
Localization of Linearizability Faults
on the Coarse-grained Level

Zhenya Zhang, Peng Wu, Yu Zhang
State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences

University of Chinese Academy of Sciences

Abstract—Linearizability is an important correctness criterion
that guarantees the safety of concurrent data structures. Due
to the nondeterminism of concurrent executions, reproduction
and localization of a linearizability fault still remain challenging.
The existing work mainly focuses on model checking the thread
schedule space of a concurrent program on a fine-grained (state)
level, and hence suffers from the severe problem of state space
explosion. This paper presents a tool called CGVT to build a
small test case that is sufficient enough for reproducing a lineariz-
ability fault. Given a possibly long history that has been detected
non-linearizable, CGVT first locates the operations causing a
linearizability violation, and then synthesizes a short test case for
further investigation. Moreover, we present several optimization
techniques to improve the effectiveness and efficiency of CGVT.
We have applied CGVT to 10 concurrent objects, while the
linearizability of some of the concurrent objects is unknown
yet. The experiments show that CGVT is powerful and efficient
enough to build the test cases adaptable for a fine-grained
analysis.

I. INTRODUCTION

Linearizability [1] is a widely accepted correctness crite-
rion that guarantees the safety of concurrent data structures
or concurrent objects. Intuitively, a concurrent history of a
shared object is linearizable if each operation of the object
appears to take effect instantaneously at some point, called
linearization point, between the invocation and response of the
operation, and the history can be serialized as a sequence of the
operations that is consistent with the sequential specification
of the object. Linearizability checking is still a challenging
task for concurrent objects.

Due to the nondeterminism of concurrent executions, repro-
duction and localization of a linearizability fault is notoriously
difficult. This problem can be addressed by systematically
exploiting all possible fine-grained traces that are composed
of memory access instructions [2], [3], which however suffers
from the severe problem of state space explosion. Although
techniques such as iterative context bounding [4] can help
improve the scalability of this systematic testing approach,
it would work better with small test cases. Besides, such test
cases can be generated through static analysis or empirical
evidence [5], [6], but lack accuracy, especially for very com-
plicated objects or concurrency faults. ConTeGe [7] can fully
automatically produce a large number of small-scale traces,
which are composed of operations with random arguments, but
may not manifest potential faults. VeriTrace [8] can produce
traces that can trigger various buggy executions, but these

traces may contain redundant operations, therefore raise the
complexity of further analysis unnecessarily.

In this paper, we present a tool, CGVT, to build small test
cases that are sufficient enough for triggering linearizability
faults. Given a possibly long history that has been detected
non-linearizable, CGVT first locates the operations causing a
linearizability violation. Note that the operations resulting in
a non-linearizable execution are usually not located as would
be expected intuitively.
Example 1 Fig. 1 shows a simplified PairSnapShot [9], where
an array d (of size 2) is shared between two concurrent threads.
A write(i,v) operation writes v to d[i], while a read
operation reads the values of d[0] and d[1] together as a
pair. A correctness criterion is that read should always return
the values of the same moment. However, Fig. 2 illustrates a
concurrent execution in which the return values of read do
not exist at any moment of the execution. The ‘x’ labels in
Fig. 2 mark the moments when each instruction takes effect.
Then, this concurrent execution with the 5 operations explains
exactly the cause of the linearizability violation on a fine-
grained state level.

PairSnapShot: Pair read(){
while(true){

int d[2]; int x = d[0]; #2
int y = d[1]; #3

write(i,v){ if(x == d[0]) #4
d[i] = v; #1 return (x,y);

} }
}

Fig. 1: Source code of PairSnapShot

Thread 1
write(0, 2) write(1, 2) write(1, 1) write(0, 1)

Thread 2

t1 : (1, 1) t2 : (2, 1) t3 : (2, 2) t4 : (2, 1) t5 : (1, 1)

read→ (1, 2)q q
q q q qq q q qx x x x

x x x

#1 #1 #1 #1

#2 #3 #4

Fig. 2: A buggy trace of PairSnapShot

Example 2 Fig. 3 presents a linked-list based set [10]. Fig. 4
shows a non-linearizable trace of the set, where O1 and O2

appear to add 8 and 9, respectively, to the list, but later O3

does not find 8 in the list. Herein, the synchronized block
#3 can be treated as an atomic instruction. The actual cause

DOI reference number: 10.18293/SEKE2017-145

of the linearizability violation is as follows: after both add
operations locate the same nodes pred and curr, add(8) first
sets pred.next to node 8, then add(9) sets it to node 9,
which makes node 8 removed from the list. It can be seen
that although it is the wrong return value of contain(8) that
reveals the linearizability violation, the root cause of this non-
linearizable trace only lies in the concurrent add operations.

