
Refactoring Object-Oriented Applications towards a better Decoupling and
Instantiation Unanticipation

Soumia Zellagui, Chouki Tibermacine, Hinde Lilia Bouziane, Abdelhak-Djamel Seriai
and Christophe Dony

LIRMM, CNRS, University of Montpellier, France
E-mail: {zellagui, tibermacin, bouziane, seriai, dony}@lirmm.fr

Abstract
Modularity in Object-Oriented (OO) applications has

been a major concern since the early years of OO pro-
gramming languages. Migrating existing OO applications
to Component-Based (CB) ones can contribute to improve
modularity, and therefore maintainability and reuse. In this
paper, we propose a method for source code transforma-
tion (refactoring) in order to perform this migration. This
method enhances decoupling by considering that some de-
pendencies between classes should be set through abstract
types (interfaces) like in CB applications. In addition, some
anticipated instantiations of these classes “buried” in the
source code are extracted and replaced by declarative state-
ments (like connectors in CB applications) which are pro-
cessed by a dependency injection mechanism. For doing so,
a set of ”Bad Smells”, i.e., modularity-violating symptoms,
has been defined. These are first detected in the source code.
Then, some refactoring operations are applied for their
elimination. An implementation of the method was success-
fully experimented on a set of open source Java projects.
The results of this experimentation are reported in this pa-
per.

1 Introduction
Modularity is a fundamental principle in software engi-

neering, considered as an internal quality attribute that in-
fluences external quality attributes, such as maintainability
and reuse [7]. A well-modularized system allows collabo-
rative development of different parts (modules) of the same
system by different developers. It also enables the substi-
tution or debugging of a module without affecting other
modules and the reuse of existing modules in different con-
texts. Many existing (especially, business) software sys-

DOI reference number: 10.18293/SEKE2017-119

tems are built using the Object-Oriented (OO) development
paradigm. However, many of these systems, especially
large ones, are characterized by a high degree of coupling
between their elements [13], which makes them difficult
to maintain and reuse. Conversly, Component-Based (CB)
paradigm has been recognized as an approach that empha-
sizes software modularity and reuse [4]. Therefore, it would
be interesting to migrate OO systems into CB ones. This
migration enables to benefit from CB development charac-
teristics, in particular, decoupling and instantiation unantic-
ipation [6].

Existing works that propose migration solutions [2, 3]
consider that the modularity and reuse unit, i.e. the compo-
nent, is a group of classes, called a cluster. In these works,
if a user wants to develop a new application by reusing an
independent class or subset of classes in a cluster, it is re-
quired to reuse the entire component. To the best of our
knowledge, no solution proposes refactoring classes indi-
vidually to make them component descriptors. In this pa-
per, we propose a migration solution that considers each
class in an OO application as a component descriptor in
a target CB application. This solution follows two steps.
The aim of the first step is to detect bad smells (modularity-
violating symptoms), i.e. decoupling and unanticipation vi-
olation (presented in Section 2). The second step allows the
elimination of these bad smells by automatically applying a
composition of code refactoring operations (Section 3).

Section 4 discusses the results of an experimentation
of this solution conducted on a set of open source Java
projects. Section 5 surveys related works and Section 6 con-
cludes the paper and presents future works.

2 Decoupling and Instantiation Unanticipa-
tion violation

While code decoupling and instantiation unanticipation
principles are fundamental, they are not necessarily always



respected in existing OO applications. Therefore, it is nec-
essary to identify the symptoms of their violation in an ex-
isting OO code to enable their detection and elimintation.

2.1 Decoupling Violation
In CB programming, code decoupling means that com-

ponents are assumed to communicate only through their in-
terfaces/ports. Therefore, a component has not a direct ac-
cess to a component with which it interacts. To have this
decoupling in OO applications, assuming that each class
will correspond to a component descriptor, each class must,
for example, expose all its public methods in abstract types
(provided interfaces). Then, other classes that use these
methods should declare their dependence on these abstract
types, which become their required interfaces.

