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Abstract—In recent years several data classification techniques
have been proposed. However, it is not a trivial task to choose
the most appropriate classifier for deal with a particular problem
and set it up properly. In addition, there is no optimal algorithm
to solve all prediction problems. In order to improve the result
of the classification process, the stacking strategy combines the
knowledge acquired by individual learning algorithms aiming to
discover new patterns not yet identified. Stacking combines the
outputs of base classifiers, induced by several learning algorithms
using the same dataset, by means of a meta-classifier. The main
goal of this paper is to evaluate the effects of classifier diversity on
the accuracy of stacking. We have performed a lot of experiments
which results show the impact of multiple diversity measures on
the gain of stacking, considering many real datasets extracted
from UCI machine learning repository and three synthetic two-
dimensional datasets. The results revealed connections between
some measures and the gain of stacking, but they imply a weak or
moderate relationship that suggest predicting the improvement
on the best base classifier accuracy using diversity measures is
inappropriate.

I. INTRODUCTION

Classification is the most usual task among data mining tasks.
It is based on the discovery of prediction rules that aid in
making decisions. Generally, this task is used when there are
large amounts of records in a database, which have several
fields, and it is necessary to extract from this base some
relevant knowledge with predictive capacity.

Classification algorithms can be organized into different
types according to the technical features they use in learning.
Each type is best suited for a particular dataset. Although some
classifiers individually provide solutions which are considered
effective, the experimental evaluation performed by [1] shows
a drop in the quality when there are large sets of patterns
and/or a significant number of incomplete data samples or
irrelevant features. That is, such classifiers may not effectively
and/or efficiently recognize patterns in complex problems.

Classifiers that implement different algorithms potentially
provide additional information on the patterns to be classified.
The combination of the outputs of a set of different classifiers
aims to get a more precise classification, i.e. to reach a greater
accuracy. In this context, stacking [2] is a widely used method
for combining multiple classifiers generated from different
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learning algorithms applied on the same dataset. It is also
known in the literature as stacked generalization [3], [4].

In the stacking method the choice of base algorithms is very
important. It is desirable that there be different solutions to the
problem to be solved, i.e., it is important to obtain a diversity
among the results found by these algorithms. According to [5],
the performance of the stacking method strongly depends on
the accuracy and diversity of classifiers results. To verify this
diversity, there are several measures based on the agreement
and/or disagreement of the classifiers [6].

Therefore, the use of base algorithms with different particu-
lars is ideal, since the patterns learned tend not to be the same.
Thus, even low accuracy classifiers combined can generate a
strong classifier, providing gain for stacking. Otherwise, when
several classifiers agree on the vast majority of responses (no
diversity), the combination will possibly have the same result,
with no improvement in the stacking quality.

The purpose of this paper is to evaluate the effects of clas-
sifier diversity on the accuracy of stacking. The experiments
we have performed show the relationship between multiple
diversity measures and the gain of stacking, considering a
lot of real datasets extracted from UCI machine learning
repository and three other synthetic two-dimensional datasets
used for visual inspection.

II. RELATED WORK

Stacking method combines multiple base classifiers trained by
using different learning algorithms L on a single dataset S,
by means of a meta-classifier [7], [8]. Each training sample
sj = (Xj , yj) is a pair composed by an array of features Xj

and the class label yj .
The process can be described in two distinct levels. The

first level-0 defines a set of N base classifiers, where Ci =
Li(S)|1 ≤ i ≤ N . Level-0 classifiers are trained and tested
using the cross-validation or leave-one-out procedure. The out-
put dataset D used for training the meta-classier is composed
by examples ((y1j , . . . , y

i
j), yj), i.e. a vector of predictions for

each base classifier yij = Ci(Xj) and the same original class
label yj [3]. In the second level-1, the meta-classifier combines
base classifiers outputs from D into a final prediction yfj . The
stacking pseudocode can be seen in Algorithm 1.



