
SemHunt: Identifying Vulnerability Type with
Double Validation in Binary Code

Yao Li, Weiyang Xu, Yong Tang, Xianya Mi, and Baosheng Wang
College of Computer Science

National University of Defense Technology
Changsha, Hunan, China

{liyao15,xuweiyang11,ytang,mixianya09}@nudt.edu.cn,wangbaosheng@126.com

Abstract—when manufacturers release patches, they are usu-
ally released as binary executable programs. Vendors generally
do not disclose the exact location of the vulnerabilities, even they
may conceal some of the vulnerabilities, which is not conducive to
study the in-depth situation of security for the need of consumers.
In this paper we introduce a vulnerability discover method using
machine learning based on patch information - SemHunt. Firstly,
we use it to compare two versions of the same program to get
the potential vulnerability-patched function pairs using binary
comparison technology. Then, we combine it with vulnerability
and patch knowledge database to classify these function pairs
and identify the possible vulnerable functions and the vulnera-
bility types. We completed a prototype of SemHunt, which can
effectively identify vulnerable function types and the location
of corresponding vulnerabilities, which are not revealed in the
released patch files. Finally, we test some programs containing
real-world CWE vulnerabilities, and one of the experimental
results about CWE843 shows that the results returned from only
searching source program are about twice as much as the results
from SemHunt. We can see that using SemHunt can significantly
reduce false positive rate of discovering vulnerabilities compared
with analyzing source files alone.

Index Terms—software security; binary comparison; vulnera-
bility; patch file; machine learning

I. INTRODUCTION

At present, the search for vulnerable software functions
is mainly based on software source code, which means that
professional testing tools on source code can find the vul-
nerabilities through automatic analysis of the code. However,
obtaining the source code is a very demanding condition,
because many software only provides executable programs
such as the large commercial software MS Office and the free
off-source software Adobe Reader. In addition, manufactures
usually release patches in binary executable program without
detailed vulnerability information and its corresponding loca-
tion. Therefore, finding vulnerabilities in the source code has
great limitations. They are not conducive to study the in-depth
situation of security for the need of consumers. Now, there
are some problems in vulnerability analysis techniques at the
binary level. Firstly, the binary comparison technique between
two versions of the same program may miss some match
functions[1][2][3][4], and the analysis of the vulnerability still
needs a lot of manual work. There are some binary comparison
tools like BinDiff[5][6], BinSlayer[7] and so on[8], which can

DOI reference number: 10.18293/SEKE2017-117

get good matching results. They compare two functions to
get their similarity, and determine whether the two functions
match by setting a threshold. In contrast, our method aims
at finding the potential vulnerability-patched function pairs,
which requires us to modify the current binary comparison
algorithm to adapt to our method.

Another problem is that the search for vulnerability at the
source program level may have high false positive rate[9].
They establish the vulnerability knowledge database and find
the similar functions to the test ones to determine the vul-
nerability types. Eschweiler and etc. match the function basic
blocks’ flow graph to find the pairing vulnerable functions to
the test software function[10]; Ming and etc. firstly find the
match basic blocks through semantic features, then extend the
matched blocks to the functions[1]. These methods only iden-
tify the possible vulnerable functions and their vulnerability
types at the source program level. Lacking verification from
other ways may lead to the high false positive rate.

Our paper firstly presents a novel approach to finding the
semantic differences between two versions of the same pro-
gram, aiming at finding the exact match between the potential
vulnerable functions and potential patched functions. Then,
we use the machine learning classification algorithms which
are combined with the patch information to make a double
verification for identifying vulnerability types. Thus, we can
increase the accuracy of the vulnerability report, as well as
reduce the false positive rate and identify these vulnerable
functions types and corresponding locations more effectively,
which are not disclosed in detailed information when the patch
file is released.

The main contributions of the paper are as follows:

(i) We build a set of common vulnerability functions, as
well as a corresponding set of patch-functions, which
are used to train the machine-learning classifier.

