Roo, specifically for Graphical User Interfaces (GUI),
which represents a great amount of development effort on
Enterprise Applications [11, 10]. This study is part of a re-
search project aiming at understanding and enhancing meta
data usage on Enterprise Application development. In this
case, the proposed experiment design is an innovative ap-
proach to analyze how duplication behaves on generated
code as software complexity grows.

The results suggest that, in spite of giving advantages for
project initial steps like configuration and ramp-up, using
scaffolding frameworks can lead to problems on code evo-
lution and maintainability, when applications have complex
domain models. Linear and quadratic proportions between
domain model size and duplicated code amount were found
within this experiment scope, indicating that code quality in
applications with vast domain models would degrade.

In Section 2, Scaffolding frameworks and Duplicated
Code detection are rationalized. Section 3 details Experi-
ment design for this study, whose results were analyzed in
Section 4. Finally, conclusions and future work proposals
are presented in the last Section.

2 Background

This section gives an overview of Scaffolding frame-
works and duplicated code detectors.



Scaffolding Frameworks

Several modern frameworks generate code automatically
based on domain model features, such as, entities, prop-
erties, relationships and other meta data [7]. As its name
suggests, code generated by Scaffolding frameworks is not
designed to be definitive. It is only a first functionality draft
that should be polished in order to produce the desired func-
tionality.

Among several frameworks that use Scaffolding, such
as, Spring Roo, Play Framework, Apache Tapestry,
ASP.NET Dynamic Data, Ruby on Rails, CakePHP, Django
and Yeoman, two technologies have been chosen for this
work, in order to analyze code duplication on scaffolded
applications: Ruby on Rails (RoR) and Spring Roo (Roo).
The key factors to choose these frameworks were: rele-
vance due to industrial and worldwide adoption, according
to the BuildWith’s Framework Usage Statistics [2]; cov-
erage of different language types (static and dynamically
typed languages); and availability of code duplication de-
tection tools, in order to operate this experiment.

Ruby on Rails (RoR) allows users to build features
quickly using the generate scaffold command to
generate the application code [6]. Despite being very se-
ductive because of facility and quickness, “the complexity
and sheer amount of code in the scaffolding can be utterly
overwhelming to a beginning Rails developer” [6]. Gener-
ated code consists of Ruby language files (.rb) for back-end
and Embedded Ruby files (.erb) for front-end view.

Spring Roo is a domain-driven development frame-
work [8] that uses Java, Spring, AspectJ and Maven2, com-
bining Java annotations with shell commands to generate
all application layers. Roo uses Java on back-end and Java
Server Pages XML compliant files (.jspx) on front-end view
pages.

Duplicated Code Detectors

Duplication is a strong evidence of high coupled and poor
reusable source code. According to Fowler, code duplica-
tion represents a conceptual coupling [4], because mainte-
nance on copied code must be done in all code copies. Lee,
Barta and Juliff also observed that high coupling and code
duplication increase effort for system maintenance [9], in-
cluding on enterprise applications.

There are several techniques to detect duplicated code
in software projects: text-based, token-based, metric-based,
AST-based (Abstract Syntax Trees), PDG-based (Program
Dependence Graphs) [1]. Two of those techniques were
used in this research: AST-based that parses program code
into an abstract syntax tree, divides it into sub trees and
marks common sub trees as code clones; and text-based

2spring.io, eclipse.org/aspectj, maven.apache.org

that compares every line of code as a string and marks
code clones based on the similarity between the text frag-
ments [1].

For Ruby on Rails, three duplicated code detection tools
were found: Towelie, Flay and Simian3. Flay, which is
based on AST, presented better results and is able to pro-
cess both .rb and erb. files. Therefore Flay was chosen to
analyze Ruby on Rails code.

For Spring Roo applications, PMD-CPD4, which uses
String matching, was chosen, because it is one of the most
popular static code analysis tool for Java projects. It is able
to detect code duplication in Java and JSP files. Since,
PMD-CPD does not work with AspectJ files, all aspects
code was moved to Java classes, in order to check its du-
plication. This operation is common for Spring Roo and is
performed through a simple command.