Algorithm 1: Combining classifiers with stacking
Input: training samples sj ∈ S
Output: final predictions yf

j

1 begin
2 Select N learning algorithms (L1, L2, . . . , LN );
3 for i = 1, 2, . . . , N do
4 Train Ci = Li(S) using cross-validation;
5 yi

j = Ci(Xj);
6 end
7 Make up a new dataset D combining all predictions yi

j ;
8 Train M = L(D) using cross-validation;
9 yf

j = M(D);
10 end
11 return yf

j

Several approaches have proposed the use of stacking to
increase the classification quality in recent years [9], [10], [11],
[12], [13]. Considering the covered related work, the classi-
fication techniques most used at level-0 are those based on
decision trees, artificial neural networks and Bayes’ theorem,
which are usually combined by a function-based classifier.
The majority of approaches stacks the predicted labels or the
confidence of these predictions to compose the feature vector
of level-1.

The diversity of predictions yij is a key issue in the combi-
nation of classifiers. Reference [6] defines several measures of
diversity and relate them to the quality of classification system.
Experiment results revealed the used measures were strongly
correlated between themselves and the possible inadequacy of
the diversity measures for predicting the improvement on the
best individual accuracy. Although there are proven connecti-
ons between diversity and accuracy in some special cases, the
results raised some doubts about the usefulness of diversity
measures in constructing classifier sets in real-life pattern
recognition problems. References [14], [15] also conclude that
diversity measures can hardly be used as selection criteria
for building ensembles. However, other authors report success
using diversity to detect noise [16] and to generate more
precise classification systems [17], [18], [19], [20].

III. PROPOSED METHOD

The proposed method for analyzing the effects of classifiers
diversity on the accuracy of stacking are graphically represen-
ted in Figure 1. For each analyzed dataset, different learning
algorithms are used to train multiple base classifiers. The
predictions returned by these classifiers are evaluated and
used to perform several measures of diversity [6]: double-
fault df , Disagreement Dis, Q statistic, Correlation coefficient
ρ, Kohavi-Wolpert variance KW , Interrater agreement k and
Entropy E. These measures check whether and how the
classifiers agree or disagree on the predicted class label. At
level-1, classifiers predictions for each original instance are
used to compose a new dataset that is submitted to another
algorithm for training the meta-classifier. Final prediction is
determined from the combination of knowledge learned by
the base classifiers.
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Fig. 1. The proposed method for analyzing the effects of classifiers diversity
on the accuracy of stacking.

The feature vectors for each training set are made up of all
data fields and the class label. The following algorithms are
used at level-0 of the stacking method: Multilayer Perceptron
(MLP) [21], a variation of Support Vector Machine (SVM)
[22] called SMO [23], Nave Bayes (NB) [24], RIPPER [25],
C4.5 [26] and Random Forest (RF) [27]. This choice was
motivated mainly because the algorithms are quite heteroge-
neous, since they are based on distinct particulars. The meta-
classifier is trained using any of these classification algorithms
combining the knowledge learned by the base classifiers, and
it is finally used to get a final prediction. The gain of stacking
G is computed by the ratio between accuracy values achieved
by the meta-classifier and by the best base classifier.

The effects of diversity on stacking can be analyzed by
observing the relationship between diversity measures values
and the gain of stacking for multiple datasets. It is expected
that the most diverse sets of classifiers will contribute to the
quality of stacking. This relationship is quantified using a
linear regression function and a regression model tree induced
by the algorithm M5 [28] with the gain of stacking G as
the target field. The vector of features is composed by the
diversity measures previously computed (d1, d2, . . . , dn). The
regression models show how much each measure pitches in
with the gain of stacking.

IV. EXPERIMENTAL EVALUATION

We have used 54 real classification datasets extracted from
UCI1. The full list is available in the research group website2.
The chosen datasets cover several areas of knowledge: busi-
ness, computer, financial, game, life, physical and social. Many
of them were widely cited in the scientific literature and they
have sundry objectives. The field data types can be integer,
real or categorical. The amount of instances ranges from 187
to 12,960. The number of fields and class labels varies from
4 to 216 and from 2 to 48 respectively. These datasets were
deposited in the UCI repository from the year 1987 to 2015.

Furthermore, have used three two-dimensional synthetic
datasets with very different spatial distributions that allow us to
interpret results and algorithms behavior by visual inspection

1archive.ics.uci.edu/ml
2ginfo.c3.furg.br



Fig. 2. Datasets Spiral, R15 and D13.