Set:
add(int key){

Node pred,curr = locate(key); #1
if(curr.key == key) #2

return false;
synchronized(){ #3

Node n = new Node(key);
n.next = curr;
pred.next = n;
return true;

}
}

Fig. 3: Source code of a buggy set

Thread 1
66

operations not revealing any bug

O1 : add(8)→ true O3 : contain(8)→ false

O2 : add(9)→ true
Thread 2

q q q q
q q
x x

x x

x

x

#1 #2

#1 #2

#3

#3

Fig. 4: A buggy concurrent trace of Set

Example 1 shows a scenario where a violation is “revealed”
immediately after the corresponding linearizability fault is
“triggered”, while Example 2 shows another scenario where
a linearizability fault is “triggered” possibly long before the
corresponding violation is “revealed”. In this work, we aim
to localize, from a given non-linearizable trace, the operations
that essentially cause the linearizability violation and then syn-
thesize a small test case that can trigger the same linearizability
fault.
Contributions. The main contributions of this paper are three-
fold.

• We make clear the relationship between “triggering” and
“revealing” linearizability faults, and formally define min-
imum test cases that are sufficient to trigger linearizability
faults;

• We propose the framework of CGVT for building mini-
mum test cases, as well as a D-PCT based optimization
and a heuristic rule based acceleration technique;

• We implement a prototype tool, CGVT, which was ex-
perimented with 10 concurrent objects. The experiment
results show that the tool is effective and efficient enough
to build the test cases adaptable for a fine-grained analy-
sis.

Related work. The existing work on linearizability checking
mainly aims to solve the state space explosion problem to
accelerate the checking of concurrent histories. Automated
linearizability checking algorithms [11], [12] suffer from a

performance bottleneck. Based on [12], optimized algorithms
were proposed through partial order reduction [13] or com-
positional reasoning [6]. Model checking was applied for
linearizability checking, with simplified first-order formulas
that can help improve efficiency [5], [14]. Fine-grained traces
were introduced in [8] to accelerate linearizability checking.

The output of our work is a small test case that is adaptable
for concurrency fault analysis on a fine-grained level, such
as [2]–[4]. A framework with interleaving test generation
heuristics was introduced in [2] for bug detection and replay.
A constraint-based symbolic analysis method was proposed in
[3] to diagnose concurrency bugs. An acceleration technique
was presented in [4] for model checking thread schedule
spaces. Unlike these bug reproduction and localization tech-
niques [2], [4], [7] that aim at general concurrency bugs, our
work aims at linearzability violation specifically.

Our work can also facilitate debugging concurrency bugs.
Recent work on the debugging of concurrency bugs often
applies the techniques for sequential programs to concurrent
programs, such as assertions [15], or breakpoints [16].
Organization. The rest of the paper is organized as follows.
Section II introduces the trace model and the formal definition
of minimum test cases. Section III presents the implementation
of CGVT, with the D-PCT based optimization and the heuristic
rule based acceleration technique. Section IV discusses the
results of experiments. Section V concludes the paper.

II. TRACE MODEL

A. Linearizability

Let M,T,O,V respectively denote the set of operation
names, thread identifiers, operation identifiers and values.
Then, C = {m(va)

t
o : m ∈ M, va ∈ V, o ∈ O, t ∈ T} and

R = {mt
o → vr : m ∈ M, vr ∈ V, o ∈ O, t ∈ T} represent the

set of operation invocation events and response events, re-
spectively. We denote the operation identifier of an event
e ∈ (C ∪ R) as op(e). Events c ∈ C and r ∈ R match each
other, denoted c ⋄ r, if op(c) = op(r). A pair of matching
events forms an operation O, written as m(va) → vr.

A sequence S = e1e2 · · · en ∈ (C ∪R)∗ is well-formed if:
• Each response is preceded by a matching invocation:

ej ∈ R implies ei ⋄ ej for some 1 ≤ i < j ≤ n
• Each operation identifier is used in at most one invoca-

tion/response:
op(ei) = op(ej) and 1 ≤ i < j ≤ n implies ei ⋄ ej

A well-formed sequence S can be treated as a partial order
set (H,≺H), where H is called a history (or trace) composed
of the operations formed by matching events in S, and ≺H is
the happen-before relation in S. For operations O1, O2 ∈ H ,
O1 ≺H O2 if the response of O1 is ahead of the invocation of
O2 in S. Let size(H) denote the size of H , i.e., the number
of the operations involved in history H .