However, most existing OO applications have multiple
dependencies between their different classes (direct con-
crete types) for a cooperative business processing. In partic-
ular, it is possible for a field or a parameter to be typed with
a concrete class of the application. These situations lead to
code decoupling violation.

To deal with decoupling violation, we consider the two
bad smells: “Absence or Incompleteness of Provided Inter-
faces” (AIPI) and “Absence of Required Interfaces” (ARI).
AIPI symptoms are identified when: 1) a class defines a
public non-static method1 not declared in the interfaces im-
plemented by this class (or no interface is implemented by
this class), 2) a class declares public fields or fields with
no explicit visibility modifier, and 3) a class declares global
constants. ARI symptoms are identified when a class de-
clares fields with a concrete class type2.

2.2 Instantiation Unanticipation Violation
In CB applications, instantiation unanticipation means

that the implementation of a component does not include a
connection to another given component, i.e. an instantiation
of a class which is another component descriptor. In fact,
a component requiring a service can be connected to any
other component providing such a service. This connec-
tion should be established only by a third party, who is the
developer of the application/component that uses the two
components to be connected. To comply with this connec-
tion fashion in OO applications, constructor calls should not
be used. Instead, declarative annotations should be defined;
these are processed by a (dependency injection) mechanism
that manages instances at runtime.

To deal with instantiation unanticipation violation, we
consider the bad smell of type EAI (Existence of Antici-
pated Instantiations). EAI symptoms are identified when
a reference to a created object 1) is stored in a field/local
variable, 2) is a returned value of a method, or 3) is an ar-
gument of a method invocation. In the present work, we

1Methods of the language’s standard API are ignored.
2Fields whose types are defined in a library are ignored.

consider that these instantiations are not surrounded by a
control flow statement.

The detection of decoupling and instantiation unantici-
pation violations in an OO application is done by a (“control
flow”-insensitive) static analysis of its source code.
3 Refactoring Operations

This section presents a set of refactoring operations to
correct bad smells introduced in the previous section. Ta-
ble 1 gives an overview of these operations and, for each
one, the treated symptom, bad smell.

Table 1: Refactoring Operations
Symptom Operation
Public fields or fields with no
explicit visibility modifier Change visibilities

Global constants Move declarations
Public non-static methods not
exposed in interfaces Expose methods

Fields typed with concrete
classes Create required interfaces

Anticipated instantiations Use dependency injection

Changing the visibility of a field This operation con-
siders the AIPI symptom when a class field is public or has
no explicit visibility modifier, i.e., has the package default
visibility for Java, for example. In this case, the field visi-
bility is simply changed to private, and a pair of setter/getter
methods is inserted to acces this field (only a getter method
in the case of a public final field). The resulted methods
will be exposed via interfaces as explained through the next
refactoring operation.

Exposing Methods through Interfaces
This type of refactoring deals with the AIPI symptom

when a class A defines a public non-static method m and its
declaration does not exist in any interface. The idea here is
to add this declaration to an interface I . This (changed) in-
terface should not be implemented by any other class. Oth-
erwise, i.e., when all the interfaces implemented by A are
also implemented by other classes, a new interface I ′ is cre-
ated and m’s signature is added to it.

We take into consideration the particular case where we
distribute the exposed methods on several interfaces. We
calculate LCOM (Lack of Cohesion of Methods) metric to
evaluate the cohesion of each signature added to an interface
and the other existing methods in this interface.

Someone can find that the use of Default Methods in Java
8 can be useful to eliminate this type of modularity viola-
tion. But the idea here consists in exposing only the decla-
rations of methods not their implementations.

Moving a Constant Declaration
To deal with a global constant declaration (AIPI symp-

tom type), we move this declaration to one of the interfaces
implemented by the class declaring the constant. We create
a new interface or use one from the resulted ones after the
application of the previous refactoring operation.

