
Parallel Execution Optimization of
GPU-aware Components in Embedded Systems

Gabriel Campeanu
Mälardalen Real-Time Research Center

Mälardalen University, Västerås, Sweden
Email: gabriel.campeanu@mdh.se

Abstract—Many embedded systems process huge amount of
data that comes from the interaction with the environment. The
Graphics Processing Unit (GPU) is a modern embedded solution
that tackles the efficiency challenge when processing a lot of
data. GPU may improve even more the system performance by
allowing multiple activities to be executed in a parallel manner.
In a complex component-based application, the challenge is to
decide the components to be executed in parallel on GPU when
considering different system factors (e.g., GPU memory, GPU
computation power).

In the context of component-based CPU-GPU embedded
systems, we propose an automatic method that provides parallel
execution schemes of components with GPU capabilities. The
introduced method considers hardware (e.g., available GPU
memory), software properties (e.g., required GPU memory)
and communication pattern. Moreover, the method optimizes
the overall system performance based on component execution
times and system architecture (i.e., communication pattern). The
validation uses an underwater robot example to describe the
feasibility of our proposed method.

Keywords—CBD, component-based development, CPU-GPU,
embedded systems, GPU-aware component, GPU component,
parallel component execution, optimization

I. INTRODUCTION

An embedded system is a computational systems that may
be part of a larger system executing one or several specific
tasks. Many of the modern embedded systems deal with huge
amount of data due to e.g., interaction with the environment.
For example, underwater robots use their sensors (e.g., cam-
eras, radars) to receive information about the surrounding
underwater environment and process it in order to e.g. detect
various objects.

Due to the limited computing power and the sequential
execution model of the CPU, traditional embedded systems
have a challenge in providing the required performance level
demanded by applications, while processing huge amount
of data. For example, an underwater robot, while navigates,
needs to identify with a certain performance the encountered
objects in order to cope with the environment changes such
as detecting moving objects.

One feasible solution that tackles the efficiency challenge
of processing huge amount of data is the GPU. Due to its
parallel execution architecture, the GPU can efficiently process
data in a parallel manner. Today, using the latest technological
improvements, there are embedded boards that contain GPUs

also know as CPU-GPU embedded boards such as NVIDIA
Jetson TK1 and AMD Kabini.

Another trend in the development of embedded systems is
the usage of component-based development (CBD) [1] [2].
This software engineering methodology promotes develop-
ment of systems through the composition of already existing
software units known as (software) components. A key concept
of CBD is the encapsulation, where components are seen
as black boxes and the source code is encapsulated (inside
the components). CBD is an attractive solution for embedded
systems due to e.g., its faster time-to-market and the increase
of the development productivity. The industry has successfully
adopted CBD for embedded system development through
component models such as AUTOSAR, Koala, Rubus and
IEC 61131.

In a component-based CPU-GPU embedded system, the
GPU, besides an increased efficiency w.r.t. data processing,
may improve the system performance by allowing multiple
components to be processed in parallel. Due to the fact that
the GPU is characterized by a different architecture then the
traditional CPU, different rational needs to be used when
targeting GPU parallelism. The challenge of specifying how
many components may be parallel executed relies not only
on the available hardware resource description (e.g., available
GPU memory) but also on the component specifications (e.g.,
GPU memory usage) and the system communication pattern.
For example, the sum of the GPU memory usage of com-
ponents that are parallel executed needs to be lower than the
available hardware memory; moreover, the components should
be independent of each other w.r.t. data communication.

In this work, we provide a method that automatically com-
putes schemes of components that can be executed in parallel
on GPU. The method is formally described and includes
hardware and software specifications (Section V). Further-
more, the method provides optimized solutions considering
component extra-functional properties (i.e., execution time).
Resembling with the bin-packing problem and the multipro-
cessor scheduling problem which are combinatorial NP-hard
problems [3], heuristics need to be utilized in finding solutions.
For the implementation part, we use a mixed-integer non-
linear programming (MINLP) heuristic approach to compute
execution schemes (Section VII). As validation, we utilize an
underwater robot example to describe the feasibility of our
method (Section VIII).

DOI reference number: 10.18293/SEKE2017-137

II. CPU-GPU EMBEDDED SYSTEMS

Initially, GPUs appeared in late 90s and were used only
in graphics-based applications. Nowadays, the GPU is used
in various types of applications such as cryptography [4] and
simulation of bio-molecular systems [5], becoming a general-
purpose unit.