(see Figure 2). Spiral [29] consists of three concentric spirals.
R15 [30] is composed by 15 similar Gaussian distributions. We
reduced it to 2 classes and included little noise by changing the
label of some instances manually selected. D13 [31] presents
two Gaussians randomly parameterized and with a lot of noise
(half of the instances randomly selected). The number of
instances varies from 150 to 600.

The experiments were performed using the data mining tool
Weka [32]. The algorithms were parameterized to improve the
accuracy or using default values.

A. Diversity and stacking results

Experimental results are summarized in Table I and II that
show for each dataset the following information: the computed
diversity measures double fault df , disagreement Dis, statistic
Q, correlation coefficient ρ, interrater agreement k, Kohavi-
Wolpert variance KW and entropy E; the algorithm used
to learn the best base classifier (L0) and its accuracy in
percentage (AL0

); the algorithm used to learn the best meta-
classifier (L1) and its accuracy in percentage (AL1

); and
the gain of stacking (G), used to sort the results, also in
percentage. Values of df , Dis, Q and ρ are averages of the
computed values for each pair of base classifiers.

Table I presents experiments with real datasets that reached
the worst and best values of G, i.e. we have omitted the results
for any dataset where the gain of stacking ranges between -1
and 1%. Table II covers the synthetic datasets.

Observing Table I, we notice that stacking worked well
only for 8 out of 54 datasets, where the gain in accuracy
ranged from 1.2 to 5.1% (lines 1-8). The best gain of stacking
was reached by Balance Scale dataset, in an already accurate
result (90.7%) which is difficult to improve. The most frequent
algorithm that reaches the best accuracy for level-0 was
MLP ranging 26.6 ≤ AL0 ≤ 90.7, followed by RF with
84.8 ≤ AL0 ≤ 92.9. At level-1, the best meta-classifiers
were trained with SMO (26.9 ≤ AL1

≤ 94.9) and RF
(83.7 ≤ AL1

≤ 95.4).
However, stacking decreased the classification quality for

some datasets (lines 9-17) reaching in the worst case G =

−9.4%. The most frequent algorithms with best accuracy were
RF (L0) and SMO (L1). For some datasets, more than one
classifier used at level-1 returned the same result. For instance,
SMO and MLP reaches equal values (AL1

= 78.8%) for Leaf
dataset (line 9).

We have considered good values of diversity those that
were sufficiently larger or smaller than the average for all 54
datasets, taking into account whether the measure is directly
or inversely proportional to the diversity among the classifiers.
These good values are in bold. A general analysis of them
indicates that there is more classification diversity for the
experiments in which there was gain of stacking (lines 1-8)
than for those in which there was loss of quality (lines 9-17).

Abalone dataset (line 8) had the best value of double fault
(df = 0.09) due to the low accuracy (AL0 = 26.6%) presented
by the base classifiers. Many of them fail together because
these is a multi-classification problem involving 28 distinct
class labels. For datasets Connect. Bench (S,M vs. R), Statlog
(Vehicle Silh.) and Diabetic Retinopat. Debrec. (lines 2-4) df
values were less significant, compared to Abalone, but good
in relation to the average. These df values are related to the
better accuracy presented by the base classifiers and to the
lower number of classes. We observe that for these datasets,
all the measures of diversity return good values, collaborating
with the hypothesis that the greater the diversity, the greater
the stacking accuracy.

However, the experiment involving Low Resolution Spectro-
meter dataset (line 16) revealed the opposed behavior where
the gain of stacking was negative (G = −5.6%), i.e. the
quality of classification decreased considerably, even with high
values for all measures of diversity. These high values are
returned because there are 531 instances distributed in 48
classes, making even hard the agreement of many classifiers.
Balance Scale dataset (line 1) is another counterexample
in which there was no diversity among classifiers, but the
stacking has reached the best G among all the performed ex-
periments. Furthermore, diversity was considered non-existent
or low in 33 out of 37 datasets where the gain of stacking
ranged from -1 to 1%.



TABLE I
DIVERSITY MEASURES AND STACKING RESULTS FOR REAL DATASETS.

