
DOI reference number: 10.18293/SEKE2017-120

Concurrent Call Level Interfaces
Based on an Embedded Thread Safe Local Memory Structure

Óscar Mortágua Pereira

Instituto de Telecomunicações

DETI – University of Aveiro

Aveiro, Portugal

omp@ua.pt

Rui L. Aguiar

Instituto de Telecomunicações

DETI – University of Aveiro

Aveiro, Portugal

ruilaa@ua.pt

Abstract—Performance is traditionally considered one of
the most significant concerns in intensive database

applications. Several architectural tactics may be taken to

minimize the possibility of coming across with any

performance bottleneck. One of them is the usage of Call Level

Interfaces (CLI). CLI are low level API that provide a high
performance environment to execute SQL statements on

relational and also on some NoSQL database servers. In spite

of this, CLI are not thread safe, this way preventing distinct

threads from sharing datasets retrieved from databases

through Select statements. Thus, in situations where two or
more threads need to access datasets retrieved from the same

Select statement, there is no other alternative than providing

each thread with its own dataset, this way consuming

important computational resources. In this paper we propose

a new design for CLI to overcome the aforementioned
drawback. Unlike current implementations of CLI, now they

are natively thread-safe. The implementation herein presented

is based on a thread safe updatable local memory structure

where data retrieved from databases is kept. A proof of

concept based on Java Database Connectivity type 4 (JDBC)
for SQL Server 2008 is presented and also a performance

assessment.

Keywords— call level interfaces, concurrency, performance,

databases, middleware, software architecture.

I.INTRODUCTION

Database applications comprise at least two main
components: database components and application

components. In our context, application components are
developed in the object-oriented paradigm and database

components rely on the relational paradigm. The two
paradigms are simply too different to be bridged seamlessly

leading to difficult ies informally known as impedance

mismatch [1]. The diverse foundations of both paradigms are
a major hindrance for their integration, being an open

challenge for more than 50 years [2]. These challenges are
especially noticeable in environments where code production

is under strict development deadlines and where code
development efficiency is a major concern. In order to

overcome the impedance mismatch issue, several solutions
have emerged [1][2][3][4][5][6]. Despite their individual

advantages, these solutions have not been developed to

address situations where users need to implement concurrent
mechanisms over the in-memory data structures returned by

Select statements. As generally accepted, performance is one

of the most challenging non-functional software
requirements in database applications. Here, Call Level

Interfaces (CLI) have to be considered as a promising
alternative [2]. CLI are programming API aimed at easing

the integration of client software components with database

components. They use native SQL statements, this way
promoting the SQL expressiveness and the SQL

performance. Nevertheless, CLI do not provide some of the
most well-known and common features to improve system

performance, being concurrency the most paradigmatic case.
We cannot forget that the speed of data creation and data

storage increases every passing day, which is followed by an
increased need of power computation to process it. Very

often, part of the increased need of power computation

derives from the incapacity of current systems to share
resources that have already been become available. For

example, let us consider a Select statement that retrieves a
dataset from a database, which is kept in local memory

structures (LMS): ResultSet [7] and RecordSet [8] are
examples of LMS for JDBC and ODBC, respectively.

Probably, the data contained in LMS could be made

available and shared concurrently to several consumers
(threads). This possibility would eliminate the need to

retrieve and duplicate the same datasets over and over again
for each thread (in different LMS instances). To achieve this

goal, the access to LMS needs to be thread-safe to avoid
unwanted conflicts. Unfortunately, current tools used to

develop business logics are not thread-safe. They were

mainly designed to minimize the impedance mis match
between the object-oriented and the relational paradigms.

Among those options, CLI are considered the best option
whenever performance is a non-functional key requirement

[9]. For this reason, CLI were chosen to design a thread-safe
API to be used on the building process of business logics.

The proposal herein presented is based on a modification on
the native internal LMS structure in order to make it natively

thread-safe. This means that CLI are now implemented with

embedded concurrent mechanisms, in opposite to [10][11]. A
proof of concept based on Java Database Connectivity type 4

(JDBC) is presented. A performance assessment is also
conducted in order to evaluate the performance of both

architectures.

The remainder of this paper is organized as follows:

chapter II presents the motivation for this research, chapter

III describes the current state of the art, chapter IV presents
the required background to keep this paper as self-contained

as possible, chapter V presents the proposal for thread-safe

CLI, chapter VI presents a performance assessment and,
finally, chapter VII presents the final conclusion.