Creating Required Interfaces
This refactoring is used when a field is typed with a con-

crete class A. It consists of the following steps: search all



invocations to external methods whose receiver is saved in
the considered field, collect the signatures of these methods,
create a new interface (considered as the required interface),
add signatures to this interface and replace the type of the
field by the newly created interface. The last step consists of
adding inheritance links between the required interface and
the provided interfaces implemented by A (the provided in-
terface extends the required interface). The class’ required
interfaces will be as many as the number of concrete classes
used as types for its fields. However a single required inter-
face is created for two fields with the same type. By apply-
ing this type of refactoring and the former ones, the required
and provided interfaces are henceforth defined explicitly in
the source code.

Using Dependency Injection
In Dependency injection (DI), a (client) class does not

depend on a specific implementation (concrete class). The
implementation class is instantiated and injected at runtime
by an object container, such as Spring’s one3.

The first case that we deal with is the one where an in-
stantiation is made inside a method/constructor, the refer-
ence to the created instance is stored in a field, and the in-
stantiation does not take any argument or it takes attain-
able ones (arguments whose values can be calculated by
a static analysis). Its refactoring is done through the fol-
lowing steps: save the arguments of the constructor call if
any, delete the instantiation statement from the method/con-
structor body, replace it by an annotation used by the used
DI framework. For example, the @Autowired annotation is
used on fields in Spring (the field must be non-final). The
annotation @Autowired enables the automatic dependency
injection based on the type.

The second case that is treated is the one where an instan-
tiation is made inside a method/constructor and the obtained
reference is stored in a local variable. As in the previous
case, we suppose that the constructor call does not take any
argument or take attainable ones. This local variable is re-
moved from the method body and turned into a private field
of the class (this refactoring, transforming a local variable
to a field, is failure-safe as it has been experimented in the
literature [9]). This field will be treated following the pre-
vious case. Renaming this local variable, before moving it,
could be another additional refactoring.

In contrast to the previous case, since what is trans-
formed is a local variable and not a field, we use here a
lazy initialized DI so that the created field is injected when
it is first requested (during the execution of the method/con-
structor where it was originally declared as a local variable),
rather than at startup.

The last case is where instances’ references are stored in
fields/local-variables while using non-literal values as argu-
ments in their instantiation. To deal with this case, first, a

3https://spring.io/

new “default” constructor is created in the instantiated class,
and the initial constructor call, in the instantiation, is re-
placed by this new constructor call. Then, a new method
that contains exactly what the initial constructor contains
is added to the instantiated class. Finally, the instantiation
statement is treated following one of the two previous cases,
and an invocation statement of the new method is added to
the instantiating class.

Anonymous object instantiations, i.e., instantiations
which play the role of arguments in method invocations or
returned values, for instance, are considered the same as in-
stantiations made as right-hand-side expressions of assign-
ments to local variables. They are processed following the
same procedure than the two previous cases.

4 Experiments
We have implemented the described approach4 using

Spoon5, an open-source library for Java source code anal-
ysis and transformation. We conducted some experiments
to evaluate the truthfulness of the stated hypothesis of mi-
grating OO applications into CB ones in order to improve
their maintainability and reusability quality characteristics.
These experiments were conducted to answer the following
research questions:

1. What is the efficiency (precision) of the detection
phase?

2. To what extent does the proposed approach improve
software maintainability?

3. To what extent does the proposed approach improve
reusability?

4.1 Used Data & Metrics
For our study, the latest versions of four open source Java

projects were used. Table 2 provides a brief description of
these projects, which are of different sizes, varying from 5
to 23 KLOC, 50 to 214 concrete types and 1 to 36 abstract
types, and developed by different teams to avoid the influ-
ence of development team habits on the results.