An invocation event is pending in H if no matching re-
sponse event follows it. An extension of H , denoted E(H), is
a history constructed by appending response events to all the
pending invocation events in H . Sometimes we ignore these

pending invocation events and get C(H), the subsequence of H
consisting of all the matching invocation and response events
in H .

If H is a total order set, then H is sequential. A specification
of an object is the set of all the sequential histories that satisfy
the correctness criterion of the object.

Definition 1 (Linearizability). A history H of a concurrent
object is linearizable if there is an extension E(H) and a
history S in the specification of the object such that:

• Elements of E(H) and S are same;
• ≺H⊆≺S , i.e., if O1 ≺H O2, then O1 ≺S O2.

Here, S is called a witness of H .

B. Minimum test case

Operations with the same thread identifier form a sequential
program Ps, an execution of which results in a sequential
history. A concurrent program Pc with n threads is a set of
n sequential programs. An execution of Pc is a concurrent
execution of the n sequential programs, each starting at an
arbitrary moment.

A state of an object at some moment is a mapping from the
shared variables to their values. Considering the initial state
of an object as default, we can use a sequential program Ps

to represent a state, since Ps can determine it definitely. For
concurrent program Pc, thread schedules decide what states are
reached. A schedule for Pc is a sequence of memory access
instructions in Pc.

A test case is defined as a triple tc = (Ps, Pc, Pr), where
Ps is a state, Pc is a concurrent program and Pr is a sequential
program. Starting from state Ps, an execution of tc runs the
sequential programs in Pc concurrently to “trigger” a bug
if any, and then runs Pr at last to “reveal” the bug. The
trace of an execution of tc depends on the schedule of the
execution for Pc. If there exists a schedule leading a trace of
tc non-linearizable, we say that tc is potential to trigger a
linearizability fault or buggy; otherwise tc is correct.

Definition 2 (minimum test case). A test case tc is an
minimum test case if it is potential to trigger a linearizability
fault and removal of any operation in its Pc results in a correct
test case.

Examples The trace shown in Fig. 2 results from a minimum
test case where Ps = {write(0, 1), write(1, 1)}, Pc =
{{write(0, 2), write(1, 2), write(1, 1), write(0, 1)}, {read}},
and Pr = ∅. The trace shown in Fig. 4 results from
a minimum test case where Ps = {add(7), add(10)},
Pc = {{O1}, {O2}}, and Pr is a sequential program ending
with O3.

III. CGVT

In this section, we present the basic implementation of
CGVT, a D-PCT based optimization and a heuristic rule based
acceleration technique. CGVT is divided into two phases,
detection and localization. The former is to acquire a possibly
long trace that is non-linearizable, and the latter is to locate

the operations causing a linearizability fault, and synthesize a
minimum test case for it.

A. Basic implementation

Detection phase. VeriTrace [8] is an off-line tool for
automated linearizability checking. Given a concurrent object
as an input, VeriTrace automatically runs concurrently a
couple of threads, each executing a certain number of
operations, and records the history H of the concurrent
execution on the object. Then, WGL [13], a linearizability
checking algorithm, enumerates possible sequential histories
to search for a witness of the concurrent history H . If no
witness of H is found, then H is detected non-linearizable
and will be analyzed in the next phase for localization.

Localization phase. We define a prefix of the concurrent
history H , denoted Hp(n), as a sub-history of H composed
of the former n events in H .

Theorem 1. H is linearizable if and only if every prefix of H
is linearizable.

Proof For the “only if” direction, suppose that H is lineariz-
able and there exists a non-linearizable prefix Hp(k). Then,
any extension E(Hp(k)) is non-linearizable, which implies that
the addition of operations O′ ∈ E(Hp(k)) \ C(Hp(k)) can not
serialize it. Neither can the addition of operations O′′ such
that ∀m(m ∈ C(Hp(k)) ∧m ≺H O′′), because such O′′ can
only be ordered after the operations of C(Hp(k)) in a witness.
Therefore, there is no witness for any superset of C(Hp(k)),
which implies H is non-linearizable, a contradiction.