The GPU may be seen as a complementary unit to the
CPU. While the CPU is designed to rapidly execute in a
sequential manner each instruction, the GPU, being equipped
with thousand of computation threads, excels in parallel data
processing. Therefore, CPU-GPU applications perform best
when distributing the right job (i.e., sequential and parallel) to
the right processing unit (i.e., CPU and GPU). For example,
the massive amount of data of a vision system is processed
onto GPU while the CPU takes care of e.g., histogram com-
putations [6]. An important characteristic of the GPU is that
it cannot function without the CPU. Considered the brain of a
system, the CPU is the one that triggers all the activities that
are executed on GPU. We need also to mention that, once an
activity is started to be executed by GPU, it can not be paused
or preempted.

GPU integration to embedded boards is today possible
through various type of systems such as NVIDIA Jetson TK1,
AMD Kabini and ARM MALI. The CPU-GPU embedded
systems may increase the system performance of existing
applications. For example, the stereo matching application for
embedded systems has a considerable increase of frame rate
processing when is performed onto GPU [7].

Another trend in embedded systems is the usage of
component-based development. Through the existing com-
ponent models, CBD is successfully used in industry; we
mention AUTOSAR that became a standard in automotive
development, Koala used by Philips and IEC 61131 used for
programmable logic controllers. Another industrial component
model is Rubus used by e.g., Volvo Construction Equipment
branch [8]. Rubus follows the pipe-and-filter interaction style
that provides a precise control flow of the system which makes
Rubus applicable to particular embedded system domains (e.g.,
real-time systems and safety systems) [9].

Following the CBD approach, a CPU-GPU system is con-
structed from: i) regular components with CPU characteristics,
implemented to be executed onto CPU; and ii) components
with GPU functionality1 (i.e., GPU-aware components) that
have both CPU and GPU characteristics. A GPU-aware com-
ponent has its functionality (or part of it) specific developed
to be executed on GPU. Besides the functional description,
a GPU-aware component is characterized by qualities and
constraints known as extra-functional properties (EFPs). For
example, a GPU-aware component may have as quality the
execution time performance while as constraints, it may de-
mand a specific number of GPU threads and memory usage.

The development of GPU-based applications is realized
through different programming models and the two most

1During the rest of the paper, we refer to a component with GPU
functionality as a GPU-aware component

known are CUDA and OpenCL. While CUDA is developed by
the NVIDIA vendor to be used only for their GPUs, OpenCL
is a general model developed by KHRONOS group that targets
GPUs produced by e.g., INTEL, AMD and NVIDIA.

III. PROBLEM DESCRIPTION

For traditional CPU-based embedded systems, a way to
achieve parallelism is to assign components to different e.g.,
CPU cores, and let the components to be executed in parallel
(by the OS). We assume that there are enough resources and
components are data independent of each other (i.e., do not
have communication connections). Basically, the parallelism
is influenced by the number of distinct processing units that
a system is composed of. For example, an embedded system
with a quad-core CPU can have at a given time instance a
maximum of four components that can be executed in parallel.

Due to a different architecture, the way to achieve paral-
lelism on GPU is different than on CPU. A GPU is composed
of hundreds of computation cores and thousands of threads
and when an activity is executed, it may consume tens of cores
and thousands of threads. Therefore, the metric to reason about
GPU parallelism is not the numbers of cores but is a relation
between several factors such as the number of independent
software activities, hardware limitation (e.g., available GPU
memory) and resources demands (e.g., computation threads
usage). Each GPU platform has a physical limitation regarding
the number of activities that can be simultaneously executed.
For example, an NVIDIA GPU with a Pascal architecture
and compute capability 6.1 can run simultaneous up to 32
activities, assuming there are enough resources to sustain their
execution [10].

In this work, we assume that a GPU can execute simul-
taneous as many components as needed due to two main
reasons: i) it is difficult to develop an embedded system that
contains e.g., 32 independent GPU-aware components; and
ii) even if the system has a high number of independent
GPU-aware components, the GPU parallelism is limited by
the component usage of hardware resources. For example, in
a complex system that contains 10 independent GPU-aware
components that have different image processing algorithms,
only few of them can be executed in parallel due to the
component high resource requirements, i.e., memory, threads
and registers usage. The rest of the components wait for the
resources to be released in order to be executed.

IV. SYSTEM DESCRIPTION

The section describes our vision and assumptions on the
software and hardware models of a CPU-GPU embedded
systems.