(ii) We propose a new binary comparison method between
the unpatched-vision and patched-vision software, to
find out the possible vulnerability-functions and its patch
functions.

(iii) We have implemented a prototype of SemHunt.

Our paper will be described in the following order. Section
2 will introduce a whole framework. Section 3 will introduce
the key points of the SemHunt. Section 4 will introduce



Fig. 1: System Architecture

the experience in detail. Weakness and future work will be
introduced in Section 5.

II. SYSTEM ARCHITECTURE

Figure 1 shows our overall system structure. Firstly, the
two binary files are loaded into our angr platform, and it
run its own disassembly tool to generate the assembly code.
Then the assembly code are transferred into the intermediate
language using the IR converter(VEX), and the CFG is gen-
erated through the CFG constructor. We extract the semantics
information and digital feature of the function. After that
we use them in the binary comparison algorithm to get the
possible pairs of unpatched-function and patched-function, we
extract the feature and Simhash of each function through the
digital feature extractor. We add the match between patched-
file and patched-function set to reduce the rate, because only
finding the match function between vulnerability-functions set
and the unpatched file to get the vulnerability type may have
a high false positive rate. Then we put the features into the
machine learning classifier to get the corresponding matches.
We combine the results from two classifier to get the final
potential vulnerability types. Then we will talk about some
parts briefly.

III. THE KEYS OF SEMHUNT

There are two main parts in the SemHunt: Binary compari-
son algorithm and Vulnerability Search Combined With Patch
Information.

A. Binary comparison algorithm
We modify the BinDiff algorithm to adapt our system.

Bindiffs selectors only consider the structural characteristics
of the three-tuple information, such as its selector of callgraph,
which only includes the numbers of basic blocks, the number

of edges and a sub-function call number. The selector for the
control flow graph of the basic block contains the number of
blocks of the shortest path to the exit of the function, the
number of blocks passed from the entry point to the shortest
path of the block and the number of points of the sub-function
in the basic block. They are all used in a Euclidean space to
carry out the minimum distance to judge[5].

However, our SemDiff changes not only in the selector, in-
cluding the semantic judgments and more digital information,
but also in the process of loop. We do not only check the
parent-child nodes in one loop (this method may miss a lot
of matches), but also carry out their own check. To determine
the two functions are functionally identical, we define a rule
as follows:

Definition 1: pair functions equivalence formulas of data-
Given two list of data that are recorded in the memories and
registers: X = [x0, x1, · · · , xm], and Y = [y0, y1, · · · , yn].
For every xi in X , there is a bijection, yj = f(xi) is existed
,then ,we call the data is same. The formula is described as
follows:

8xi, 9yj = f(xi), f(x) is a bijection

There are three parts in the SemDiff: WholeMatch, Match-
Pro and SemDiff. As with the previous algorithms, at the be-
ginning of the initially matching process, we find the functions
which are uniquely matched, which means that, we find some
functions that have the same symbol expressions and digital
features.

At the first stage of the algorithm, the inputs are the function
sequences of the two programs respecitively. After the ”Whole
Match”, we get a result of the match function and two lists of
functions that are still unmatched.

Then, it is the second stage. We call it ”MatchPro”, because
it is applied in the propagation progress. The input of the



second part is the matched function set, which is got from the
first stage and the remaining unmatched function sequences
. Then we match each function from a small set, which can
be got after the function ”FindPaAndCh”. It is a function that
return the set of the parent nodes and children nodes to the
functions in the matched set. After we get the subset, we use
them into the ”WholeMatch” to get the matched functions until
we finish traversing all matched functions.

The ”SemDiff” is a combination of ”WholeMatch” and
”MatchPro”. After we execute the three process, we get a
matched-function set and an unmatched-function set. The
match set includes the functions that are absolutely the same,
so they are not the vulnerable functions and corresponding
patched functions. We can get the potential vulnerable-patched
function pairs in the unmatched-function set. We compare each
function pair in it. If the similarity is over 80%, we consider
this pair as the potential vulnerable-patched function pair and
put them in the candidate set.