II. MOTIVATION

In this section we present the limitations of current CLI

and the goal we want to achieve. The presentation is based
on simple examples to avoid any discomfort of readers less

knowledgeable about CLI.

The scenario to be addressed comprises situations where
there is the need to concurrently share access to datasets

retrieved by Select statements. These datasets are managed
by LMS. The access to data contained by LMS is row and

attribute oriented. This means that at any given moment just
one row may be selected and, then, the access to data is

processed by selecting one attribute at time. After being
processed, another row may be selected and the process

continues. If no other control is implemented, this context is

not compatible with mult i-thread environments. Listing 1
depicts a situation where two threads are using the same

LMS instance (lms). Regarding thread A, it scrolls to the
next row and then it reads the first attribute. Thread B moves

to row number 10 and then it reads the third attribute. In
preemptive multitasking [12] environments, these two

threads may enter in a conflict state. Suppose that Thread A

is the running and it scrolls to line 5. If Thread B becomes
the running thread, it will move to row 10, it reads the

attribute number 3 and then voluntarily it suspends itself.
When thread A is resumed, it will read the attribute number

1, not from row 5 as initially expected but wrongly from row
10. CLI do not provide any feature to prevent this from

happening. To overcome this situation, an initial approach

has been already proposed to overcome this CLI drawback,
which it is based on a wrapper that hides the functionalities

of CLI and exposes thread safe services [10][11].

// Thread A

1 lms.moveNextRow();

2 id=lms.read(1);

3 …

// Thread B

1 lms.moveToRow(10);

2 name=lms.read(3);

3 thread.suspend();

4 …

Listing 1. Two threads accessing the same LMS.

III. STATE OF THE ART

A survey has been carried out around tools aimed at

integrating client applications and databases. The survey
comprises the most popular tools, such as Hibernate [4],

Spring [13], TopLink [14], JPA [5] and LINQ [15]. These

tools may provide concurrency but always at a very high
level. Basically, they provide some locking policies to

synchronize read and write actions. But these read and write
synchronized actions are not executed over the same memory

location. They are executed over distinct objects, such as
sessions in Hibernate. These objects (sessions) are not

thread-safe and therefore do not provide any protocol to

access concurrently the in-memory data contained on LMS.

A survey has also been carried out about two approaches

proposed by the research community: SQL DOM [16] and
Safe Query Objects [17]. SQL DOM generates a Dynamic

Link Library containing classes that are strongly-typed to a

database schema. These classes are used to construct
dynamic SQL statements without manipulating any strings.

Safe Query Objects combine object-relational mapping with
object-oriented languages to specify queries using strongly-

typed objects and methods. They rely on Java Data Objects
to provide strongly-typed objects and also to provide data

persistence. These proposals are focused on minimizing the

impedance mismatch. None of these approaches address
concurrency at any level.

In [18] a different approach is presented to address the
lack of concurrent mechanisms of CLI. Concurrency is

implemented by an exp licit locking mechanism based on two
methods: lock() and unlock . Programmers are responsible for

invoking these methods correctly in order to control the
exclusive access mode to LMS. Additionally, the conducted

assessment is based on a fixed number of rows which does

not convey a dynamic perspective of the performance for
different scenarios.

Aspect-oriented programming [19] community considers
persistence as a crosscutting concern [20]. Several works

have been presented but none addresses the points here under
consideration. The following works are emphasized: [21] is

focused on separating scattered and tangled code in advanced

transaction management; [20] addresses persistence relying
on AspectJ; [22] presents AO4Sql as an aspect-oriented

extension for SQL aimed at addressing logging, profiling and
runtime schema evolution. It would be interesting to see an

aspect-oriented approach for the points herein under
discussion.

The research presented in [11][10] proposes an

architecture based on a wrapper which hides the CLI
functionalities and exposes thread-safe services. It is known

as CTSA – Concurrent Tuple Set Architecture. This
approach is clearly an improvement when compared with the

one presented in [18] but the thread-safe mechanisms are not
embedded on CLI as proposed in this research. Nevertheless,

that approach will also be used to compare their results with
the results obtained by the approach herein proposed. As it

will be shown, the herein presented approach clearly

improves the performance achieved with CTSA.