Dataset df ↓ Dis ↑ Q ↓ ρ ↓ k ↓ KW ↑ E ↑ L0 AL0
L1 AL1

G
1 Balance Scale 0.78 0.13 0.87 0.50 0.48 0.06 0.17 MLP 90.7 RF 95.4 5.1
2 Connect. Bench (S,M vs. R) 0.62 0.27 0.58 0.28 0.26 0.11 0.35 MLP 82.2 Jrip 85.6 4.1
3 Statlog (Vehicle Silh.) 0.55 0.30 0.64 0.32 0.28 0.13 0.37 MLP 81.7 RF 83.7 2.5
4 Diabetic Retinopat. Debrec. 0.49 0.32 0.56 0.29 0.29 0.13 0.41 MLP 72.0 SMO 73.8 2.4
5 Ionosphere 0.83 0.12 0.83 0.41 0.38 0.05 0.13 RF 92.9 SMO 94.9 2.2
6 Contrac. Method Choice 0.38 0.29 0.71 0.42 0.42 0.12 0.36 MLP 54.2 SMO 55.3 2.0
7 Vertebral Column 0.72 0.19 0.74 0.39 0.38 0.08 0.23 RF 84.8 RF 86.1 1.5
8 Abalone 0.09 0.28 0.47 0.21 0.21 0.12 0.36 MLP 26.6 SMO 26.9 1.2
9 Leaf 0.52 0.30 0.70 0.37 0.33 0.12 0.37 MLP 79.7 SMO# 78.8 -1.1

10 Glass Identification 0.49 0.32 0.61 0.33 0.30 0.13 0.40 RF 79.9 RF 79.0 -1.2
11 Credit Approval 0.77 0.14 0.85 0.50 0.48 0.06 0.17 RF 86.7 NB 85.7 -1.2
12 Ecoli 0.79 0.11 0.92 0.57 0.57 0.05 0.14 RF 87.2 RF 86.0 -1.4
13 Solar Flare 0.62 0.15 0.91 0.64 0.64 0.06 0.18 J48 72.1 SMO 70.9 -1.7
14 Dresses Attribute Sales 0.46 0.26 0.77 0.47 0.47 0.11 0.32 JRip 63.0 NB 60.2 -4.4
15 Audiology (Std.) 0.72 0.13 0.94 0.64 0.63 0.05 0.16 MLP 83.2 SMO 79.2 -4.8
16 Low Resolution Spectrom. 0.18 0.36 0.47 0.25 0.23 0.15 0.46 RF 54.0 SMO 51.0 -5.6
17 Primary Tumor 0.33 0.19 0.89 0.61 0.60 0.08 0.25 NB 50.1 RF 45.4 -9.4

Average (all 54 datasets) 0.74 0.15 0.76 0.41 0.39 0.06 0.19
# MLP reaches equal results

Table II shows diversity and stacking results for synthetic
datasets. Using Weka’s default values to parametrize the
classification algorithms (lines 1-3), R15 and Spiral present
gain of stacking, but only classifiers applied to Spiral dataset
were high diverse (values in bold). Manually configuring
the parameters to reach best accuracy (lines 4-6), stacking
decreased the classification quality for all 3 datasets, even with
high diversity among classifiers.

To check whether the gain of stacking are in fact statistically
significant, we performed a paired Student’s T-test [33] com-
paring the accuracy values of the best meta-classifier (AL1

)
with those of the best base classifier (AL0). We used the T-
test because it evaluates whether the means of two normal
distributions of values are statistically different, showing good
results even when the distributions are not perfectly normal.

Table III shows the gain of stacking and the values of
1-tailed p for each dataset where p < 0.05, i.e. when the
stacking was statistically superior or inferior than the best base
classifier. The number of observations (Obs.) was set to the
amount of instances. The statistical difference occurred in 18
of the 54 experiments considering real datasets and only in two
involving the synthetic ones. The gain of stacking for the other
datasets was considered a technical tie. Datasets in which there
was high diversity of the classifiers are highlighted in bold.