A. The software system

The software application is composed of several compo-
nents that communicate using various styles. For example, the
Rubus component model follows the pipe-and-filter architec-
tural style, where components are seen as filters that process
data while the communication between components are pipes

that transfer data. Fig. 1 presents a general component-based
system with GPU functionality, that follows the pipe-and-filter
style and each of its GPU-aware component is characterized
by various specifications. For example, component C1 is
characterized by its quality (i.e., execution time) and EFPs
as a set of GPU-specific requirements (e.g., usage of GPU
memory). Because all GPU activities are triggered by the CPU,
a GPU-aware component is characterized by both CPU and
GPU specific properties. As our work targets the optimization
of GPU activities execution, we focus only on the GPU-aware
components and their GPU-specific properties, and discard the
CPU-specific properties.

C6	C1	

C2	

C3	 C5	

C4	

Legend:	
Output	port	

Input	port	

Directed	communica;on	link	

GPU-aware	component		

GPU_Mem_usage	
GPU_Workload_usage	
Execu;on_;me	
	

Fig. 1: System with GPU-aware components

In this initial work, we simplify and abstract the component
GPU-specific properties as follows:
• the GPU memory usage specifies the component re-

quirement of the GPU memory usage. The GPU has a
hierarchical memory level, but we abstracted away several
memory layers and use only the main memory level. The
other memory layers are important factors and may be
used in future work to extend our solution to a more
detailed and precise software model.

• the GPU workload describes the GPU computation work-
load usage of the component; the metric utilized to
describe this property is the number of computation
threads. Several other factors related to the GPU workload
are abstracted away (e.g., number of registers used by a
thread).

• the execution time presents the time required by a com-
ponent to fulfill its execution onto GPU.

B. The hardware system

Our focus being on GPU, we have abstracted away the CPU-
specific properties (e.g., available RAM and CPU load) and
characterized the hardware platform with only GPU-specific
properties, as follows:
• the available GPU memory presents how much of GPU

main memory a hardware is characterized by;
• the GPU computation load depicts the total of GPU

computation threads a hardware is equipped with.
Similar with the software description, other influential GPU
properties such as different memory levels (e.g., share mem-
ory) and the total amount of registers are removed in this
introductory stage of our work.

V. METHOD OVERVIEW

In order to determine the components that may be executed
in parallel and their execution order, the software and hardware
properties are fed as input to our method. The hardware
properties describe the platform resource limitation while
the software specifications describe the component resource
requirements and the communication pattern. The pattern
of component communication has an important role when
evaluating which component may run in parallel. For example,
in Fig. 1, based on the communication pattern, we observe that
C2 and C4 cannot be executed in parallel. C4 is depended
of the C2 output and hence, they will be always sequentially
executed.

The computed solution is expressed as a list composed
of sublists of GPU-aware components. Each sublist contains
components that can be, at a time instance, executed in
parallel; the order of the sublists presents the order of the
components execution.

C2		
	

Requirements:	

	8Mb	GPU	memory	

	8000	GPU	threads	

Connec;on:	

	sends:	C4		
	receives:	C1	

Execu;on	;me:	2	sec	

Available	GPU	RAM	=	50	Mb		

Available	GPU	Workload	=	25000	

	 	 	 	threads	

Software properties:

Hardware properties:
…	

Hardware	model	So.ware	model	

C6	C1	

C2	

C3	 C5	

C4	

Global	Memory	

…	

GPU	

{ {C1}, {C2, C4, C3, C5}, {C6} }

Decrease	system		

execu;on	;me	

	

Optimization:

{ {C1}, {C2, C3}, {C4, C5}, {C6} }

Optimized solution:

Parallel solution:

Fig. 2: The high-level overview of the proposed method

The solution overview is described in Fig. 2. Each compo-
nent describes its resource requirements (e.g., GPU memory
usage), how is connected to other components (i.e., to which
component sends and from which component receives data)
and its performance (i.e., execution time). The method calcu-
lates the components that can be executed in parallel, and their
execution order.

Moreover, the method calculates an optimized parallel exe-
cution solution based on the component execution times. In
order to describe the general idea of the optimization, we
use the example with six connected components presented in
Fig. 2. An initial solution is presented in Fig. 3(a) where, after
C1 is executed, C2 and C3 are executed in parallel, followed
by C4 and C5, and finally C6. The total execution time of
the system is 5.8 seconds. Because C5 component is only
dependent of C3 output data, and C3 has a shorter execution
time than C2, an improved solution is to include C5 in the
second batch 2 as it is seen in Fig. 3(b). This solution can be

2we will call the group of components that may be executed in parallel as
a batch of components

further optimized when introducing C4 in the second batch,
resulting an overall execution time of 5 seconds (Fig. 3(c)).