In this master thesis [23] an identical approach, as the one

herein presented, has been designed but the final results were
not convincing. This paper presents a new implementation.

To the best of our knowledge no other researches have
been conducted around concurrency on LMS of CLI.

IV. BACKGROUND

In this section we present the necessary background to
make this a self-contained paper. It is divided in two main

sub-sections. In the first one, some fundamental functionality
of LMS are provided and in the second one a brief

description is given how CLI and Relational Database
Management Systems (RDBMS) interact with each other.

A. Functionality of LMS

LMS are client-side object-oriented abstractions of a

relational concept: the server side cursor. LMS are

instantiated to manage relations returned by Select
expressions. At instantiation time, some runtime properties

of LMS are defined to characterize their functionalities. Two
main groups of functionalities are herein emphasized:

scrolling functionalities and accessing functionalities (they
are orthogonal). Scrolling functionalities provide two main

types of LMS (they are mutual-exclusive): forward-only –

rows are read sequentially from the first one till the last one,
and scrollable – rows can be randomly read. Accessing

functionalities provide two main types of LMS (they are
mutual-exclusive): read-only and updatable LMS. While

read-only LMS only provide one protocol to read their
contents, updatable LMS, beyond the read protocol, also

provide three additional protocols: update (to update their
contents), insert (to insert new rows) and delete (to delete

existing rows). Another relevant issue is the mechanism

implemented for each protocol (read, update, insert and
delete). LMS are row oriented and protocol oriented. This

has two main implications. First, at any time only one row
can be selected as the target row. Second, if an update or

insert protocol is being executed, applications cannot start
any another protocol. If this rule is not fulfilled, LMS discard

changes made during the previous protocol. Table 1

concisely presents how the 4 main LMS protocols work: 1 –
read protocol, 2 – update protocol, 3 – insert protocol and 4 –

delete protocol.

Table 1. 4 main protocols of LMS.

1
Point to a row

Read attributes
Point to another row

2

Point to a row

Update attributes
Commit update

3
Start insert
Insert attributes
Commit insert

4
Point to a row
Delete row

B. Interaction Between CLI and RDBMS

The communication between CLI and RDBMS relies on

proprietary protocols of RDBMS vendors but their general
interaction follows the structure presented in Figure 1. When

a Select expression is executed, RDBMS create a server
dataset with the retrieved data and also a server cursor. All or

only a part of the retrieved data is copied from server
datasets to LMS depending on the LMS properties. When

data is partially transferred to LMS, new blocks of data are

transferred whenever client applications need to access data
not contained locally in the LMS. The relationship between

LMS and cursors, and between cursors and LMS are all 1 to
1. Th is means that whenever a Select statement is executed,

there will be one additional LMS and one additional server
cursor. We emphasize that one additional means resources

(LMS, cursors and datasets) that are being replicated, very

CLI
LMS

RDBMS

Cursor Dataset

Database

1 111

Protocol

Figure 1. Connection between LMS and RDBMS.

probably unnecessarily. In scenarios where there are

simultaneously several server datasets from the same Select
statement, we are before a situation where there is an

unnecessarily wasting of computational resources.

V. PROPOSED ARCHITECTURE FOR CONCURRENT CLI

In this section we present the architecture that has been
defined to design concurrent LMS. To achieve the proposed

goal, some source code of CLI was redesigned. In this

research, in opposite to CTSA, we explored the usage of
embedded thread-safe LMS on which threads interact

directly with the data retrieved from databases. To achieve
this goal, several CLI interfaces (services) need to be

rewritten, such as those aimed at: scrolling on LMS, reading
data from LMS, updating data on LMS, inserting data on

LMS and, finally, deleting data on LMS. These are the
fundamental interfaces responsible for providing services

through which client applications are currently able to

interact with LMS. A new concurrent component, known as
CLMS (Concurrent LMS), replaces the default LMS. Figure

2 presents the main architecture of CLMS which contains a
local cache to store the retrieved data. Basically it

implements a general interface (ICLMS) which extends the 6
fundamental additional interfaces: ICForwardOnly,

ICScrollable (forward-only and scrollable CLMS,

respectively) and ICRead, ICUpdate, ICInsert and ICDelete
(read update, insert and delete protocols, respectively).

Please remember that these are the basic services required to
interact with CLMS, as previously mentioned in chapter IV.