For the “if” direction, if every prefix of H is linearizable,
it is obvious that H is linearizable.

Algorithm 1 Bug Localization
1: OpOrder . SORTBYSIZE()
2: so ← |OpOrder|
3: function LOCALIZE
4: for i← {so, · · · , 0} do
5: Ps ← OpOrder [i]
6: Pc ← Hp(b) \ Ps

7: tc ← NEW TESTCASE(Ps, Pc,∅)
8: if !CHECK(tc) then break
9: end if

10: end for
11: for j ← {2, · · · , size(tc.Pc)− 2} do
12: Pc ← tc.Pc[0 : j]
13: Pr ← OpOrder[so] \ tc.Ps \ Pc

14: tc ← NEW TESTCASE(tc.Ps, Pc, Pr)
15: if !CHECK(tc) then return tc
16: end if
17: end for
18: end function
19:
20: function CHECK(tc)
21: while k ← {0, · · · , σ} do
22: if !Ln(tc.EXECUTE()) then return false
23: end if
24: end while
25: return true
26: end function

From Theorem 1, it can be seen that for the given non-
linearizable history H , there exists a non-linearizable prefix
Hp(b) whose size is smaller than any other non-linearizable
prefixes of H . It is obvious that Hp(b) involves the opera-
tions triggering the linearizability fault, since otherwise Hp(b)
would be linearizable. We can use Hp(b) to construct a min-
imum test case for a fine-grained bug localization algorithm.

Algorithm 1 presents the algorithm for the coarse-grained
bug localization. OpOrder is a set of witnesses of all prefixes
of Hp(b). We sort the witnesses in OpOrder by their sizes
(line 1). The process of building a minimum test case contains
two steps:

1) Select a prefix of Hp(b), serialize it as Ps (lines 4-5), and
then set the remaining suffix of Hp(b) to be Pc (line 6),
check the test cases iteratively until a buggy one is found
(lines 8-9);

2) Set a new Pc to be a prefix of the previous Pc (line 12),
then serialize the remaining operations as Pr (line 13),
and check the test cases iteratively until a buggy one is
found (lines 15-16).

Note that the serialization in lines 5 and 13 is directly based
on the sequential traces in OpOrder, and in practice, we
can get both Hp(b) and OpOrder easily through the “cache”
mechanism of the WGL algorithm in the detection phase.

Function CHECK (lines 20-26) is used for checking whether
a test case is buggy, where Ln is a predicate judging the
linearizability of a trace. Here, σ is a threshold for the number
of times the test case is executed. Our experiments show that
using the setting of σ in the detection phase is always enough
to detect the fault in the localization phase.

B. D-PCT based implementation

D-PCT based detection. The concurrent executions induced by
VeriTrace closely depend on the run-time environment. The-
oretically, for a concurrent program that contains n threads,
each executing at most k instructions, the total number of its
schedules is (nk)!

(k!)n ≥ (n!)k, exponentially dependent on n and
k. It is difficult to detect the faults that only appear under
specific (complicated) schedules.

In order to address this problem, we adapt PCT [17], a
scheduling algorithm with a much higher probabilistic guar-
antee of finding bugs, as D-PCT (Dynamic PCT) and apply it
to CGVT, as shown in Fig. 5.

• In Fig. 5(a), during a concurrent execution in the detec-
tion phase, THREADSWITCH requests are called to ask
whether a thread switch should take place currently;

• In Fig. 5(b), D-PCT responds immediately by invoking
the PCT algorithm with the number of instructions (k).

Originally in PCT, k is required no less than the number of
the instructions so that PCT can generate a schedule covering
all the instructions, while in CGVT, k can not be pre-specified
before the execution. Here, we model the instructions as a
structure tree, by which we calculate k dynamically, as shown
in Fig. 5(c).

1 ...

2 Instruction; #1

3 THREADSWITCH(#1);

4 Instruction; #2

5 THREADSWITCH(#2);

6 ...

1 k←SUM(root)

2 function THREADSWITCH(#i)

3 if #i is within the assumption then

4 invoke PCT with k

5 else

6 recalculate k and invoke PCT with k

7 end if

8 end function

Structure Tree
Struct node{

const TYPE type;

const int num;

...

}

node root;

SUM(node);

...