Experiments including datasets Connect. Bench (S,M vs. R),
Abalone and Turkiye Student Eval. present good values for all
diversity measures. Although the diversity measures applied
to Spiral dataset have also returned great values, regardless
of the parameter configuration, the gain of stacking was
not considered significant because the best classifier achieves
accuracy equal to 98.7%, which is very difficult to improve.
For most experiments there seems to be no relationship
between the classifiers diversity and the significant gain in
stacking accuracy.

B. Diversity effects

We used regression models to quantify the effects of diversity
on the gain of stacking applied to real datasets. We varied
the learning algorithm (linear or M5) and the training set: 17
datasets with best and worst (b/w) G, where −1 ≥ G ≥ 1,
present in Table I, 18 real datasets where the gain of stacking
passed T-test present in Table III and considering all 54
real datasets. The models were evaluated using correlation
coefficient and root relative squared error (RRSE).

For the training set composed by the 17 datasets with best
and worst values of G, the minimum number of instances to
allow at a leaf node in M5 algorithm ranged from 2 to 4,
however the result was the same tree with only one node
containing the model described by Equation 1. We notice
that df had a positive effect on the gain but the influence
of ρ was negative. Other diversity measures were irrelevant in
estimating the gain. The correlation with the gain of stacking
was 0.5243 and the RRSE was 79.67%.

G = 0.1278 df − 0.2189 ρ+ 0.0168 (1)

Considering only the 18 datasets that passed T-test, gain
of stacking was affected only by ρ (Equation 2), which
correlation was 0.3532 and RRSE equal to 99.89%.

G = −0.0847 ρ+ 0.0362 (2)

Equation 3 shows the linear model trained with all 54
datasets. For this model, only df and KW had effect on
the gain of stacking. ρ and other measures were not used.
Correlation and RRSE was 0.4081 and 91.58% respectively.

G = 0.0971 df + 0.3757 KW − 0.0957 (3)



TABLE II
DIVERSITY MEASURES AND STACKING RESULTS FOR SYNTHETIC DATASETS.

Datasets Parameters df ↓ Dis ↑ Q ↓ ρ ↓ k ↓ KW ↑ E ↑ L0 AL0
L1 AL1

G
1 Spiral

default
0.44 0.43 0.52 0.21 0.05 0.18 0.63 RF 98.7 RF# 99.3 0.6

2 R15 0.76 0.19 0.66 0.48 0.23 0.08 0.21 J48∗ 93.8 SMO 94.5 0.7
3 D13 0.71 0.12 0.94 0.67 0.67 0.05 0.15 JRip 79.2 MLP 78.5 -0.8
4 Spiral’ manually 0.75 0.23 0.47 0.11 0.02 0.10 0.26 RF 99.4 SMO# 99.0 -0.3
5 R15’ configured 0.93 0.02 1.00 0.87 0.87 0.01 0.02 J48 94.0 JRip∗+ 93.7 -0.4
6 D13’ 0.72 0.10 0.95 0.71 0.70 0.04 0.13 JRip+ 79.2 SMO 76.5 -3.4
# MLP reaches equal results ∗ NB reaches equal results + J48 reaches equal results

TABLE III
STATISTICAL TEST APPLIED TO THE GAIN OF STACKING.

Set Dataset Obs. p G
1

real

Connect. Bench (S,Mvs.R) 208 0.008 4.1
2 Ionosphere 351 0.008 2.2
3 Vertebral Column 310 0.045 1.5
4 Abalone 4177 0.001 1.2
5 Mammographic Mass 961 0.025 0.6
6 Soybean 683 0.045 0.6
7 Tic-Tac-Toe Endgame 958 0.025 0.5
8 QSAR biodegradation 1055 0.045 0.4
9 Wilt 4839 0.001 0.3

10 Spambase 4601 0.014 0.1
11 Chess (KR vs. K-P) 3196 0.046 0.1
12 Turkiye Student Eval. 5819 0.025 0.1
13 Phishing Websites 11,055 0.003 0.1
14 Credit Approval 690 0.008 -1.2
15 Ecoli 366 0.045 -1.4
16 Solar Flare 323 0.045 -1.7
17 Dresses Attribute Sales 501 0.001 -4.4
18 Audiology 226 0.003 -4.8
19 synthetic R15 600 0.005 0.7
20 D13’ 150 0.045 -3.4

Table IV summarizes the best results comparing the eva-
luation of linear regression and model trees. We notice that
the correlation between the diversity measures and the gain of
stacking was weak or moderate for all induced models. The
training set composed by 17 w/b G reached the best correlation
and RRSE. However, in some cases where the gain of stacking
was high, it was not statistically higher than the best base
classifier.