LMS

«interface»
ICLMS -cache[]

CLMS

ICForwardOnly

ICScrollable

ICRead
ICUpdate

ICInsert
ICDelete

Figure 2. Concurrent architecture for CLMS.

Before, presenting some additional details, the concept of

execution context is introduced. Each running thread has its
own execution context which consists on the protocol being

executed (if any) and the current selected row. This is an
important concept because it is based on it that it was

possible to design a thread-safe LMS. Basically, every time a
thread enters the monitor (thread-safe area) it needs to set its

execution context and before leaving the monitor it must
store its execution context. Th is process will ensure that each

thread, whenever initiating the access to the monitor, it is

able to restore its previous execution context (protocol being
executed and row being accessed). Now, we can introduce

how an exclusive access mode can be implemented to access
CLMS. Two methodologies are proposed: method oriented

access mode and protocol oriented access mode. Basically,
the method oriented access mode requires a restoring and

storing process for the execution context every time a

method is executed on CLMS, while the protocol oriented
access mode does only require a restoring and storing

process by each protocol being executed. Let us take a closer
look to the protocols to evaluate the options that are available

for each one. The scrolling protocol involves one method at a

time and, therefore, the obvious approach is the method

oriented access mode. Access modes for Insert, Update and
Delete protocols do not have any other alternative but being

implemented as protocol oriented access mode. As
mentioned before, this derives from the fact that these

protocols, while being executed, cannot be preempted to start
any other different protocol. Read protocol may be

implemented in any access mode protocol: method access

mode (operating on an attribute by attribute basis) or
protocol access mode (operating on a row by row basis). In

order to implement the exclusive access mode to CLMS it
was decided, based on practical evidence and empirical

experience, to use method oriented access mode for the
ICForwardOnly and ICScro llable interfaces and protocol

oriented access mode for the remaining interfaces. We
assume that in the most common situations, several attributes

are read in each Read protocol, this way not advising the

method oriented access mode. With the thread-safe LMS the
resort to multiple cursors in the database server is avoided. A

single serve r cursor is able to satisfy simultaneously several
client side threads sharing the same LMS.

VI. PERFORMANCE ASSESSMENT

A performance assessment was carried out to compare a

solution based on a traditional non-shared (S-JDBC) LMS

and the one herein proposed (C-JDBC). The performance
assessment ran in a context completely identical to one used

in CTSA, this way ensuring that the collected results can be
compared to evaluate the impact of thread-safe LMS.

C-JDBC uses a unique LMS that is shared by all threads,
while in S-JDBC each thread has its own LMS. All LMS

contain the same relation returned by the same Select

expression. Concisely, Figure 3, presents the block diagram
for the used scenario during the assessment process.

LMS 1

LMS ...

LMS n

Thread 1

Thread ..

Thread n

Thread 1

Thread ..

Thread n

O
n
e

L
M
S

Figure 3. Left side: S-JDBC, right side: C-JDBC.

Three scenarios were defined for the main operations of

both solutions: Select (s), Update (u) and Insert (i). Each
scenario comprises a set of several numbers of rows to be

processed [nr] for both S-JDBC and C-JDBC, and a set of
several numbers of simultaneous running threads [nt] for

both S-JDBC and C-JDBC. In order to formalize the entities’
representation the following definition is presented: E(α,γ)

([nt], [nr]) where α{c-jdbc, s-jdbc}, and γ {s,u,i}. To

simplify the general formalization, E(α,γ) ([nt], [nr]) is
represented by default as E(α,γ). Each scenario comprises a

specific goal which is known as a task . A task represents a
particular case for the use of C-JDBC and S-JDBC. The

tasks to be performed are: Read (read [nr] adjacent tuples
from the LMS), Update (update [nr] adjacent rows of a

LMS) and Insert (insert [nr] tuples into a LMS). Please

remember that S-JDBC uses [nt] LMS while C-JDBC
always uses one LMS. The assessment could also comprise a

random access pattern but, by empirical evidence, the most

common access pattern is the access to adjacent rows. It was
also decided to create and enforce different contexts for S-

JDBC and C-JDBC. The idea is to create a context to C-
JDBC based on tactics aimed at decreasing its performance

while executing the defined tasks while for S-JDBC we will
use tactics to enforce the opposite effect. S-JDBC favorable

tactics – each thread has its own LMS and rows are always

sequentially selected in order to min imize the transference of
rows between JDBC and SQL Server. C-JDBC unfavorable

environment - two situations were implemented: 1) Each
thread will auto-suspend itself after having executed one

protocol: read one row, update one row or insert one row.
This will g ive the opportunity to other thread to become the

running thread, this way maximizing the number of changes
in the execution contexts. 2) All threads share the LMS but

each thread has its own adjacent rows. This means that when

a thread becomes the running thread, its execution context
will set a row that belongs to a different set of rows , this way

maximizing the number of blocks to be transferred from
SQL Server.

