
A Framework to Build Bayesian Networks to Assess Scrum-based Software
Development Methods

Mirko Perkusich∗1, Kyller Gorgonio†1, Hyggo Almeida‡1, and Angelo Perkusich§1

1Embedded and Pervasive Computing Laboratory, Federal University of Campina Grande, Campina
Grande, Brazil

DOI reference number: 10.18293/SEKE2017-139

Abstract

Agile software development has been increasingly used
to satisfy the need to respond to fast moving market demand
and gain market share. Scrum, which is a project man-
agement framework, dominates as the most popular agile
method. In the literature, there are a number of solutions to
customize and assess Scrum-based agile methods, but they
are limited to focus only on process factors, assume a pre-
defined set of practices or rely only on subjective evalua-
tion. This paper presents a framework to build a Bayesian
Network to assist on the assessment of Scrum-based soft-
ware development methods. The BN models the main enti-
ties of the software development process and can be com-
plemented with software practices and metrics. To evaluate
the completeness of our solution, we performed simulations
to check if the proposed framework diagnoses 14 known
Scrum anti-patterns extracted from the literature. 12 anti-
patterns were directly detected, 1 was indirectly detected by
the BN and 1 was considered as invalid. We concluded that
the proposed solution is complete to detect the major flaws
of Scrum-based software development methods and can be
used to assist on the configuration, adoption and continuous
improvement of Scrum teams.

Agile Methods; Bayesian Network; Software Metrics;
Scrum; Method Engineering

∗mirko.perkusich@embedded.ufcg.edu.br
†kyller@embedded.ufcg.edu.br
‡hyggo@embedded.ufcg.edu.br
§perkusic@embedded.ufcg.edu.br

1 Introduction

Agile Software Development (ASD) methods have been
increasingly used to satisfy the need to respond to fast mov-
ing market demands and gain market share. In contrast with
traditional plan-driven processes, agile methods focus on
people, are communication-oriented, flexible, fast, light, re-
sponsive and oriented to learning and continuous improve-
ment [7]. As a consequence, subjective factors such as col-
laboration, communication and self-organization are key to
evaluate the maturity of agile software development.

Scrum dominates as the most popular agile process. It
is a software project management framework and must be
complemented with technical and managerial practices and
processes to define a software development method. If not
complemented properly, Scrum might result in reduced pro-
ductivity and product quality [23, 24].

The method definition depends on customization factors
such as team characteristics, internal environment, exter-
nal environment, project goals, maturity level and previous
knowledge [2]. In the context of ASD, most solutions to as-
sist on agile methods configuration are based on Method
Engineering [1], in which the team configures a method
adapting existing methods (e.g., Rational Unified Process,
Scrum and Extreme Programming).

To adopt agile methods, some studies propose combining
ASD with CMMI [17]. Others, are specific to ASD [2, 16,
24, 8, 10]. The proposed solutions have one or more of the
following limitations: focuses only on the process, assume
a predefined set of practices or rely only on subjective data.

Given this, we conclude that there is no consolidated ap-
proach to assist on the adoption and continuous improve-
ment of agile methods. In this paper, we present a frame-
work to build a Bayesian Network (BN) to assist on the as-
sessment of Scrum-based software development methods.
The BN models the main entities of the software develop-

ment process and can be complemented with software prac-
tices and metrics. With the resulting BN, it is possible to
monitor if the agile method is being followed and if it meets
the needs of the project to assist on decision-making.

Bayesian networks are probabilistic graph models and
used to represent knowledge about an uncertain domain. A
Bayesian network, B, is a directed acyclic graph that rep-
resents a joint probability distribution over a set of ran-
dom variables V . The network is defined by the pair
B = {G,Θ}. G is the directed acyclic graph in which the
nodes X1, . . . , Xn represent random variables and the arcs
represent the direct dependencies between these variables.

The problem of modeling the Scrum process involves
causal reasoning and aleatory uncertainty (i.e., intrinsic
variability), which can be reduced by gathering more data
or eliciting knowledge from experts. Given that the frame-
work must be used by practitioners, the inferences must be
clear. Furthermore, the models must be adaptable and as-
sist on decision-making. According to Verbert et al. [20],
Bayesian network is a suitable approach for this context.

This paper is organized as follows. Section 2 presents the
proposed solution. Section 3 presents the results of the val-
idation; and Section 4 presents our conclusions, limitations
and future works.