(a) sending request

(b) D-PCT

(c) structure tree

Fig. 5: Application of D-PCT

We split the instructions of an operation into different
units: sequential units contain instructions executed sequen-
tially such as #1 in Fig. 1; loop units contain instructions
executed iteratively such as #2,#3,#4 in Fig. 1; selection
units contain several branches, each containing instructions
executed conditionally such as #3 in Fig. 3. Moreover, each
loop unit and each branch can further be split until all the
instructions belong to a sequential unit. The instructions in an
operation can be built as the following structure tree:

1) The root represents all the instructions of the operation;
2) Each child node of the root represents one of the three

units, from left to right following the program order of
the instructions;

3) Each child node of a selection unit node is one of its
branches;

4) The child nodes of a loop unit or branch node represents
its lower-level units until sequential units as leaves.

5) Each node holds two constants: type and num. type is
one of R, L, C, B, S respectively representing root, loop
unit, selection unit, branch, sequential unit. For a node
of type R, L, C or B, num is the number of its child nodes;
while for a node of type S, num is the number of the
instructions in the sequential unit.

Example Fig. 6 presents the structure trees of the three
operations in Fig. 1 and Fig. 3.

R,1

L,1

S,3

R,1

S,1

R,2

S,2

B,0

C,2

B,1

S,1

PairSnapShot

::write

PairSnapShot

::read Set::add

#1, #2

#3

#2, #3, #4

#1

Fig. 6: Structure tree

Algorithm 2 Calculation of k
1: function SUM(node)
2: value← 0
3: switch node.type
4: case (S): ◃ sequential unit
5: value← value+ node.num
6: break
7: case (R|L|B): ◃ root, loop unit, branch
8: for n ∈ node.child do
9: value← value+ θ∗SUM(n)

10: end for
11: break
12: case (C): ◃ selection unit
13: for n ∈ node.child do
14: value← value+max(SUM(n))
15: end for
16: break
17: end switch
18: return value
19: end function

With the help of a structure tree, D-PCT can make decision
on thread switching as shown in Fig. 5(b). At first, D-
PCT calculates k tentatively through function SUM (line 1),
assuming that loop units iterate θ times and selection units
select the branch with the maximum number of instructions.
Then, each time a THREADSWITCH request is called, D-
PCT checks whether the instruction, after which the request
is called, is beyond the assumption (line 3). If not, D-PCT
responds by invoking PCT directly (line 4); otherwise, D-PCT
recalculates the currently remaining k in a way similar to line
1 and then invokes PCT (line 6).

Algorithm 2 presents the concrete algorithm of function
SUM. It recursively searches the structure tree and adds up
the number of the instructions of different units assuming that
loop units iterate θ times (line 9) and selection units select
the branch with the maximum number of instructions (line
14). Here, for a node of type L, if its number of iterations is
known, θ is set accordingly, otherwise θ = 1; for a node of
type R or B, θ = 1.

D-PCT based localization. In addition to Fig. 5(b), D-PCT
records the instruction attached within each request to form
the actual schedules during the detection phase. Then in the
localization phase, these schedules are applied to function
CHECK() in Algorithm 1 to guide the executions of Pc. In
this way, the faults triggered under these schedules will be
reproduced in the localization phase.

C. A heuristic rule based acceleration

We present a heuristic rule to make CGVT perform better.
The rule is based on an observation that in Pc of a minimum
test case (Ps, Pc, Pr), there exists a thread in which only one
operation is executed.

This observation comes from the minimum test cases we
have collected, which are presented in Table I. In Column
2, we call a test case is of type 1 if the test case “reveals”
a fault immediately after the fault is“triggered”, like the test

case for PairSnapShot shown in Fig. 2; while a test case is
of type 2 if the test case “reveals” a fault possibly long after
the fault is “triggered”, like the test case for the linked-list
based set shown in Fig. 4. Column 3 reports the number
of the operations needed in the concurrent threads of Pc in
each minimum test case. Hence, we conjecture that whichever
type a test case belongs to, one operation in some thread
may be sufficient to trigger a fault. This observation is useful
for acceleration if test cases built accordingly can still trigger
faults.