B. Vulnerability Search Combined With Patch Information

In this search stage, we use the machine learning algorithm
as our classifier. We will introduce the digital feature extractor
first. Each function holds a lot of digital information or
metadata, such as the number of instructions and so on.
The digital feature extractor is designed to extract a set of
digital features, which can represent the binary function. The
paper[10] indicates the number of instructions, the size of local
variables, the number of parameters, the number of CFG-based
blocks and the numbers of edges can be extracted as the digital
features. We also classify and record the instructions according
to the instruction types, like arithmetic instructions, data trans-
fer instructions, logic operations instructions, function call
instructions, function jump instructions and so on. Different
from the paper[10], we calculate the SimHash of each function
which is added to the digital features. Then we use the machine

Fig. 2: The Performance of Machine Learning Algorithm

learning algorithms to classify the functions into different
types according to the vulnerable-function database and the
patched-function database. Considered the performance of
each machine learning algorithm(fig2), we finally use the KNN
algorithm as our classifier and we modify it to adapt our
system. We check the results returned from the classifier. If
each result has the similarity over 90% with the test function,
then we still put them into the result set, or drop them. In

this case, we can adapt to the real situation that not every
unmatched-function pair with the similarity over 80% is the
vulnerable-patched function pair.

We can also explain the rationality of the low false rate by
double validation. Though the digital feature can’t represent
a specific function, the results returned from the machine
learning classifiers include the true function type. If the true
function type is in each result, the intersection must have the
true label. Thus, we can reduce the range of the candidate
through making an intersection of two results returned from
two classifiers respectively.

IV. EXPERIMENT

Our experiment is carried out in the system Ubuntu 14.04,
running in an angr virtual environment[11][12][13] . The
language we use is Python. We firstly introduce the two
databases’ construction. Then, we compare some machine
learning algorithms performance to get the best one. Then,
we modify it to adapt our system. At last, we introduce
some true examples which have the CWE vulnerabilities to
verify the accuracy and compare performances between double
validation and single validation.

A. The Construction of Databases
We have downloaded the common vulnerable functions

on CVE website, which contains the corresponding patched
function, including Stack Based Buffer Overflow, Heap Based
Buffer Overflow, Buffer Underweite, Integer Overflow, Use
after free, Double Free, Type Confusion and other vulnera-
bilities, about totally 148 kinds, more than 4000 vulnerable-
functions and more than 5000 patched-functions. After we get
the source code, we have to compile them in different platform,
here we just consider the Linux and Windows.

Because the instruction confusions have negative influence
on the performance, we have to preprocess the data informa-
tion. According to the feature we extracted and the Simhash,
we just focus on instruction rearrangement and register renam-
ing.

B. An Example with CWE843
At first, we take the program with CWE843 and its patched-

file as the input respectively in the KNN classifier. Then we
can get a list of results which are function-vulnerability pairs.
As TABLE I and TABLE II shown:

Function Type T/F
plt. libc start main Missing Handle,· · · ,Infinite Loop F

plt.printf Infinite Loop,· · · , Reachable Assertion F
sub 40124e Type Confusion,Null Deref From Return T
sub 400f80 Type Confusion,Null Deref From Return T
sub 4012a0 Type Confusion T
sub 400f2e Type Confusion T

· · · · · · · · ·
init Missing Handle,· · · , Reachable Assertion F

libc csu init Infinite Loop,· · · , Reachable Assertion F

TABLE I: The Final Result of unpatched-program
T represent the true type is in the Type set; F represent the true is not in
the Type set.



Function Type Set T/F
init Mismatched Memory Management F

libc csu init Infinite Loop,· · · , Reachable Assertion F
sub 40101c Type Confusion T
sub 4010e2 Type Confusion T
sub 401175 Type Confusion,Reachable Assertion T
sub 400e57 Type Confusion T

· · · · · · · · ·
printLine Missing Handle,· · · , Reachable Assertion F

deregister clones Uncontrolled Recursion F

TABLE II: The Final Result of patched-program
T represent the true type is in the Type set; F represent the true is not in
the Type set.