2 Framework description

The goal of the framework is to build a BN to model a
Scrum-based software development method. Scrum Mas-
ters should use it to guide the configuration of the agile
method and to assess it. As a result, the team has an in-
strument to support its continuous improvement. As in-
put, the BN receives data collected from the Scrum Mas-
ter (e.g., through a questionnaire) or automatically through
tools. The BN outputs data with probability values that rep-
resent the current status of key factors in the software de-
velopment method. The Scrum team should use the data
to, during Sprint Retrospective meetings, diagnose prob-
lems and prioritize the areas that must be improved. The
data should support discussions regarding action points to
be executed to improve the quality of the software devel-
opment method and, consequently, the project’s chances of
success. The discussions should be a collaborative activity
and involve the stakeholders responsible for decision mak-
ing such as the Product Owner, Scrum Master and develop-
ment team. Its usage should be supported by a process such
as the one presented in Perkusich et al. [14].

The framework consists of a BN that models the main
entities of a software development method based on Scrum.
It is composed of two types of fragments: frozen and
hot. The frozen fragment is related to official artifacts, re-
sources and practices of Scrum as presented in the Scrum
Guide [19]. It should not be modified, unless there are
plausible justifications based on domain expert knowledge

Increment

Sprint

Sprint
Review

Meeting
Product
Owner

Developers Sprint
Planning
Meeting

Product
Backlog

Daily
Meeting

Definition
of Done

Scrum Master Perspective

 Code

Figure 1. Overview of the framework.

or historical data. The frozen fragment defines the base
BN. The reasoning behind having a frozen fragment is that
even though some deviations of the Scrum Guide may be
well motivated and reasonable, teams are tempted to adjust
Scrum for the company without clearly understanding the
consequences of the deviations as evidenced by Eloranta et
al. [4]. For instance, not having an ordered Product Back-
log might happen in the context of having a Product Owner
without authority, a Product Owner that is not part of the
Scrum team, lack of feedback loops (e.g. Sprint Review
meetings) or an incompetent Product Owner [4]. As a con-
sequence, the team might build wrong features and avoid
features which are hard to implement or test, increasing the
risk of problems arising in the late stages of development.
On the other hand, in the context in which features are fixed
and given upfront, it is reasonable to not maintain an or-
dered backlog. Therefore, given that the modifications on
the frozen fragment mean deviation of Scrum recommen-
dation, they must only occur if the consequences are under-
stood and reasonable; and not to adapt Scrum to the com-
pany’s current status quo.

Hot fragments are related with parts of the BN that mod-
els practices and processes that should complement the
Scrum framework. Furthermore, it is possible to com-
plement the model with fragments representing software
metrics-based models (i.e., set of metrics defined for a given
purpose). For instance, Quamoco [22], which focuses on
measuring product quality, can be associate to the BN. The
hot fragments must be defined given the context of the
project and must be defined according to the project’s Defi-
nition of Done.

An overview of the framework is shown in Figure 1, in
which the rectangles represent fragments (i.e., set of nodes)
and the ellipses represent nodes in the Bayesian network.
Notice that the Bayesian network is defined from the view-
point of the Scrum Master and it must be used to assist dur-
ing Sprint Retrospective meetings. Therefore, the Scrum
Master, a role in Scrum, and the Sprint Retrospective meet-

ing, a Scrum practice, are not represented. Furthermore, the
Definition of Done, a Scrum practice, for being an umbrella
practice is also not represented.

The problem of building a BN can be divided into: (i)
construct the Directed Acyclic Graph (DAG) and (ii) define
the Node Probability Tables (NPTs). In Section 2.1, we
present details of constructing the DAG of the base BN (i.e.
frozen fragment). In Section 2.2, we show the process of
complementing the DAG of the base BN with practices and
metrics (i.e., hot fragments). The constructed BN is based
only on ranked nodes [6], which are based on an ordinal
scale. Regarding the definition of the NPTs, this paper is
limited to state that collected data from a domain expert and
applied the process presented in Fenton et al. [6].