3. Experiment Design

In order to analyze duplication on code generated by
Scaffolding frameworks, several experiment units have
been designed. Essentially, this experiment controls two in-
put variables — domain model characteristics and technol-
ogy (Ruby on Rails or Spring Roo) — and generates values
for one output variable: amount of duplicated code.

Domain Model Scenarios

To control domain model input variable, six scenarios
groups were prepared. Table 1 details domain models struc-
ture used by each scenario group, specifying quantity of en-
tities and properties. Besides that, scenarios groups explore
another domain models features such as property names and
types. The most complex scenario is composed by six en-
tities, whose size is similar to small, but useful, systems
like: a project management application containing projects,
workers, activities, time appointment and artifacts; or a pur-
chase control system containing costumers, vendors, prod-
ucts, sale and sale item.

Scenario groups use a variable that ranges from 2 to 6
(except on scenario F that varies from 1 to 6). In doing so,
each scenario group produces several scenario instances as
inputs for the experimental units. Therefore, this experi-
ment has 31 scenarios instances that were evaluated using
Ruby on Rails and Spring Roo.

In a scenario group, the influence of one domain model
feature over code duplication can be tested. In scenario
group A, for instance, the number of entities (without prop-
erties) varies from 2 to 6. So, code generated by scaffold-
ing frameworks can be analyzed for each scenario instance,

3github.com/gilesbowkett/towelie, github.com/seattlerb/flay,
www.harukizaemon.com/simian/

4pmd.sourceforge.net/pmd-4.3.0/cpd.html



and code duplication amount can be related to number of
entities. In scenario group F, this same procedure can be re-
peated to relate duplication amount to number of properties
in two entities.

G Description Variable meaning

A N Entities without
properties N:Number of entities

B N Entities with 1
distinct property N:Number of entities

C N Entities with 1
property with same name N:Number of entities

D N Entities with 1
property with same type N:Number of entities

E
N Entities with 1
property with same name
and type

N:Number of entities

F 2 Entities with M
distinct properties M:Number of properties

Table 1. Experiment scenario groups

Experiment execution

For each experiment unit, which received as input a scenario
instance (si) and a scaffolding framework (sf ), the follow-
ing steps were executed: run sf shell commands to generate
code concerting si; measure code duplication (with Flay for
RoR and CPD for Roo); and register the amount of dupli-
cated code.

It was required some customization in order to tune du-
plicated code detection. Flay and CPD define minimum
threshold values in order to take into account duplicated
code blocks. There are default values (MassThreshold =
18 on Flay5 and DuplicateChunkSize = 100 on CPD6),
which can be customized according to user needs.

After running experimental units with
MassThreshold = 18 for Ruby on Rails and
Flay, several relevant duplicated blocks were not de-
tected. Therefore, for this experiment, threshold values
were decreased (MassThreshold = 4 on Flay and
DuplicateChunkSize = 40 on CPD), in an effort to
maximize code duplication detection.

Measurement units for Flay and CPD vary due to its
distinct clone detection approaches. Flay measure similar
ASTs by its mass. CPD compares repeated string tokens.
This difference is not a problem because this experiment
goal is not to compare RoR and Roo quality. In both cases,
the objective is to relate code duplication (either by mass or
by token) with domain model size.

5docs.codeclimate.com/docs/duplication
6maven.apache.org/plugins/maven-pmd-plugin/cpd-mojo.html

4 Result Analysis

In order to organize data results from experiment, sev-
eral aforesaid factors were used: technology (RoR or Roo);
scenarios groups; number of entities (N); and number of
properties by entity (M). There is also another determinant
to group duplicated code amount: layer. It is because both
Ruby on Rails and Spring Roo use the MVC pattern [5] and,
since this work focuses on GUI, view and controller layers
should be considered. However each layer needs to be eval-
uated separately because its code uses distinct languages.