Table 2 presents the algorithms used to assess S-JDBC
and C-JDBC. All scenarios, for each solution, share the same

algorithm for the assessments to be carried out. C-JDBC and

S-JDBC create the same number of threads (nt) and each
thread processes the same number of rows (nr). The main

difference is: while in S-JDBC each thread selects its own
subset of rows, this way accessing its own LMS, in C-JDBC

a LMS is shared by all threads containing all rows.

The test-bed comprises two computers: PC1 - Dell

Latitude E5500, Intel Duo Core P8600 @2.40GHz, 4.00 GB

RAM, Windows Vista Enterprise Service Pack 2 (32bits),
Java SE 6, JDBC(sqljdbc4); PC2 – Asus-P5K-VM, Intel Duo

Core E6550 @2,33 GHz, 4.00 GB RAM, Windows XP
Professional Service Pack 3, SQL Server 2008. C-JDBC is

executed in PC1 and SQL Server runs in PC2. In order to
promote an ideal environment the following actions were

taken: CPU were set to run with a single core, this way
maximizing the influence of the implemented solutions; the

running threads were given the highest priority; all non-

essential processes/services were cancelled in both PCs and a
direct and dedicated network cable connecting PC1 and PC2

has been used in exclusive mode and performing 100MBits
of bandwidth. In order to avoid any overhead added by SQL

Server, some default SQL Server database properties were
changed as, Auto Update Statistics = false and Recovery

Model = Simple.

The sets used for the number of rows and for the number
of threads were:

 [nt]={1, 5, 10, 25, 50, 75, 100, 150, 200, 250, 350, 500}

 [nr]={5, 10, 25, 50, 75, 100}

25 raw measures were collected for each E(α,γ)([nt],[nr])
leading to (2x3x12x6)x25=10,800 raw measures.

Intermediate measures were computed from the average of

the 5 best measures of each E(α,γ)([nt],[nr]) leading to a total
of 2x3x12x6=432 measures . The final measures used in the

next charts represent the ratios between E(c-jdbc,γ) and E(s-

jdbc,γ) for each ([nt] ,[nr]). In all charts the vertical axis is

for the ratios and the horizontal axis is for the [nt] .

A table Student with the following schema was also

created to store the data being used: id (int, pk), firstName
(varchar 25), lastName (varchar 25), crdId (int), regYear

(int), applGrade (float).

Table 2. Algorithms for E(c-jdbc, γ) II-Algorithms for E(s-jdbc, γ).

I

1. Delete all rows from Student
2. Fill Student with [nr]*[nt] rows (zero rows for insert)
3. Start counter
4. Select all rows from Student into one single ResultSet
5. Create all threads. Each thread (ψ tuples)
 5.1 for each row
 5.1.1 read/update/insert (row)
 5.1.2 suspend thread
 5.2 dies
6. Wait all threads to die
7. Stop counter

II

1. Delete all rows from Student
2. Fill Student with [nr]*[nt] rows (zero rows for insert)

3. Start counter
4. Create all threads. Each thread:
 4.1 select ψ trow into its own ResultSet
 4.2 for each row
 4.2.1 read/update/insert a tuple
 4.3 dies
5. Wait all threads to die
6. Stop counter

Select scenario

Figure 4 presents the ratio between the measures

collected for E(s-jdbc,s)) and E(c-jdbc,s). The chart shows that

there are some situations where the gain is very significant.
The most significant situation occurs for 5 tuples and 10 to

25 threads reaching a gain above 3.5 t imes. The ratio
decreases when the number of rows increases and also when

the number of threads increases. The reasons for this
behavior is that when either nt or nr increases, the probability

of a thread of C-JDBC to access a row not contained in the
LMS increases, this way requiring a block transfer from the

server dataset to the LMS. Please remember that in C-JDBC

all threads share the same LMS and each thread is reading a
different block of adjacent rows. Th is means that when

thread 1 reads row 1, thread n is reading row nr*(n-1) which
eventually may not be at that moment contained in the local

LMS.