2.1 Base BN construction

The problem of constructing a DAG can be subdivided
into: (i) defining the nodes and edges and (ii) defining the
scale (i.e., states) of the nodes and the associated proba-
bilities. In the context of our work, a node represents a
process entity and there is an edge whenever the entities
relate to each other. To solve the second subproblem, we,
as other tools to evaluate agile methods such as Compar-
ativeAgility [24], used a five points Likert (i.e., ordinal)
scale. Therefore, for each node (i.e., process factor), five
possible states were defined. For metrics with numerical
scale, thresholds must be defined given the context of the
project to map the numerical scale to an ordinal one. The
thresholds can be defined using a domain expert knowledge
or analysis of historical data.

To solve the first subproblem, we used an incremental
approach. Previous versions of the BN were presented in
Perkusich et al. [14] and Perkusich et al. [13]. In this pa-
per, we present the most recent version. In comparison with
past versions of the base BN, the differences are that (i) we
added the concept of frozen and hot fragments, (ii) reduced
the size of the base BN from 73 to 44 nodes and (iii) im-
proved the modeling of team (i.e., human) factors.

We followed a top-down approach in which we decom-
posed the top-level node into factors (i.e., process entities)
that we judged to be observable by a Scrum Master or col-
lected through tools. Given that the main goal of agile soft-
ware development is to satisfy customers with working code
and Scrum is an incremental approach, we defined Incre-
ment as the top-level node. We decomposed it using a well-
known DAG idiom: synthesis [5]. Due to space constraints,
we only show how we built part of the base BN.

In Scrum, the increment is developed during sprints. The
Product Owner is responsible for maximizing the value of
the product. Furthermore, the increment must be evaluated
during Sprint Review meetings. Therefore, we added the
nodes Sprint, Product Owner and Review meeting as parents
of the node Increment.

Table 1. Examples of practices that can be
associated with nodes of the base BN.

Node Practices
Code Refactoring, pair programming,

Test-Driven Development, Con-
tinuous Integration, peer code re-
view and test automation.

Estimation Planning Poker, big wall, spike
[23], story point, ideal hours and
T-shirt size.

Product Backlog Grooming meeting, Release plan
[15] and product vision [15].

Ordering Kano model, Wieger model, OR
value, Innovation games, Re-
turn of Investment (ROI) and
MoSCoW.

Details User story and Use case
Planning meeting Sustainable pace [23], Stabiliza-

tion [23] and Velocity-driven.
Delivery plan Interaction Room [9].
Monitoring Burndown and Burnup [19].

During Sprint Review meetings, the product must be in-
spected and, if necessary, adapted by the customers. As
previously explained, not using this practice or not having
the customers participating might result in rework and im-
plementation of wrong features. Therefore, we added the
nodes Inspection and Adaptation as parents of the node Re-
view meeting. To input data into the model, the Scrum
Master must observe the Sprint Review meetings and judge
these two factors. As shown in Section 2.2, it is also pos-
sible to complement this fragment with metrics to indicate
the evidence of these input nodes.

In past evaluations with industry practitioners [12, 14],
we noticed that, in practice, it is common for the customer
to not be available during all Speint Review meetings. On
the other hand, the client evaluated the increment on other
informal meetings. Therefore, given that the feedback loop
is short and there is a reasonable justification, this is a case
in which a frozen spot on the base BN could be modified.
An auxiliary node can be added to model this behavior and
compensate the lack of participation of the customer during
the Sprint Review meetings. The complete DAG for the
base BN is shown in Figure 2.

2.2 Complementing the BN with practices and
metrics

Given that Scrum must be complemented with practices
and processes, the BN can be improved to suit the needs of
the given project. Each node in the BN can be mapped to
a set of practices. The set of practices is represented as an

Increment

Sprint
Product
Owner

Sprint
progress

Planning
Meeting

Progress
Monitoring

Product
Backlog

Personal
characteristcs

Review
Meeting

InspectionAdaptation

Leader
And

teamplayer

Visionary
and doer

Communicator
And negotiator

Empowered
And committed

Available
and

qualified

Backlog da
sprint

Sprint
goal

EstimationDetails OrderingPlano de
entrega

TeamworkCode Management

Emergent

Autonomy Cohesion

Selfmanagement Collaboration

Adaptability

Shared leadership

Knowledge

Orientation Coordination

Personality
Daily Meeting

Communication

ChannelsDistribution Presence Monitoring

Delivery
plan

Collaborative
skills

Updated

Figure 2. DAG of the base BN.

auxiliary node in the BN. The node is a copy of the given
factor. For instance, we can map the node Code, to Node-
practices. Therefore, the evidences on Code will indicate
the quality of the code production process.