G Variation Duplicated Code amount

N M RoR Roo
view contr view contr

A

2 0 1006 308 3010 3311
3 0 1956 462 3010 5237
4 0 3206 616 3010 7005
5 0 4756 770 3010 8773
6 0 6606 924 3010 10830

B

2 1 1314 312 8273 3311
3 1 2580 468 10448 5237
4 1 4254 624 12495 7005
5 1 6336 780 14796 8773
6 1 8826 936 16843 10830

C

2 1 1314 312 8273 3311
3 1 2580 468 10448 5237
4 1 4254 624 12495 7005
5 1 6336 780 14796 8773
6 1 8826 936 16843 10830

D

2 1 1314 312 8273 3311
3 1 2580 468 10448 5237
4 1 4254 624 12495 7005
5 1 6336 780 14796 8773
6 1 8826 936 16843 10830

E

2 1 1314 312 8273 3311
3 1 2580 468 10448 5237
4 1 4254 624 12495 7005
5 1 6336 780 14796 8773
6 1 8826 936 16843 10830

F

2 1 1314 312 8273 3311
2 2 1382 314 8775 3311
2 3 1450 316 9747 3311
2 4 1518 318 11516 3311
2 5 1586 320 13974 3311
2 6 1654 322 16970 3311

Table 2. Experiment results

On Table 2, where resulting data is shown, each line de-
fines a scenario instance, and columns represent, respec-
tively, scenario group (G), number of entities (N ), number
of properties (M ) and amount of duplicated code for: Ruby



G
Ruby on Rails and Flay Spring Roo and CPD
View Controller View Controller

Model R2 Model R2 Model R2 Model R2

A 150N2 + 200N + 6 1 154N 1 3010 1 1857.4N − 398.4 0.999
B 204N2 + 246N + 6 1 156N 1 2148.8N + 3975.8 0.999 1857.4N − 398.4 0.999
C 204N2 + 246N + 6 1 156N 1 2148.8N + 3975.8 0.999 1857.4N − 398.4 0.999
D 204N2 + 246N + 6 1 156N 1 2148.8N + 3975.8 0.999 1857.4N − 398.4 0.999
E 204N2 + 246N + 6 1 156N 1 2148.8N + 3975.8 0.999 1857.4N − 398.4 0.999
F 68M + 1246 1 2M + 310 1 328.8M2 − 563.1M + 8526.4 0.999 3311 1

Table 3. Polynomials models found for each scenario group, framework and layer

on Rails (RoR) view and controller; and Spring Roo (Roo)
view and controller.

This experiment executed 62 experimental units, which
were designed after combining all possible input variables:
31 domain model scenarios (explained in Section 3); and 2
technologies (Ruby on Rails and Spring Roo).

Data synthesis

Some function models were studied in an attempt to ex-
press, based on experiment results, a relation between
amount of duplicated code and domain model complexity,
that is number of entities (N ) and properties (M ). There-
fore, polynomial regression model was used to find the best
mathematical function composed of an n-degree polyno-
mial that fits the relation between CD and M or N , such
as:

CD ≈ f(N) or CD ≈ f(M)

where function f is a polynomial with degree n.
Polynomial model reliability is analyzed from residuals

that define a coefficient of determination (R2) [3], which
reflects the correlation between the resulting samples from
CD and the values of M and N . The closer this number is
to 1, the better is the polynomial model.

CD function models have the following structure:

CDg,s,l(N) = f(N) or CDg,s,l(M) = f(M)

where g is scenario group (A, B, C, D, E or F); s is scaf-
folding framework (RoR or Roo); l is layer (Controller or
View); N is number of entities; M is number of proper-
ties by entity; f(N) and f(M) are n-degree polynomials.
The code duplication detection tool – Flay or CPD – was
not considered as a parameter since they do not vary in the
same framework.

For each executed combination of framework, scenario
group and layer, the polynomial that best fits to CD sam-
ples was chosen, according to R2 value, and having lower
degree. Table 3 shows the polynomials chosen for each sce-
nario group. Considering same combination of framework
and layer, the B, C, D and E scenarios showed the same

polynomial model, therefore, their graphs are represented
in the same line on the Table 4, which represents graphi-
cally the experiment results.