C1	

C2	

C3	

C4	

C5	

C6	

t1	 t2	 t4	 t6	 t7	t3	 t5	

1s	 2s	 1.8s	 1s	

0.8s	 1s	

execu3on	
3me	

(a) A parallel execution solution

C1	

C2	

C3	

C4	

C6	

t1	 t2	 t3	 t4	 t5	

1s	 2.6s	 1s	 1s	

C5	

(b) Improved solution

C3	
C1	

C2	 C4	
C6	

t1	 t2	 t3	 t4	

1s	 3s	 1s	

execu.on	
.me	

C5	

(c) Optimized solution

Idle	GPU	

Directed	data	dependency	

GPU-aware	component	

Legend:	

Legend:	

Fig. 3: Optimization of a parallel execution solution

In general, we try to reduce the system overall execution
time by possibly increasing and/or decreasing the execution
time of different batches and possible reducing the number of
batches. More precise, we look into batches where the GPU is
idle and we try to fit in suitable components from the adjacent
batch. For example, in Fig. 3(b) we migrated C5 in batch 2
because the GPU was idle (i.e., C3 has a short execution time)
and C5 is only dependent of C3. We notice that, in the updated
second batch (Fig. 3(c)), GPU is idle after C5 finishes, but we
cannot fit in C6 because it is also dependent of C4 and there
will be no improvement gain.

The optimization idea resembles with a bin packing prob-
lem, where we have already a number of bins and the solution
is improved by re-fitting the bin sizes. This type of problem,
where bin sizes are changed based on their items and their
connection, is NP-hard [3], i.e., an exact solution cannot be
calculated in feasible time (unless P = NP).

VI. METHOD REALIZATION

This section presents the mathematical formalization of our
method starting with the description of the (software and
hardware) system followed by the system constraints and
initial solution calculation, and finally the optimization step.

A. System definition

1) Let be C = {c1, ..., cn} a set that contains a finite
number of components with GPU functionality. Each
component ci ∈ C is characterized by two multi-valued
functions Send : C → C, Rec : C → C, and three
single-valued functions GPU Mem usage : C → N>0,
GPU Load usage : C → N>0 and
exec time : C → Q>0 described as follows:

• Send(c) = a sublist that may contain none, one or
several components that receive data from c;

• Rec(c) = a sublist that may contain none, one or several
components that send data to c;

• GPU Mem usage(c) = the GPU memory usage of c;
• GPU Load usage(c) = the number of GPU threads

required by c; and
• exec time(c) = execution time of c.

2) The hardware is characterized by two constants:
GPU Mem ∈ N>0 and GPU Load ∈ N>0, where:
• GPU Mem = the available GPU global memory;
• GPU Load = available number of GPU threads.

B. Constraints

• sum of the GPU memory usage of components from a
batch (same sublist - see Section VI-C), cannot exceed
the available GPU memory:∑

c∈{c|c∈Ci⊂C} GPU Mem Usage(c) ≤ GPU Mem

• sum of the GPU thread usage of components from a
batch, cannot exceed the available GPU available threads:∑

c∈{c|c∈Ci⊂C} GPU Load Usage(c) ≤ GPU Load

C. Initial Solution Calculation

We see the solution as a list composed of sublists of
components, i.e., C = {C1, ..., Ck}. Each sublist contains
components that can be parallelized; the sublist order presents
the order of components execution. Each sublist is constructed
based on its previous adjacent sublist as follows. We start
by determining the first sublist that contains components with
no input data; the following sublist contains components that
receive data only from the components contained by the first
sublist, and so on. In general, the solution list has two types
of sublist elements:

• the first sublist type element C1 = {cp, ...} that contains
at least one element cp and Rec(cp) = ∅;

• the general sublist type element Ck = {cq, ...}, where
∀cq ∈ Ck, Rec(cq) 6= ∅ and Rec(cq) ⊂ Ck−1.

We mention that there exist only one first sublist type ele-
ment while the general sublist type element may expand into
none, one or several items. Some special cases may result in a
solution with only one sublist item. For example, a system that
contains one or several components that do not communicate
among each other, will be executed in parallel (enclosed into
one sublist element) if there are enough hardware resources.