TABLE I: Operation quantity on threads

Type OP Quantity
PairSnapShot [9] 1 1, 4
SimpleList [10] 2 1, 1
SimpleList (Size) [8] 1 1, 2
LockFreeList [18] 1 1, 1
K-Stack [19] 2 1, 1
OptimisticQueue [20] 1 1, 1
Snark [21] 1 1, 2
TreiberStack [5] 2 1, 3

IV. EXPERIMENT AND EVALUATION

Table II shows the experiment on 10 concurrent objects.
Some of the objects are from the previous work and known to
us, while others whose names begin with “BU” are adapted
versions of the existing objects and unknown to us. The
specification for the first 6 objects is Set. The specification
for “OPQueue” and “BUQueue” is FIFO-Queue. The specifi-
cation for the last two objects is Stack.

We compare the 3 versions of CGVT, respectively the basic
version (B) in Section III-A, the D-PCT based version (D)
in Section III-B, and the heuristic rule based version (H)
in Section III-C. In the detection phase, for each object,
ns (possibly long) histories (Col. 4-6) are examined, each
composed of nt∗no (Col. 3) operations with nt the number of
the threads and no the number of the operations executed by
each thread. Among these histories, nl histories are detected
non-linearizable (Col. 4-6). Note that the occurrence of a non-
linearizable history is the prerequisite for localization, and
the proportion reported in Col. 4-6 reflects the difficulty in
detecting the linearizability faults. The average time costs for
linearizability checking of these histories are listed in Col.
7-9. In the localization phase, selecting a non-linearizable
history from the detection phase, CGVT works out minimum
test cases of sizes shown in Col. 10-12. The time costs
of localization are listed in Col. 13-15, mainly for the two
calls of CHECK. The tool and benchmarks are available at
https://github.com/choshina/CGVT.

We have the following observations from Table II:
1) The concurrent objects that interest us most are BUList3

and CGListS. For these two objects, version B cannot
detect the bugs, but version D can. This shows that D-
PCT enhances the CGVT’s ability in detecting certain
complicated bugs.

2) Comparing the time cost of version H with that of version
D, we conclude that version H improves the efficiency.

TABLE II: Evaluation of CGVT

Detection phase Localization phase

Object Operations Hist. size
(nt ∗ no)

!Ln/Total (nl/ns) Aver. time (ms) tc.Pc size Time cost (ms)
B D H B D H B D H B D H

LFList add;remove 2*500 5/20 2/20 8/20 643 611 237 2 2 2 154 233 207
CGList add;contain 2*50 20/20 20/20 20/20 33 24 23 2 2 2 51 256 219
CGList add;remove;size 2*500 0/80 3/80 1/80 660 682 483 - 4 3 - 756 832
BUList1 add;remove 2*500 7/20 5/20 5/20 488 704 532 2 2 2 162 245 311
BUList2 add;remove 2*50 18/20 20/20 20/20 31 35 28 2 2 2 83 365 247
BUList3 add;remove 2*500 0/80 2/80 3/80 625 603 524 - 2 2 - 326 335
OPQueue enqueue;dequeue 2*500 4/20 19/20 16/20 2430 1412 832 2 3 2 378 796 683
BUQueue enqueue;dequeue 2*200 0/80 0/80 0/80 288 726 230 - - - - - -

KStack push;pop 2*50 10/20 18/20 15/20 83 30 62 2 3 3 2323 864 831
TBStack push;pop 2*100 19/20 20/20 20/20 72 124 60 2 2 2 1596 532 356

Compared to version B, versions D and H perform better
on the faults “revealed” long after “triggered” (K-Stack,
TBStack).

3) From the results in the localization phase, it can be seen
that CGVT delivers the test cases with no more than 4
concurrent operations. Such test cases are quite small-
scale and adaptable for a fine-grained analysis.

V. CONCLUSION

This paper presents a tool, CGVT, for building a small test
case that is sufficient to trigger a linearizability fault. CGVT
firstly acquires a possibly large-scale concurrent history which
has been detected non-linearizable, then locates the concurrent
operations causing the linearizability violation, and synthesizes
a minimum test case. A D-PCT based technique enhances the
CGVT’s ability in detecting complicated bugs, and a heuristic
rule is introduced for accelerating detection and localization.

As future work, firstly, a tool for fine-grained localization is
needed. Given a small test case, this tool ought to enumerate
the fine-grained traces and investigate the data races on the
shared variables to provide some guidance on bug repair.
Secondly, we will try to apply CGVT and this tool to more
concurrent programs, and extend their localization abilities
from linearizability violation to other concurrency bugs.

ACKNOWLEDGMENT

This work is partially supported by the National Natural
Science Foundation of China under Grants No.61100069,
No.61161130530, and by the National Key Basic Research
Program of China under Grant No.2014CB340701.