Interpretation

Based on the polynomial models found and their related
graphs, some observations can be defined, within this ex-
periment scope:

1. Code duplication in Ruby on Rails view layer varies in
quadratic proportion to number of entities and in linear
proportion to number of properties, with perfect mod-
els found;

2. Code duplication in Ruby on Rails controller layer
varies in linear proportion to both number of entities
and number of properties, with perfect models found;

3. Code duplication in Spring Roo view layer is constant
for any number of entities without properties (scenario
group A), with a perfect model found;

4. Code duplication in Spring Roo view layer vary in lin-
ear proportion to number of entities (with properties)
and in quadratic proportion to number of properties,
without perfect models found;

5. Code duplication in Spring Roo controller layer is in
linear proportion to number of entities, without perfect
models found;

6. Code duplication in Spring Roo controller layer is con-
stant for any number of properties in two entities (sce-
nario group F), with perfect a model found;

7. For Ruby on Rails all models found have R2 = 1 i.e.,
polynomials have high quality to represent experiment
scenarios and to possible predict code duplication for
greater domain models;

8. For Spring Roo all non constant models have R2 =
0.999. In fact, several polynomials would represent
this relation with R2 = 0.999 and the one with lowest



G RoR – View RoR – Controller Roo – View Roo - Controller

A 2 4 6
0

2000

4000

6000

8000

2 4 6

500

1000

2 4 6
2500

3000

3500

2 4 6

5000

10000

B-E 2 4 6
0

5000

10000

2 4 6

500

1000

2 4 6
5000

10000

15000

20000

2 4 6

5000

10000

F 2 4 6

1400

1600

2 4 6

315

320

325

2 4 6

10000

15000

20000

2 4 6

3000

3500

Table 4. Polynomials plots for all scenario groups

degree was chosen. In spite on being very good mod-
els, they can contains errors and should be validated in
other experiments with greater number of samples.

Ideal frameworks should generate code without duplica-
tion or, at least, with a constant amount of duplicated code.
In this experiment, two observations define constant rela-
tions, however these observations are improbable to occur
on real systems. Observation 3 represents entities without
properties, which is a strange scenario for real projects, be-
cause every entity should have properties. Observation 6
takes place on systems with only two entities. In spite of
being very small and improbable systems, this result is use-
ful because it indicates that number of properties does not
influence code duplication in Spring Roo controllers.

After combining all observations, this experiment shows
that code duplication grows in linear or quadratic propor-
tion to number of entities or properties, for all scenarios,
considering view and controller layers together.

These relations predicts that, for two completely differ-
ent scaffolding frameworks, generated code is duplicated in
a significant amount. At least, code duplication grows in a
linear proportion to domain model size.

Models with R2 = 0.999 have several polynomial mod-
els to represent code duplications on units of this experi-
ment. However, in this work, it is not possible to define the

most appropriate function. Therefore, replications of this
experiment could be made to obtain clearer conclusions for
scenarios with N and M greater than 6.

Threats to validity

It’s necessary to consider the risk of the many generaliza-
tions found here: from small domain models to large do-
mains; from two scaffolding frameworks to all scaffolding
frameworks; and from two duplicated code detection tools
to all detection tools.

Due to time and resource restrictions, only small domain
models were analyzed. However a great effort was made in
this work to create an analysis methodology that can be eas-
ily reproduced. In doing so, the observations found here can
be tested for larger domains and with other technologies.

In spite of using few scaffolding frameworks, the chosen
frameworks use different approaches, language types and
clone detection techniques. These differences enhance re-
sults strength.

There is also a lack of scenarios that increase both en-
tities and properties quantity. In doing so, the impact of
number of entities and properties combined was not tested
in this work.



Packaging

All experiment code and scripts are available on two open
source repositories, one for Ruby on Rails7 and the other
for Spring Roo8. Each scenario group is organized into sep-
arated branches and there is a commit for each experiment
unit.

These repositories contains a README file on master
branch that explain how to reproduce and expand this ex-
periment.