D. Optimization

The initial solution calculated in the previous step is opti-
mized (if possible) by decreasing the overall system execution.
The overall idea, as described in Section V, is to look into
batches where the GPU is idle and try to fit in components
from an adjacent batch. Therefore, having a total of k batches
C = {C1, ..., Ck}, the sum of execution times of all batches
is minimized:
minimize ExTime =

∑k
i=1 costi, where

costi represents the cost (i.e., the execution time) of a single
batch Ci and is calculated by taking the largest cost (i.e.,
largest component execution time) from that batch:

costi = max∀cp∈Ci
(exec time(cp)).

Moreover, we may increase the cost of a batch by taking a
component with (strictly) smaller cost than the batch’s cost
(i.e., a part of the GPU is idle) and adding to it the cost of
a connected component from the adjacent batch:

∀cj ∈ Ci, exec time(cj) < costi,
exec time(cj) = exec time(cj) + exec time(cq),where

cq is a connected component cq ∈ Ci+1,
cq ∈ Send(cj) and all its connected components from
batch i have a lower execution time than cj :

∀cm ∈ Rec(cq) ∧ cm ∈ Ci,
exec time(cm) < exec time(cj).

The last condition is to ensure that the cq component, when
is added to the i-th batch, will not need to wait for the output
data of another cm component (from the same i-th batch) and
will directly execute after cj component finishes.

VII. IMPLEMENTATION

The optimization challenge is an NP-hard combinatorial
problem [3]. Therefore, heuristic techniques need to be em-
ployed in order to find solutions. We selected the MINLP
technique to address our method and to calculate feasi-
ble solutions. One solver that handles MINLP problems is
SCIP [11], being one of the fastest non-commercial solvers
existing on the market [12]. The solver divides the prob-
lem into smaller subproblems (know as branching) that are
solved recursively. Moreover, for the solver to interpret our
allocation model, we used the ZIMPL language [13] that
translates the mathematical formulation into a readable format
by SCIP. The following paragraphs briefly describe parts
of our method implementation using the ZIMPL language.

Listing 1: Translation of the parallel execution model
1 set C := {"c1","c2","c3"};
2 param GPU_mem_use[C]:=<"c1"> 10,<"c2"> 80,<"c3"> 50;
3
4 set C_0 := { <c> in C where Rec(c) = 0 };
5 set C_1 := { <c> in C where Rec(c) in C_0 };
6
7 subto constraint: forall SubList in Sol do
8 (sum <c> in SubList :GPU_mem_use[c]) <= GPU_mem_available;
9

10 minimize gpu_cost: sum SubList in Sol :
11 forall <c> in SubList do max(exec_time(c));

Besides the actual translation of the model constraints, it is
required to construct a system model (in ZIMPL) in order to
execute the model and find solutions. The system construction
can be achieved in two ways: i) hard-coding the system and
its characteristics directly into the ZIMPL program; and ii)
reading the specifications from a file. The former mean is
illustrated in Listing 1, where a system is defined as a set C
of three components (line 1); the next line captures the GPU
memory usage of each component. Similarly, we define the
rest of the system specifications such as the available GPU
memory and the component execution times.

We continue by constructing the initial solution that com-
prises of sublists of components. The first sublist C 0 contains
components that have no input data (see Section VI-C - first
sublist type element); the following sublist, C 1 is constructed
based on the C 0 content, i.e., all the components that receive
data only from components of C 0 sublist (lines 4 and 5).
Regarding the implementation of constraints, we present the
memory constraint, where the sum of the GPU memory usage
of components from a sublist is less (or equal) than the
available hardware memory (lines 7 and 8). The last part
of the Listing describes a reduced form of the optimization
function (due to the complexity structure), where we calculate
the cost of each sublist SubList from the initial solution Sol,
and minimize their summed cost (lines 10 and 11).

VIII. RUNNING CASE EVALUATION

We examine our proposed method through a feasibility
evaluation of an underwater robot demonstrator. The robot
contains a CPU-GPU embedded board that communicates with
actuators (e.g., thrusters) and sensors (e.g., cameras) [14].
Using the continuous feedback provided by cameras, the
robot autonomously navigates underwater in fulfilling various
missions (e.g., tracking red buoys). For designing the robot ar-
chitecture, we used the Rubus component model [15] due to its
fitting for developing streaming-of-event type of applications.