Table 2: Data collection
System Description LOC

No interfaces +
Abstract classes No classes

Jasml-0.10 Java classes visualization tool 5732 1 + 0 50
CoCoME Commercial application 5779 21 + 0 99

FreeCS-1.3 Chat server 23012 17 + 6 139
Log4j-1.2.17 A Logging API 20129 20 + 16 214

The first research question deals with measuring the ef-
ficiency of the detection phase. To answer this question,
we measured precision, a well-known metric in informa-
tion retrieval. Precision assesses the ratio of true smells to
all smells detected by our approach. To obtain the set of
relevant smells (that should be identified by any smells de-
tection approach), we analysed the four projects manually.

To answer the second research question, we used the
Maitainability Index (MI) metric that measures the main-
tainability of a software system, and which was successfully

4https://cloud.lirmm.fr/index.php/s/QXEV11bUGvYz1Ss
5http://spoon.gforge.inria.fr/



Table 3: Detected smells (In each row, M = results of Manual analysis; A = results of Automatic analysis).

System
Public & package
fields/All fields

Public non-static methods not
exposed / All public non-static
methods

Fields of concrete class type Instantiations that can be
injected/All instantiations Average

Jasml-0.10
M 420/487 48/49 26 41/67
A 447/487 49/49 27 46/67

Precision 93.96% 97.96% 96.29% 89.13% 94.33%

CoCoME
M 32/285 221/338 25 82/106
A 34/285 223/338 29 85/106

Precision 94.11% 99.1% 86.20% 96.47% 93.97%

FreeCS-1.3
M 380/888 571/926 83 79/299
A 402/888 837/926 88 86/299

Precision 94.52% 68.22% 94.31% 91.86% 87.23%

Log4j-1.2.17
M 365/910 750/1015 150 105/246
A 370/910 753/1015 167 133/246

Precision 98.65% 99.6% 89.82% 78.95% 91.75%

used in many recent works, such as [5]. High MI values in-
dicate that the system is easy to maintain. MI is calculated
using the following formula:

MI1 = 171 - 5.2ln(V) - 0.23*C- 16.2ln(LOC) + (50 *
sin(sqrt(2.46*NOLComments))

V is the Halstead’s volume [1], which is a measure of
the mental effort required to develop or maintain a program
based on its length, number of operators and operands. C
is the cyclomatic complexity value; LOC is the number of
lines of code and NOLComments is the number of lines of
comments. In the case of systems which do not have con-
siderable comments, the above formula can be simplified to
omit the involvement of NOLComments. For our study, the
tool used to calculate the MI value is JHawk6.

During software development, programers often reuse
existing APIs to write client code. This requires the reuse
of all API’s classes even if the client application uses only a
small fraction of this API. By answering the third research
question, we want to validate the assumption that our ap-
proach allows shrinking API classes by keeping only the
used classes and discarding the other ones, resulting in a re-
duction of API size in memory. To do this, we used Log4j as
an API, on which our approach was applied, and collected
four client applications from sourceforge.net that use this
API (jdbcLogDriver, VaadingLog4j, Jag and Marauroa), in
addition to CoCoME7 which also uses Log4j. The sizes of
these applications range from 8 to 190 classes.

4.2 Protocol & Results
Research Question 1 (efficiency of detection): We asked

four master students and one Ph.D. candidate, who were not
involved in this work before, to analyse the source code of
these systems manually. We gave the Jasml and CoCoMe
systems to the two master students. We asked the other
two master students to divide the FreeCS system and each
of them analyzed half of the packages. The Ph.D. student
was assigned to analyse the Log4j system. The five students
used, as a reference specification, a detailed description of
the bad smells we wrote. They produced Excel files contain-
ing the number of occurrences of each bad smell for each

6http://www.virtualmachinery.com/index.htm
7http://www.cocome.org/

Table 4: MI values before and after applying the refactoring
System MI before MI after Improvement factor

Jasml-0.10 125.49 147.95 1.17
CoCoME 125.12 161.64 1.29

FreeCS-1.3 110.21 120.89 1.09
Log4j-1.2.17 114.52 122.68 1.07

class and the total number of smells in the entire project.
We report the results of the detection phase in Table 3. It
provides for the four systems the number of existing smells,
the result of manual analysis (M) in the first line of each
row, the smells detected by our implementation (A for auto-
matic) in the second line, and the precision in the third line.
Table 3 shows that a large percentage of the results obtained
with our approach are validated manually (from 87.23% in
average for FreeCS to 94.33% for Jasml). Recall was not
measured because in the analyzed applications, there are no
false negatives: defaults which are detected manually (rele-
vant) and not detected (retrieved) with our process.