In order to better understand the effects of diversity on the
performed experiments, for each dataset where the gain of
stacking passed T-test, i.e. where the stacking accuracy was
statistically different from the best individual base classifier
result, we plotted the values of the diversity measures used in
the induced models. Figure 3 shows the relation between df
and the gain of stacking. High values of both diversity and gain
are plotted in green while low values are plotted in red. These
points support the hypothesis that the greater the diversity, the
greater the stacking accuracy. Other points plotted in blue go
against this hypothesis. Similarly, Figures 4 and 5 present the
relationship among KW , ρ and G.

Analyzing these figures we notice that only a few points
are good values of diversity. Many of them are located near
the center of abscissa axis, as well as the vast majority of
low diversity values. The only exception where diversity are
strong related to the increase of accuracy occurred with the

inv dir inv inv

Nome Dataset Falha Dupla Med Discordância Estatística Q Coef correlação

sonar-weka 0.62 0.27 0.58 0.28

ionosphere-weka 0.83 0.12 0.83 0.41

column_2C_weka-weka 0.72 0.19 0.74 0.39

abalone-weka 0.09 0.28 0.47 0.21

massa mamografica-weka 0.76 0.11 0.93 0.63

soybean-weka 0.90 0.06 0.95 0.56

jogo da velha-weka 0.83 0.15 0.78 0.30

QSAR biodegradation-weka 0.75 0.16 0.81 0.45

sensoriamento remoto-weka 0.93 0.06 0.93 0.39

spambase-weka 0.84 0.13 0.77 0.34

kr-vs-kp-weka 0.94 0.06 0.91 0.28

turkiye-weka 0.70 0.26 0.72 0.29

phishing-weka 0.93 0.04 0.96 0.52

aprovacao credito-weka 0.77 0.14 0.85 0.50

proteinas-weka 0.79 0.11 0.92 0.57

solar-flare-weka 0.62 0.15 0.91 0.64

atributos vestido-weka 0.46 0.26 0.77 0.47

audiology-weka 0.72 0.13 0.94 0.64

0.74 0.15 0.76 0.41

Alta diversidade e alto ganho apoia (verde). Baixa diversidade e baixo ganho apoia (vermelho). Alta diversidade e baixo ganho rejeita (azul). Baixa diversidade e alto ganho rejeita (azul). 
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Fig. 3. Relation between double-fault and the gain of stacking.
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Fig. 4. Relation between Kohavi-Wolpert variance and the gain of stacking.
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Fig. 5. Relation between correlation coefficient and the gain of stacking.



TABLE IV
EVALUATION OF THE REGRESSION MODELS.

Datasets Model Correlation RRSE (%)
1 17 b/w G M5 0.5243 79.67
2 all 54 linear 0.4081 91.58
3 18 T-test linear 0.3532 99.89

dataset Connect. Bench (S,M vs. R) which experiment reaches
df = 0.62, KW = 0.11, ρ = 0.28 and G = 4.1%.

V. CONCLUSION

This paper presented an analysis of the impact of diversity
on stacking multiple classifiers. The experiments we have
performed show some link between the studied diversity
measures and the gain of stacking considering a lot of datasets.

The regression models revealed connections between some
measures and the quality of stacking. df , KW and ρ are
related to the final classification accuracy, but low values of the
correlation coefficients and high values of RRSE imply a weak
relationship. So, as suggested by the literature for bagging
and majority voting ensembles, predicting the improvement
on the best base classifier accuracy using diversity measures
is inappropriate.

As future work, we intend to conduct experiments with
additional diversity measures and with more synthetic data-
sets, aiming to better understand the relations between data
distribution, decision boundaries, classifiers diversity and the
quality of stacking.
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