Legend:	
Data	port	GPU-aware	component	

Regular	(CPU-based)	component	

Sync	 SynchronizaBon	element	

Trigger	port	

Control	flow	

Data	flow	

Camera	
Front	

0.5	sec	

Sensor	
Camera1	

Camera	
BoKom	

Sensor	
Camera2	

Enhance	
Front	

Enhance	
BoKom	

Filter	
Front	

Filter	
BoKom	

Detect	
Shape	
Front	

Detect	
Shape	
BoKom	

Compress	 Log	

Sync	

Examine	
Shape	
Front	

Examine	
Shape	
BoKom	

Mission	
Manager	

Sync	

89%	

Fig. 4: The Rubus architecture of the vision system

Fig. 4 presents the vision system architecture of the robot.
The physical (front and bottom) cameras provide raw data
that is converted into readable frames by CameraFront and
CameraBottom. These frames are forwarded to EnhanceFront
and EnhanceBottom that improve the frames quality, by e.g.,
removing harsh edges. FilterFront and FilterBottom filter
images using red-color criterion, resulting black-and-white
frames. DetectShapeFront and DetectShapeBottom detect the
shapes of the objects from the frames (e.g., circle, square) and
forward their results to ExamineShape components that verify
the found shapes against predefined shapes. The findings are
sent to MissionManager that takes appropriate decisions. The
Compress component compresses frames (e.g., resize) to allow

the (CPU) Log component to keep trace of the robot navigation
for debugging purposes.

Each frame produced by cameras has a number of 600*400
pixels. When a frame is processed, we set that a GPU thread
operates on 32 pixels. The GPU hardware has a total of 65536
threads and 128 Mb of memory. After translating the vision
system using ZIMPL language and applying our proposed
model on it, we obtain a solution illustrated by Table I.

TABLE I: The vision system execution scheme

Sublist GPU-aware Memory Thread Execution
(Batch) component usage(Mb) usage time(ms)

1 Enhance Front 1.2 8000 35
Enhance Bottom 1.2 8000 35

2 Filter Front 1.2 8000 30
Filter Bottom 1.2 8000 30

DetectShapeFront 1.2 8000 45
ExamineShapeFront 1.2 8000 45

3 DetectShapeBottom 1.2 8000 40
ExamineShapeBottom 1.2 8000 40

Compress 4.8 24000 70

The solution orders the components into three batches of
execution. We notice that the solution is optimized as batch
3 contains five components to be executed in parallel. An
intermediate solution contains four batches, where in batch
3 only DetectShapeFront, DetectShapeBottom and Compress
would be executed in parallel. Due to the high execution
time of Compress and the hardware having enough resources,
ExamineShapeFront and ExamineShapeBottom are migrated
into batch 3.

E
nd

-to
-e

nd
 ti

m
e

(m
s)

0
10
0

20
0

30
0

40
0

50
0

Sequential execution
Parallel execution
Optimized parallel execution

370

275

150

Fig. 5: Different execution times of vision system

Regarding the performance of the vision system, Fig. 5
presents the execution times when the system is executed
in three cases. When the system is executed sequentially,
the performance is the worst (i.e., 370 ms). An intermediate
solution that executes the system in four batches, improves
the system performance (i.e., 275 ms). Optimizing the solution
and executing the system in three batches offers an enhanced
performance (i.e., 150 ms).

By applying out method on the vision system case study, we
improved the overall system performance. The specifications
of our system allowed the method to provide an optimized
solution.

IX. RELATED WORK

Embedded systems embraced heterogeneity to improve sys-
tem performance. Nowadays, we have platforms with multi-
cores (e.g., SoC quad-core ARM processor [16]) and GPUs
(e.g., AMD Carrizo APU). To manage the specifics of the
new platforms, CBD introduced ways to handle the hardware
particularities. We mention the work of Kopetz et al. [17]
that explores the design alternatives of the AUTOSAR com-
ponent model when targeting multi-core ECUs. The CPU-
FPGA platforms are addressed by Andrews et al. [18] that
introduce a way to utilize COTS components, by synchro-
nizing CPU-FPGA computations inside the components. The
Rubus component model is extended with new artifacts (e.g.,
GPU ports), to allow efficiently development of CPU-GPU
embedded systems [19].