Research Question 2 (improvement in maintainability):
We have calculated the aforementioned formula for each
class of the analyzed applications. Table 4 shows the MI
scores before and after applying the approach on the four
projects. MI represents the average of the classes’ MI value.

From the results of Table 4, we can observe that MI is
improved, with an improvement factor that ranges between
1.07 and 1.29, in the resulting systems after applying the
approach. The improvement in maintainability, according
to this metric, is not an insignificant score, regarding the
size of these systems. Then, in order to check if during the
evolution of a single system, the proposed refactorings keep
stable this improvement in maintainability, we evaluated MI
for six versions of Log4j API, which where developed over
a period of 17 years.

The MI values for the six versions before and after apply-
ing the proposed refactorings are depicted in Table 5. From
this table, we can see that there is an increase in MI values
of Log4j, before applying our approach, in all the analyzed
versions. This is justified by the fact that from a version
to another, new functionalities are added to the system or
bugs are corrected, but developers of this system pay atten-
tion to its maintainability. As an example of modifications
that have been performed in version 1.0.4 and contributed



to improve the maintainability of version 1.1.3: FileAppen-
der class from org.apache.log4j package has been splitted
into three classes (ConsoleAppender, WriterAppender and
FileAppender) and the MI value for this class passed from
120.47 to 122.75 (the average MI for the three new classes).

Table 5: MI values of Log4j versions
Version # Classes MI before MI after Imp. factor

1.0.4 146 111.31 121.59 1.09
1.1.3 162 112.25 122.47 1.09
1.2.1 179 114.81 120.66 1.05
2.0 87 116.08 119.64 1.03
2.4 112 117.66 121.56 1.03
2.8 172 118 121.16 1.02

As we can observe, in all the versions, the maintainabil-
ity is improved. However, the improvement is greater in
the first versions. This is explained by the fact that start-
ing from the (major) version 2.0, the structure of Log4j has
completely changed, and its maintanability was substan-
tially improved. In the following versions, the system keeps
a good MI score, even if this is slightly improved by our
refactorings. This shows that our refactorings give better
results on old legacy systems, compared to new, potentially
refactored, ones.

In the following paragraphs, we report on a case study
we have conducted in order to evaluate the benefits brought
by the proposed approach on the maintenance effort in API
migration. API migration is a kind of software adaptation,
and is part of the software maintenace activities. The effort
in API migration is measured in this case study in terms of
the number of tokens in the modified lines of code in a client
application. The two APIs (source and target) of our study
are XOM 8 and JDOM 9 which are XML document manip-
ulation APIs. We performed an API migration, from XOM
to JDOM, of a client application named SleepXomXML 10.
Measurements have been made before and after applying
our approach on this application and for the two APIs.

Table 6: API migration results
SleepXOMXML Refactored SleepXOMXML
XOM JDOM Refact. XOM Refact. JDOM

Number of tokens
in modified lines 254 600 269 380

Difference 346 111

The results of this case study are shown in Table 6. In
this table, we can see the number of tokens in the lines of
code that have been adapted in the version of the client ap-
plication, before its refactoring using our approach: 254 to-
kens. The number of these tokens in the new code (after its
migration to JDOM) become 600 (third column). (Differ-
ence = 346 tokens.) When considering the application after
its refactoring with our approach, the number of tokens in
the modified lines is slightly more, 269. But the number
of tokens in the new code became much less, 380. We can
deduce from the table that in this case study, the difference

8http://www.xom.nu/
9http://www.jdom.org/

10http://altsol.gr/sleepxomxml/

in the number of tokens has been reduced by more than 3
times (from 346 to 111).