Despite its simplicity, this procedure assists the team on
analyzing the BN during the Sprint Retrospective meeting.
Given evidences collected during the sprint, the team iden-
tifies which processes and practices needs to be modified
to increase the chances of building products that satisfy the
customers. For this purpose, it is important that the team
registers which practices or processes are being used for
each factor. In Table 1, we show examples of practices that
might be associated with nodes of the base BN.

Another option is to decompose the auxiliary using DAG
construction techniques into a causal model representing
the given process. Even though it increases the cost of con-
structing and maintaining the BN, it enables a deeper anal-
ysis of the process. For instance, according to Pichler [15],
defining a release plan and product vision is a good prac-
tice to plan agile projects and influences the quality of the

product backlog. The release plan is composed of the re-
lease date, description of top features and product vision.
The product vision must have a broad and engaging goal,
be clear and stable, short and concise and describe the crit-
ical attributes to satisfy the needs of the customers. With
this information, we can build the causal model shown in
Figure 3 and associate it with the node Product backlog of
the base BN.

Furthermore, it is possible to complement the base BN
with metrics. Metrics can be used with two purposes: (i) as
indicator of values for input nodes and (ii) warnings. For
(i), it is necessary to connect the metrics to the given node
and calibrate the NPT. If the metric is automatically col-
lected through tools, this approach can reduce the cost of us-
ing the BN. For instance, we could use static analysis met-
rics to indicate the quality of the code. On the other hand,
manually collected metrics can also be added. For instance,
to indicate if the Product Backlog is ordered correctly, we
can evaluate the technical dependencies, risks and business
value [21]. The resulting fragment is shown in Figure 4.

Product
Backlog

Release
Plan

Product
vision

Broad
And

engaging

Critical
attributes

Short And
Concise

Clear
And

Stable

Main features
description

Release
Date

Practices – Product Backlog

Figure 3. Example of decomposing an auxil-
iary node.

Ordering

RisksTechnical
dependencies

Value

Figure 4. Example of adding metrics to the
base BN.

Review
meeting

AdaptationInspection

Deferred
defects

Reconciliation

Figure 5. Example of adding warning metric
to the base BN.

For (ii), the metric is a warning that indicates that some-
thing is wrong with the BN. Furthermore, it helps to identify
possible problems in the software development method that
the BN failed to identify, which might be a result of prob-
lems with the construction, usage or modeling limitation.
In this case, the metric should be connected to the base BN
using the reconciliation idiom [5].

For instance, we can associate the metric Deferred de-
fects [11] to the node Inspection. This metric indicates
the number of defects that should have been detected dur-
ing the previous sprint, but were not. Suppose the Scrum
Master judges that the Sprint Review meetings for a given
project are being executed satisfactorily, but Deferred de-
fects were identified. This might raise a warning meaning
that increments with defects were approved during Sprint
Review meetings, which means that the inspection was not
as satisfactorily as judged by the Scrum Master. The re-
sulting fragment for this example is shown in Figure 5. On
the other hand, depending on the defects identified, it might
not be a problem of inspection during the Sprint Review
meeting, but of the testing process. In this case, the met-
ric Deferred defects can be associated with the node Code.
Finally, it might be a false alert and ignored by the team.
Therefore, this approach must be used if the team wants
to use metrics just as warnings and not as direct input to the
BN, which might be the case if there is not much confidence
in the causality. In Table 2, we show examples of metrics
that can be associated with the base BN.

3 Validation

To validate the framework in terms of completeness, we
evaluated the anti-patterns presented in Eloranta et al. [4], in
which an empirical study with 11 companies was executed.
They identified 14 anti-patterns in adopting Scrum and their
consequences, namely: (i) big requirements documenta-
tion, (ii) customer Product Owner, (iii) Product Owner
without authority, (iv) long or non-existent feedback loops,
(v) unordered product backlog, (vi) work estimates given
to teams, (vii) hours in progress monitoring, (viii) semi-
functional teams, (ix) customer caused disruption, (x) no

Table 2. Examples of metrics that can be as-
sociated with the base BN.

Node Metrics
Code Static analysis warnings, number

of test cases, number of defects
and code coverage.

Product Backlog Percentage of ready items.
Planning meeting Percentage of completed items.