Due to an increased complexity and challenging quality
requirements, system optimization approaches has prolifer-
ated. There is a body-of-knowledge presented in different
surveys [20] [21], that targets optimization of software ar-
chitectures from different system domains (e.g., embedded
systems and information systems) considering various quality
attributes. Yet, there is a reduce amount of work that addresses
the optimization of component-based architectures of embed-
ded systems with different computation nodes. We mention
the work of Campeanu et al. that targets component-based
systems with many CPU and GPU computation nodes [22].
The authors allocate components over hardware considering
their (CPU and GPU) requirements and optimize the allocation
based on different criteria. The drawback of this work is that it
does not take in attention the architecture design and considers
that all GPU-aware components can be parallelized at once.
In our work, we consider how the components are connected
and optimize their parallel execution on a single GPU node.

Specific scheduler solutions for GPU-based systems are
addressed by various works. We mention Muyan-Özçelik
et al. [23] that developed several scheduling algorithms for
(GPU) tasks, where a task is defined as a series of operations,
i.e., a host-to-device copy, a GPU (kernel) execution and a
device-to-host copy. For example, an algorithm increases the
system performance by scheduling copy operations in the
same time as GPU (kernel) executions. The work presents
the findings of its schedulers using NVIDIA technology. By
targeting only NVIDIA GPUs, some of their claims are based
on specific hardware technology which may not hold for
GPUs from other vendors. Moreover, they have a high control
over scheduled tasks. In our work, one or several tasks may
be incorporated into a component and we do not have the
same level of control over them. For example, we do not
know when a device-to-host copy operation (encapsulated
into a component) ended in order to give the control to a
GPU (kernel) execution (encapsulated by another component).

Moreover, even if we create such mechanisms, the context-
switching between components would be very expensive.
Basically, it would worth to have these mechanisms when
components would have very large copy operations and GPU
(kernel) executions. Other works use the same (refined) control
level in order to provide parallelization strategies. We mention
a two-level parallelization strategy that works directly with the
GPU (kernel) functionality by e.g., analyzing its loop iterations
and their statements [24].

As our optimization challenge is similar to the bin-packing
problem, we want to mention the surgical scheduling problem,
where the operating rooms seen as bins, can change their
(time) capacity by increasing the number of operations [25]. In
addition, we find the multiprocessor scheduling problem [26]
related to our challenge and we refer specifically to the
Gang scheduling [27] which is considered to be an efficient
algorithm for parallel and distributed systems. One of its types
is Bags of Gangs (or Bags of Tasks) [28] in which the jobs,
considered as independent gangs that belong to a bag, are sent
to be executed by the system. A bag finishes its execution only
when all of its gangs finish.

X. CONCLUSIONS

This work introduces an initial method that addresses the
parallel execution of components on GPU. Our proposed
method computes execution schemes by considering: i) hard-
ware characteristics (e.g., available GPU memory); ii) software
constraints (e.g., required number of GPU threads); and iii)
component communication pattern. The method optimizes the
computed schemes w.r.t. performance (i.e., execution time)
resulting in schemes with maximum degree of component
parallelism. Being an NP-hard combinatorial problem, the
optimized schemes are calculated by using a MINLP heuristic
method. The last part of our work presents the feasibility as-
pect of the proposed method when is applied on an underwater
robot case study.

To the best of our knowledge, there are no developed
component mechanisms to execute GPU-aware components
in parallel. In addition, as several components may simultane-
ously access the GPU, mechanisms to protect the GPU (seen
as a shared resource in this context) need also to be developed.
We consider these aspects as future directions of our work.

ACKNOWLEDGMENTS

The Swedish Foundation for Strategic Research (SSF) sup-
ports our work inside the RALF3 project (IIS11-0060).

REFERENCES

[1] I. Crnkovic and M. Larsson, Building Reliable Component-Based Soft-
ware Systems, 2002.

[2] T. Henzinger and J. Sifakis, “The Embedded Systems Design Chal-
lenge,” in Proceedings of the 14th International Symposium on Formal
Methods, 2006.

[3] S. Anily, J. Bramel, and D. Simchi-Levi, “Worst-case analysis of
heuristics for the bin packing problem with general cost structures,”
Operations research, 1994.

[4] S. A. Manavski, “CUDA compatible GPU as an efficient hardware
accelerator for AES cryptography,” in IEEE International Conference
on Signal Processing and Communications. ICSPC 2007.

[5] J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, and L. G.
Trabuco, “Accelerating molecular modeling applications with graphics
processors,” Journal of computational chemistry, 2007.

[6] S. N. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Genc, “GPU-based video
feature tracking and matching,” in EDGE, Workshop on Edge Computing
Using New Commodity Architectures, 2006.