Research Question 3 (improvement in reusability:) To
determine which classes are really used by the Log4j client
applications, we analysed these applications’s source code
manually. Table 7 shows the result of this analysis.

The first column presents the number of classes/inter-
faces used directly in the client source code. Both Co-
CoME and jdbcLogDriver use only one class which is Log-
ger. VaadingLog4j uses three classes (Category, Priority
and LoggingEvent) and Marauroa uses two interfaces (Ap-
pender and LoggerRepository) and seven classes. These di-
rectly used classes/interfaces have dependencies with other
classes/interfaces of Log4j. Their number is depicted in the
second column. The proportion of the API used code is
70% for jdbcLogDriver, VaadingLog4j, Marauroa and Co-
CoME (the same classes/interfaces are used by these client
apps). Jag uses directly only one class, LogLevel. This is
explained by the fact that Jag uses another logging imple-
mentation which is Apache Commons Logging.

In terms of memory usage, the Log4j API size is 1.3 MB.
By applying our approach and keeping only the used class-
es/interfaces by the client applications, this size can be re-
duced to 0.7 MB for jdbcLogDriver, VaadingLog4j, Marau-
roa and CoCoME and 8KB for Jag.

4.3 Threats to validity
The obtained results in the detection phase depend on the

specification of the bad smells and on the profile of students.
We tried to be as accurate as possible in the description of
smells and we have chosen students who have some expe-
rience in Java programming. Another aspect can biais the
results and is related to the number of persons involved in
the experiments: one student was assigned to one system or
to a part of a system. Several persons should be assigned
per system to have more accurate results. To mitigate this
risk, we gave these students large periods of time (2 weeks
in average) to carefully check the smells; and asked them to
analyse each class individually and indicate the time spent
on that class. The individual results can be checked in the
previous repository.

Besides, we tried to collect systems of different sizes and
developped by different teams to diversify the data. It is sure
that with a larger set of systems we may obtain more precise
results. However, since the results were all positive with the
four studied systems, which vary in size, our intuition, on
the interest of transforming OO code into CB one using the
proposed refactoring operations, is strengthened.

5 Related Works
Allier et al [2] proposed a method to automate the pro-

cess of migrating OO Java applications into CB OSGi ones.
This method makes component interfaces operational by the
use of two design patterns: Adapter and Façade. In another



Table 7: Number of used classes/interfaces in Log4j

Client applications API’s directly used types
(classes + interfaces/abstract classes)

API’s indirectly used types
(classes + interfaces/abstract classes) API (classes + interfaces/abstract classes)

jdbcLogDriver 1 145 + 28

214 + 36
VaadingLog4j 3 143 + 28

Jag 1 1
Marauroa 7 + 2 137 + 28
CoCoME 1 145 + 28

work, Alshara et al [3] proposed another approach to auto-
matically transform Java applications into OSGi ones. This
approach takes as input a Java application and the descrip-
tion of its CB architecture. Then, the code transformation
consists of replacing the dependencies (inheritance and in-
stantiation) between classes belonging to different clusters
(components) by interactions via interfaces. Shatnawi et
al [12] proposed an approach that aims at recovering soft-
ware components from OO APIs. In this approach, groups
of API classes that are able to form components are iden-
tified. This identification is based on the probability of
classes to be reused together by clients, and the structural
and behavioral dependencies among classes.

In these works, the modularity unit, and therefore the
reusability unit, is a group of classes (a cluster). If a user
wants to develop a new application using an independent
class or a subset of classes in a cluster, she/he is obliged to
reuse the entire component. To optimize the level of reuse,
we defend here the idea of refactoring the classes individu-
ally, to make them component descriptors.