Details INVEST [3].
Execution Sprint velocity.

Sprint Running Tested Features e veloc-
ity.

Increment Customer satisfaction, delivered
value e agileEVM [18].

Figure 6. Results of the BN for anti-pattern (i).

sprint retrospective, (xi) invisible progress, (xii) varying
sprint length, (xiii) too long sprints and (xiv) testing in next
sprint. The goal of our validation was to identify if the
proposed solution can identify them. Furthermore, we an-
alyzed if the calculations are in conformance with the con-
sequences of the anti-patterns. Due to space limitations, we
only present the analysis of one anti-pattern in this paper.

For anti-pattern (i), the consequences of this pattern are
that the team does not understand the requirements and that
they are not ordered. It is related to the node Product Back-
log, which is not an input node (i.e., leaf). Therefore, we
analyze this pattern by defining evidences for the nodes De-
tails, Ordering, Emergent and Estimation. As previously
mentioned, in this context, the requirements are not ordered
and emergent. Furthermore, if the team does not understand
the requirements, it means that they are not detailed prop-
erly, as consequence, not estimated properly. By analyzing
the calculated BN shown in Figure 6, we conclude that anti-
pattern (i) is detected by the BN.

The anti-pattern (vi) is partially detected by the BN. The
consequences of this anti-pattern are unrealistic goals and
team demotivation. Even though it is related with the nodes
Estimation and Sprint goal, the model does not present a
causality between the quality of the estimations and the
quality of the teamwork (i.e., motivation). On the other
hand, the BN assists on assessing if the team is motivated
in the fragment Teamwork. For instance, demotivated teams
will probably not collaborate and share leadership.

The anti-pattern (x) is considered invalid because it is
related to the Sprint Retrospective meeting, which is not
modeled by the BN, as previously explained. The remaining
anti-patterns are detected by the need of entering evidence
on input nodes or analyzing the BN.

4 Final remarks

In this paper, we presented a framework to build a BN to
assist on the assessment of Scrum-based software develop-
ment methods. The BN models the main entities of the soft-
ware development process and can be complemented with
software practices and metrics. With the resulting BN, it
is possible to monitor if the agile method is being followed
and if it meets the needs of the project.

We evaluated the completeness of the solution through
simulations to check if the proposed framework diagnoses
14 known Scrum anti-patterns (i.e., ScrumBut) presented in
Eloranta et al. [4]. From the 14 known Scrum anti-patterns,
1 is invalid, 12 were directly detected and 1 was indirectly
detected by the constructed model.

Even though our solution is an evolution of published
studies [14, 13], which were evaluated in the industry, the
main limitation of this study is the validation process. As
future works, we will evaluate the proposed framework
through case studies in the industry. To ease the usage on
industry context, a tool to support the usage of the proposed
framework, hiding the complexity of Bayesian networks
from the practitioner, is currently under development.

The main contributions for practitioners are that the solu-
tion helps to configure and adopt Scrum-based agile meth-
ods and to develop measurement programs to continuously
improve the maturity of the team and delivery process. For
researchers, it can serve as a basis to configure empiri-
cal studies on Scrum-based agile methods and improve the
state-of-art of agile methods measurement programs, adop-
tion and maturity.

References

[1] S. Brinkkemper. Method engineering: engineering of
information systems development methods and tools.
Information and Software Technology, 38(4):275 –
280, 1996. Method Engineering and Meta-Modelling.

[2] A. S. Campanelli and F. S. Parreiras. Agile meth-
ods tailoring - a systematic literature review. J. Syst.
Softw., 110(C):85–100, Dec. 2015.

[3] S. Downey and J. Sutherland. Scrum metrics for hy-
perproductive teams: How they fly like fighter aircraft.
In System Sciences (HICSS), 2013 46th Hawaii Inter-
national Conference on, pages 4870–4878, Jan 2013.

[4] V.-P. Eloranta, K. Koskimies, and T. Mikkonen. Ex-
ploring scrumbutan empirical study of scrum anti-
patterns. Information and Software Technology,
74:194 – 203, 2016.

[5] N. Fenton and M. Neil. Risk Assessment and Deci-
sion Analysis with Bayesian Networks. CRC Press, 5
edition, 11 2012.