REFERENCES

[1] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition
for concurrent objects,” ACM Transactions on Programming Languages
and Systems (TOPLAS), vol. 12, no. 3, pp. 463–492, 1990.

[2] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, and S. Ur,
“Framework for testing multi-threaded java programs,” Concurrency and
Computation: Practice and Experience, vol. 15, no. 3-5, pp. 485–499,
2003.

[3] S. Khoshnood, M. Kusano, and C. Wang, “Concbugassist: Constraint
solving for diagnosis and repair of concurrency bugs,” in Proceedings
of the 2015 International Symposium on Software Testing and Analysis.
ACM, 2015, pp. 165–176.

[4] M. Musuvathi and S. Qadeer, “Iterative context bounding for systematic
testing of multithreaded programs,” in ACM Sigplan Notices, vol. 42,
no. 6. ACM, 2007, pp. 446–455.

[5] A. Bouajjani, M. Emmi, C. Enea, and J. Hamza, “Tractable refinement
checking for concurrent objects,” Acm Sigplan Notices, vol. 50, no. 1,
pp. 651–662, 2015.

[6] A. Horn and D. Kroening, “Faster linearizability checking via p-
compositionality,” in International Conference on Formal Techniques
for Distributed Objects, Components, and Systems. Springer, 2015, pp.
50–65.

[7] M. Pradel and T. R. Gross, “Fully automatic and precise detection of
thread safety violations,” Acm Sigplan Notices, vol. 47, no. 6, pp. 521–
530, 2012.

[8] Z. Long and Y. Zhang, “Checking linearizability with fine-grained
traces,” in Proceedings of the 31st Annual ACM Symposium on Applied
Computing. ACM, 2016, pp. 1394–1400.

[9] S. Qadeer, A. Sezgin, and S. Tasiran, “Back and forth: Prophecy
variables for static verification of concurrent programs,” Tech. Rep. MSR-
TR-2009-142, 2009.

[10] M. Vechev and E. Yahav, “Deriving linearizable fine-grained concurrent
objects,” ACM SIGPLAN Notices, vol. 43, no. 6, pp. 125–135, 2008.

[11] S. Burckhardt, C. Dern, M. Musuvathi, and R. Tan, “Line-up: a complete
and automatic linearizability checker,” in ACM Sigplan Notices, vol. 45,
no. 6. ACM, 2010, pp. 330–340.

[12] J. M. Wing and C. Gong, “Testing and verifying concurrent objects,”
Journal of Parallel and Distributed Computing, vol. 17, no. 1-2, pp.
164–182, 1993.

[13] G. Lowe, “Testing for linearizability.” PODC, 2015.
[14] M. Emmi, C. Enea, and J. Hamza, “Monitoring refinement via symbolic

reasoning,” in ACM SIGPLAN Notices, vol. 50, no. 6. ACM, 2015, pp.
260–269.

[15] J. E. Gottschlich, G. A. Pokam, C. L. Pereira, and Y. Wu, “Concurrent
predicates: A debugging technique for every parallel programmer,” in
Proceedings of the 22nd international conference on Parallel architec-
tures and compilation techniques. IEEE Press, 2013, pp. 331–340.

[16] C.-S. Park and K. Sen, “Concurrent breakpoints,” in ACM SIGPLAN
Notices, vol. 47, no. 8. ACM, 2012, pp. 331–332.

[17] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte, “A
randomized scheduler with probabilistic guarantees of finding bugs,”
in ACM Sigplan Notices, vol. 45, no. 3. ACM, 2010, pp. 167–178.

[18] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming,
Revised Reprint. Elsevier, 2012.

[19] A. Haas, T. Htter, C. M. Kirsch, M. Lippautz, M. Preishuber, and
A. Sokolova, “Scal: A benchmarking suite for concurrent data struc-
tures,” 2015.

[20] E. Ladan-Mozes and N. Shavit, An Optimistic Approach to Lock-Free
FIFO Queues. Springer Berlin Heidelberg, 2004.

[21] S. Doherty, D. L. Detlefs, L. Groves, C. H. Flood, V. Luchangco, P. A.
Martin, M. Moir, N. Shavit, and G. L. Steele Jr, “Dcas is not a silver
bullet for nonblocking algorithm design,” in Proceedings of the sixteenth
annual ACM symposium on Parallelism in algorithms and architectures.
ACM, 2004, pp. 216–224.