5 Conclusion

This paper presents an approach that is, as far as we
know, innovative to relate domain model complexity and
duplication on code generated by scaffolding frameworks.

For domain models with up to six entities and proper-
ties, duplicated code results could be generalized into poly-
nomials, which lead to two main conclusions: (i) code du-
plication increases, at least, at linear proportion to domain
model size, on GUI generated by two scaffolding frame-
works (Ruby on Rails and Spring Roo); and (ii) for models
that fitted on experiment results with high quality, it could
be expected that the same models would work for greater
domain models.

The consequence of conclusion (i) is that duplicated
code on applications generated by scaffolding framework
can increase to a severe amount when it has complex do-
main models, and this increase would inhibit code evolu-
tion.

Conclusion (ii) can be tested in bigger scenarios and, if
it is confirmed, the polynomials found by this work would
be used to estimate code duplication, on code generated by
Ruby on Rails and Spring Roo, for applications with com-
plex domain models.This estimation would also help soft-
ware architects to choose the scaffolding framework that
will be used in development projects.

As future works, we suggest to replicate this experi-
ment with other Scaffolding frameworks, such as, Grails
(Groovy), django (Python), CakePHP, ASP.NET; and with
bigger domain models.

Besides that, for frameworks that easily expose its tem-
plates, such as, Ruby on Rails, asymptotic computational
complexity analysis on code generation algorithms could
be compared to our experiment results, in order to confirm
or deny them.

In order to analyze the most popular GUI frameworks
approaches, identify its pros and cons related to software
maintenance, and propose better solutions, this research is
the second part of a bigger work that had first results pub-
lished at 2015 by our coauthor Rodrigo Vilar. Vilar [12]

7github.com/Andersoonalves/Rails Duplicate Code Analysis
8github.com/rodrigovilar/RooCodeDuplication

already showed good results by using some rendering pat-
terns to provide reuse on GUI code. As next step, we intend
to present a framework proposal and a comparative analy-
sis with popular GUI frameworks considering the relation
between complexity, productivity and maintainability.

References

[1] Y. L. Aritra Ghosh. An empirical study of a hy-
brid code clone detection approach on java byte
code. GSTF Journal on Computing (JoC); Singapore,
5(2):34–45, 2017.

[2] BuildWith. Framework usage statistics: Statis-
tics for websites using framework technologies.
https://trends.builtwith.com/framework, 2017.

[3] G. C. R. Douglas C. Montgomery. Applied Statistics
& Probability for Engineers. Wiley, 3 edition, 2002.

[4] M. Fowler. Reducing coupling. IEEE Software,
(4):102–104, 2001.

[5] M. Fowler. Patterns of enterprise application archi-
tecture. Addison-Wesley Longman Publishing Co.,
Inc., 2002.

[6] M. Hartl. Ruby on Rails Tutorial: Learn Web Develop-
ment with Rails. Addison-Wesley Professional, 2016.

[7] J. Herrington. Code generation in action. Manning
Publications Co., 2003.

[8] S. M. Josh Long. Getting Started with Roo. Rapid Ap-
plication Development for Java and Spring. O’Reilly,
2011.

[9] M. Lee, B.-Z. Barta, and P. Juliff. Software quality and
productivity: theory, practice, education and training.
Springer, 2013.

[10] G. Meixner, G. Calvary, and J. Coutaz. Introduction to
model-based user interfaces - w3c working group note
07 january 2014.

[11] B. A. Myers and M. B. Rosson. Survey on user in-
terface programming. In Proceedings of the SIGCHI
conference on Human factors in computing systems,
pages 195–202. ACM, 1992.

[12] D. O. Rodrigo Vilar and H. Almeida. Rendering pat-
terns for enterprise applications. In Proceedings of the
20th European Conference on Pattern Languages of
Programs, EuroPLoP ’15, New York, NY, USA, 2015.
ACM.

[13] D. Thomas and D. Hansson. Agile Web Development
with Rails. Pragmatic Bookshelf, 2006.