Figure 5 presents a tabular view of the chart presented in

Figure 4. Select scenario: ratio between S-JDBC and C-JDBC.

Figure 5. Tabular view for the ratio between S-JDBC and C-
JDBC for the Select scenario.

Figure 4. It shows that in some cases the ratio is not greater
than one which means that measures of E(c-jdbc,s) are not

always better than measures of E(s-jdbc,s). But the key issue is
that when compared with rat ios obtained with CTSA, C-

JDBC has a mean improvement around 6%. Additionally, in

this assessment only about 25 ratios are under 1.00, in
opposite to 40 in CTSA. This improvement is due to the

embedded thread-safe mechanisms. CTSA was based on a
wrapper and, therefore, an overhead is an unavoidable issue

which was solved in the approach herein presented. The
results here obtained show that E(c-jdbc,s) has achieved

outstanding results even when compared with the CTSA.

Update and Insert scenarios

The update scenario updates rows contained by LMS and

the insert scenario inserts rows in empty LMS. The measures
collected for the Update and also for the Insert scenario were

very close to ones collected for CTSA. The basic reason for
these results is that these protocols are much heavier than the

Select protocol and, therefore, the achieved gains, in C-
JDBC when compared with CTSA, have a much lower

impact. Figure 6 presents the graphic for the Update scenario

and Figure 7 presents the graphic for the Insert scenario for
the ratios S-JDBC/C-JDBC.

 The chart for Update scenario shows that the gain is
always greater than 1 and it increases when the number of

rows decreases. The number of threads seems to not have a
significant impact. This behavior is understandable if we

remind that the update protocol is very heavy and its weight

can be much more influent than the weight associated with

Figure 6. Update scenario: ratio between S-JDBC and C-JDBC.

Figure 7. Insert scenario: ratio between S-JDBC and C-JDBC.

transferring blocks from dataset servers to LMS. The
maximum gain (above 6) is reached for 5 tuples and 25

threads. The chart for the Insert scenario shows that the gain
is always greater than 1 and that it increases when the

number of tuples decreases and also when the number of

threads increases. This last behavior is curious. It derives
from the fact that server datasets are empty and there are no

transferences of blocks from dataset servers to LMS. This
way, as the number of server datasets increases, performance

of S-JDBC decreases more significantly than performance of
C-JDBC.

VII. CONCLUSION

Performance has become increasingly a key concern in
intensive database applications. Recently is has reached a

major importance with the advent of Big Data and IoT.
Among many issues that can influence the overall

performance, the middleware that connects business logics to
RDBMS and NoSQL servers is certainly a key component,

in our case, CLI. CLI are composed by two main types of
components: client-side components and server side

components. These components were designed to perform in

environments where concurrency is not a major concern.
Basically, both types of components are not prepared to work

on client-side environments where several threads need to
access to the same memory structures, especially LMS. To

overcome this drawback, we propose a new design for CLI
where LMS are natively thread-safe, in opposite to the work

done with CTSA, The collected results show that the

improvement in performance is noticeable in the Select
scenario even when compared with the results collected with

CTSA. The ratios have been improved in a mean of 6% and
the number of ratios < 1.0 felt from 40 to 25. In the

remaining scenarios, Update and Insert, the collected results
are very similar. This is due to the fact that Update and Insert

protocols are much heavier than the Select, leading to a much

lower percentage impact in the overall performance.

As a future work, we are already working on an

extension of the C-JDBC which will provide an additional
functionality. Basically, besides the single thread-safe LMS

already implemented, it will also provide replicas of the
same LMS. This way, each thread will own its own LMS but

the server will only need a single server cursor. The
replication process can bring many advantages in many

situations (now threads can interact with LMS without any

locking mechanism) but the update and insert processes need

additional processing to keep data consistency in all LMS.

Anyway, the preliminary results are very encouraging.

ACKNOWLEDGEMENTS

This work is funded by National Funds through FCT -

Fundação para a Ciência e a Tecnologia under the project

UID/EEA/50008/2013.

REFERENCES

[1] ISO, “ISO/IEC 9075-3:2003,” 2003. [Online]. Available:
http://www.iso.org/iso/catalogue_detail.htm?csnumber=34134.