[7] M. Humenberger, C. Zinner, M. Weber, W. Kubinger, and M. Vincze, “A
fast stereo matching algorithm suitable for embedded real-time systems,”
Computer Vision and Image Understanding, 2010.

[8] Arcticus Systems, “Customers,” http://www.arcticus-systems.com/links/,
accessed: 2017-03-01.

[9] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. R. Chaudron, “A classi-
fication framework for software component models,” IEEE Transactions
on Software Engineering, 2011.

[10] “NVIDIA CUDA C programming guide,” https://docs.nvidia.com/cuda/
cuda-c-programming-guide/, accessed: 2017-03-01.

[11] G. Gamrath, T. Fischer, T. Gally, A. M. Gleixner, G. Hendel,
T. Koch, S. J. Maher, M. Miltenberger, B. Müller, M. E. Pfetsch,
C. Puchert, D. Rehfeldt, S. Schenker, R. Schwarz, F. Serrano, Y. Shinano,
S. Vigerske, D. Weninger, M. Winkler, J. T. Witt, and J. Witzig, “The
SCIP optimization suite 3.2,” ZIB, Tech. Rep., 2016.

[12] H. Mittelmann, “Mixed integer linear programming benchmark,” http:
//plato.asu.edu/ftp/milpc.html, accessed: 2017-03-01.

[13] T. Koch, “Rapid mathematical prototyping,” Ph.D. dissertation, Technis-
che Universitat Berlin, 2004.

[14] C. Ahlberg, L. Asplund, G. Campeanu, F. Ciccozzi, F. Ekstrand, M. Ek-
strom, J. Feljan, A. Gustavsson, S. Sentilles, I. Svogor et al., “The Black
Pearl: An autonomous underwater vehicle,” 2013.

[15] Arcticus Systems, “Rubus models, methods and tools,” http://www.
arcticus-systems.com, accessed: 2017-03-01.

[16] ARM, “The ARM Cortex-A53 processor,” https://www.arm.com/
products/processors/cortex-a/, accessed: 2017-03-01.

[17] H. Kopetz, R. Obermaisser, C. El Salloum, and B. Huber, “Automotive
software development for a multi-core system-on-a-chip,” in Workshop
of Software Engineering for Automotive Systems, 2007.

[18] D. Andrews, D. Niehaus, and P. Ashenden, “Programming models for
hybrid CPU/FPGA chips,” Computer, 2004.

[19] G. Campeanu, J. Carlson, S. Sentilles, and S. Mubeen, “Extending the
Rubus component model with GPU-aware components,” in 19th Int.
Symposium on Component Based Software Engineering, 2016.

[20] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya,
“Software architecture optimization methods: A systematic literature
review,” IEEE Transactions on Software Engineering, 2013.

[21] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, “Model-
based performance prediction in software development: A survey,” IEEE
Transactions on Software Engineering, 2004.

[22] G. Campeanu, J. Carlson, and S. Sentilles, “Component allocation
optimization for heterogeneous CPU-GPU embedded systems,” in The
40th Euromicro Conf. on Soft. Eng. and Advanced Applications, 2014.

[23] P. Muyan-Özçelik and J. D. Owens, “Multitasking real-time embed-
ded GPU computing tasks,” in Proceedings of the 7th International
Workshop on Programming Models and Applications for Multicores and
Manycores. ACM, 2016, pp. 78–87.

[24] J. Shirako, A. Hayashi, and V. Sarkar, “Optimized two-level paralleliza-
tion for GPU accelerators using the polyhedral model,” in Proceedings
of the 26th International Conference on Compiler Construction. ACM,
2017, pp. 22–33.

[25] J. H. May, W. E. Spangler, D. P. Strum, and L. G. Vargas, “The
surgical scheduling problem: Current research and future opportunities,”
Production and Operations Management, 2011.

[26] M. R. Gary and D. S. Johnson, “Computers and intractability: A guide
to the theory of NP-completeness,” 1979.

[27] J. K. Ousterhout, “Scheduling techniques for concurrent systems,” in
ICDCS, 1982.

[28] W. Cirne, F. Brasileiro, J. Sauve, N. Andrade, D. Paranhos, E. Santos-
neto, and R. Medeiros, “Grid computing for bag of tasks applications,”
in In Proc. of the 3rd IFIP Conference on E-Commerce, E-Business and

EGovernment, 2003.