In [8], Fowler defined 22 refactorings for Java programs
and initially introduced the concept of bad smells in code as
an indicator when (and where) to apply refactorings. Shah
et al [11] proposed an algorithm that uses various refac-
toring techniques to automatically remove unwanted de-
pendencies in Java programs. This algorithm is designed
to eliminate modularity defects represented by four types
of anti-patterns: circular dependencies between packages,
subtypes knowledge, abstraction without decoupling and
degenerated inheritance. They classified dependencies be-
tween classes in four categories and for each category they
specified a refactoring operation. For decoupling classes
using interfaces, Steimann et al [13] proposed a fully au-
tomated refactoring approach for the introduction of new
interfaces. This refactoring calculates from variable decala-
rations, the minimal types (interfaces), containing all the
method declarations needed from the chosen reference and
all other references it gets possibly assigned to.

These works share the same goal, which is improving the
modularity of an application. Our method has the same goal
but with another requirement which is having at the end of
the process a class that complies with a component descrip-
tor, in which the decoupling is “pushed further”, through
the declaration of dependencies as abstract types only, and
via instantiation unanticipation.

6 Conclusion and Futur Work
In this paper, we presented a method for improving the

modularity of object-oriented source code, by focusing on
what component-based development brought to program-
ming, i.e. decoupling and instantiation unanticipation. Our
method was experimented on a set of Java projects to eval-
uate its efficiency in the detection of modularity viola-
tions, and the improvement it brings to maintainability and
reusablity. The results of this experimentation showed that
there is a potential in using the proposed process in migrat-
ing existing legacy OO applications.

As a future work, we plan to perform our analysis on a
larger set of applications (with larger sizes). In addition, we
envisage to take into consideration other OO mechanisms,
like inheritance (by replacing inheritance by delegation like
in [10]) and instantiation in nested classes, which bring new
instances of bad smells in the analyzed projects. From a
tool-support point of view, we project to integrate our solu-
tion to the Eclipse IDE as a monolithic refactoring operation
and experiment its usability.

References

[1] R. E. Al Qutaish and A. Abran. An analysis of the design and defi-
nitions of halstead metrics. In IWSM, 2005.

[2] S. Allier et al. From object-oriented applications to component-
oriented applications via component-oriented architecture. In
WICSA, 2011.

[3] Z. Alshara et al. Migrating large object-oriented applications into
component-based ones: instantiation and inheritance transformation.
In GPCE, 2015.

[4] A. Bertolino et al. An architecture-centric approach for producing
quality systems. In Quality of Software Architectures and Software
Quality. Springer, 2005.

[5] J. Börstler et al. Beauty and the beast: on the readability of object-
oriented example programs. Software Quality Journal, 2016.

[6] L. Fabresse et al. Foundations of a simple and unified component-
oriented language. Computer Languages, Systems & Structures,
34(2):130–149, 2008.

[7] N. E. Fenton et al. Software Metrics: A Rigorous and Practical Ap-
proach. PWS Publishing Co., 1998.

[8] M. Fowler. Refactoring - Improving the Design of Existing Code.
Addison-Wesley, 1999.

[9] M. Gligoric et al. Systematic testing of refactoring engines on real
software projects. In ECOOP. Springer, 2013.

[10] H. Kegel et al. Systematically refactoring inheritance to delegation
in java. In ICSE. IEEE, 2008.

[11] S. M. A. Shah et al. On the automation of dependency-breaking
refactorings in java. In ICSM, 2013.

[12] A. Shatnawi et al. Reverse engineering reusable software compo-
nents from object-oriented apis. JSS, 2016.

[13] F. Steimann et al. Decoupling classes with inferred interfaces. In
SAC, 2006.


	Introduction
	Decoupling and Instantiation Unanticipation violation
	Decoupling Violation
	Instantiation Unanticipation Violation

	Refactoring Operations
	Experiments
	Used Data & Metrics
	Protocol & Results
	Threats to validity

	Related Works
	Conclusion and Futur Work