[6] N. E. Fenton, M. Neil, and J. G. Caballero. Us-
ing ranked nodes to model qualitative judgments in
bayesian networks. IEEE Trans. on Knowl. and Data
Eng., 19(10):1420–1432, Oct. 2007.

[7] R. M. Fontana, I. M. Fontana, P. A. da Rosa Garbuio,
S. Reinehr, and A. Malucelli. Processes versus people:
How should agile software development maturity be
defined? Journal of Systems and Software, 97:140 –
155, 2014.

[8] R. M. Fontana, V. Meyer, S. Reinehr, and A. Malu-
celli. Progressive outcomes. J. Syst. Softw.,
102(C):88–108, Apr. 2015.

[9] S. Grapenthin, S. Poggel, M. Book, and V. Gruhn. Im-
proving task breakdown comprehensiveness in agile
projects with an interaction room. Information and
Software Technology, 67:254 – 264, 2015.

[10] T. Javdani Gandomani and M. Ziaei Nafchi. An
empirically-developed framework for agile transition
and adoption. J. Syst. Softw., 107(C):204–219, Sept.
2015.

[11] E. Kupiainen, M. V. Mntyl, and J. Itkonen. Using met-
rics in agile and lean software development a system-
atic literature review of industrial studies. Information
and Software Technology, 62:143 – 163, 2015.

[12] M. Perkusich, H. O. de Almeida, and A. Perkusich.
A model to detect problems on scrum-based software
development projects. In Proceedings of the 28th An-
nual ACM Symposium on Applied Computing, SAC
’13, pages 1037–1042, New York, NY, USA, 2013.
ACM.

[13] M. Perkusich, K. Gorgonio, H. Almeida, and
A. Perkusich. Assisting the continuous improvement
of scrum projects using metrics and bayesian net-
works. Journal of Software: Evolution and Process,
2016. Article in Press.

[14] M. Perkusich, G. Soares, H. Almeida, and A. Perku-
sich. A procedure to detect problems of processes
in software development projects using bayesian net-
works. Expert Systems with Applications, 42(1):437 –
450, 2015.

[15] R. Pichler. Agile Product Management with Scrum:
Creating Products that Customers Love. Addison-
Wesley Professional, 1 edition, 4 2010.

[16] A. Qumer and B. Henderson-Sellers. A framework
to support the evaluation, adoption and improvement
of agile methods in practice. Journal of Systems and
Software, 81(11):1899 – 1919, 2008.

[17] F. S. Silva, F. S. F. Soares, A. L. Peres, I. M.
de Azevedo, A. P. L. Vasconcelos, F. K. Kamei, and
S. R. de Lemos Meira. Using {CMMI} together with
agile software development: A systematic review. In-
formation and Software Technology, 58:20 – 43, 2015.

[18] T. Sulaiman, B. Barton, and T. Blackburn. Agileevm
- earned value management in scrum projects. In AG-
ILE 2006 (AGILE’06), pages 10 pp.–16, July 2006.

[19] J. Sutherland and K. Schwaber. The scrum guide.
http://www.scrumguides.org/docs/scrumguide/v1/Scrum-
Guide-US.pdf, 2017. Accessed in: 03-10-2017.

[20] K. Verbert, R. Babuka, and B. D. Schutter. Bayesian
and dempstershafer reasoning for knowledge-based
fault diagnosisa comparative study. Engineering Ap-
plications of Artificial Intelligence, 60:136 – 150,
2017.

[21] J. Vlietland, R. van Solingen, and H. van Vliet. Align-
ing codependent scrum teams to enable fast business
value delivery: A governance framework and set of in-
tervention actions. Journal of Systems and Software,
113:418 – 429, 2016.

[22] S. Wagner, A. Goeb, L. Heinemann, M. Kls, C. Lam-
pasona, K. Lochmann, A. Mayr, R. Plsch, A. Seidl,
J. Streit, and A. Trendowicz. Operationalised prod-
uct quality models and assessment: The quamoco ap-
proach. Information and Software Technology, 62:101
– 123, 2015.

[23] L. Williams. What agile teams think of agile princi-
ples. Commun. ACM, 55(4):71–76, Apr. 2012.

[24] L. Williams, K. Rubin, and M. Cohn. Driving pro-
cess improvement via comparative agility assessment.
In Proceedings of the 2010 Agile Conference, AGILE
’10, pages 3–10, Washington, DC, USA, 2010. IEEE
Computer Society.