[2] Microsoft, “Microsoft Open Database Connectivity,” 1992. [Online].
Available: http://msdn.microsoft.com/en-
us/library/ms710252(VS.85).aspx.

[3] M. Parsian, JDBC Recipes: A Problem-Solution Approach. NY, USA:
Apress, 2005.

[4] B. Christian and K. Gavin, Hibernate in Action. Manning Publications
Co., 2004.

[5] D. Yang, Java Persistence with JPA. Outskirts Press, 2010.
[6] D. Kulkarni, L. Bolognese, M. Warren, A. Hejlsberg, and K. George,

“LINQ to SQL: .NET Language-Integrated Query for Relational
Data.” Microsoft.

[7] Oracle, “ResultSet,” 2012. [Online]. Available:
http://docs.oracle.com/javase/6/docs/api/java/sql/ResultSet.html.

[8] Microsoft, “RecordSet (ODBC),” Microsoft. [Online]. Available:
http://msdn.microsoft.com/en-us/library/5sbfs6f1.aspx. [Accessed: 16-
Nov-2016].

[9] W. Cook and A. Ibrahim, “Integrating programming languages and
databases: what is the problem?,” 2005. [Online]. Available:
http://www.odbms.org/experts.aspx#article10.

[10] Ó. M. Pereira, R. Aguiar, and M. Santos, “A Concurrent Tuple Set
Architecture for Call Level Interfaces,” in Computer and Information
Science, vol. 493, R. Lee, Ed. Springer International Publishing, 2013,
pp. 143–158.

[11] Ó. M. Pereira, R. L. Aguiar, and M. Y. Santos, “CTSA: Concurrent
Tuple Set Architecture Extending Concurrency to Call Level
Interfaces,” IJSI - Int. J. Softw. Innov., vol. 1, no. 3, pp. 12–33, 2013.

[12] C. J. Fidge, “Real-Time Schedulability Tests for Preemptive
Multitasking,” Real-Time Syst., vol. 14, no. 1, pp. 61–93, 1998.

[13] Spring, “Spring.” [Online]. Available: http://www.springsource.org/.
[14] Oracle, “Oracle TopLink,” 2011. [Online]. Available:

http://www.oracle.com/technetwork/middleware/toplink/overview/ind
ex.html.

[15] M. Erik, B. Brian, and B. Gavin, “LINQ: Reconciling Object,
Relations and XML in the .NET framework,” in ACM SIGMOD Intl
Conf on Management of Data, 2006, p. 706.

[16] A. M. Russell and H. K. Ingolf, “SQL DOM: compile time checking
of dynamic SQL statements,” in 27th Int. Conf. on Software
Engineering, 2005, pp. 88–96.

[17] R. C. William and R. Siddhartha, “Safe query objects: statically typed
objects as remotely executable queries,” in 27th Int. Conf. on Software
Engineering, 2005, pp. 97–106.

[18] Ó. M. Pereira, R. L. Aguiar, and M. Y. Santos, “Assessment of a
Enhanced ResultSet Component for Accessing Relational Databases,”
in ICSTE-Int. Conf. on Software Technology and Engineering, 2010,
p. V1:194-201.

[19] J. L. Gregor Kiczales Anurag Mendhekar, Chris Maeda, Cristina
Lopes Videira, Jean-Marc Loingtier, Joh Irwin, “Aspect -Oriented
Programming,” in ECOOP, 1997, pp. 220–242.

[20] R. Laddad, AspectJ in Action: Practical Aspect-Oriented
Programming. Greenwich,CT,USA: Manning Publications, 2003.

[21] J. Fabry and T. D’Hondt, “KALA: Kernel Aspect Language for
Advanced Transactions,” in Proceedings of the 2006 ACM
Symposium on Applied Computing, 2006, pp. 1615–1620.

[22] T. Dinkelaker, “AO4SQL: Towards an Aspect -Oriented Extension for
SQL,” in 8th Workshop on Reflection, AOP and Meta-Data for
Software Evolution (RAM-SE’11), 2011, pp. 1–5.

[23] D. Gomes, Ó. M. Pereira, and W. Santos, “JDBC (Java DB
connectivity) concorrente,” University of Aveiro, ria - institutional
repository, http://hdl.handle.net/10773/7359, 2011.