The vulnerable program has 51 functions totally, and the
classifier returns 16 functions that may be the potential vul-
nerability function. However only 4 functions have bugs. Also,
there are 51 functions in the patch file with 4 bug functions,
however 18 functions are returned from the classifier. Through
observing the data, we find that there are nine functions are
same which are init, libc csu init,· · · , printLine. They cost
us too much energy to analyse, however they can’t be the
vulnerable functions.

Then, we put the two test programs into the SemHunt. We
get a list of functions which have the similarity over 80%
from the unmatched set. Thus we get the candidates that
may be the vulnerable-function and patched-function pair as
TABLE III shown. Then, we use these candidate pairs as the
test function pair, and put them into the KNN classifier to get
the potential vulnerability types set. At this time, there are
only eight pairs left including the four vulnerable function
pairs: sub 40124e:sub 40101c, sub 400f80:sub 4010e2,
sub 4012a0:sub 401175, sub 400f2e:sub 400e57. Then
through the intersection of each pair, we get a more accurate
result.

U.Fun P.Fun C.Type T.Type
sub 40124e sub 40101c Type Confusion Type Confusion
sub 400f80 sub 4010e2 Type Confusion Type Confusion
sub 4012a0 sub 401175 Type Confusion Type Confusion
sub 400f2e sub 400e57 Type Confusion Type Confusion

· · · · · · · · · · · ·

TABLE III: The Final Result of CWE843
1 U.Fun: Unpatch function, P.Fun: Patch function, C.Type: Candidate

Type, T.Type: True Type

V. CONCLUSION AND FUTURE WORK

We presented a system to efficiently identify already known
vulnerability with the patch file information in binary code
across two operating systems. In the preparation phase, two
code bases of known vulnerability functions and corresponding
patched functions are analyzed and their numeric features
and SimHash are stored. When a new vulnerability and its
corresponding patch are published, we always can’t know the
detail information about them. Our approach employs a three-
stage method to quickly identify the vulnerability type of the
program and which function is the buggy function. The first
stage relies on the binary comparison technique to get the

function-pairs which may be the vulnerability function and
corresponding patch function. Then at the second stage, we
extract the digital features and SimHash to retrieve very similar
functions based on the KNN algorithm. These functions serve
as candidates to the next stage. In the end, we make an
intersection of the two candidates set to get the potential
vulnerability types. Overall, our method can reduce the false
positive and the cost of time doesn’t increase too much.And
we implemented our methods in a tool call SemHunt and
evaluated its efficacy on several program and their patch files
with CWE vulnerabilities.

ACKNOWLEDGMENT

We would like to thank Yong Tang for detailed discussions
and suggestions about the algorithms used in this paper,
and the reviewers from our laboratory for providing useful
comments on this paper.

REFERENCES

[1] J. Ming, M. Pan, and D. Gao, iBinHunt: Binary Hunting with Inter-
procedural Control Flow. Springer Berlin Heidelberg, 2012.

[2] Z. Wang, K. Pierce, and S. Mcfarling, “Bmat – a binary matching tool
for stale profile propagation,” vol. 2, p. 2000, 2002.

[3] D. Gao, M. K. Reiter, and D. Song, “Binhunt: Automatically finding
semantic differences in binary programs,” in Information and Commu-
nications Security, International Conference, ICICS 2008, Birmingham,
Uk, October 20-22, 2008, Proceedings, pp. 238–255, 2008.

[4] K. Riesen, M. Neuhaus, and H. Bunke, Bipartite Graph Matching for
Computing the Edit Distance of Graphs. Springer Berlin Heidelberg,
2007.

[5] H. Flake, “Structural comparison of executable objects,” in IEEE Confer-
ence on Detection of Intrusions and Malware Vulnerability Assessment,
pp. 161–173, 2004.

[6] T. Dullien and R. Rolles, “Graph-based comparison of executable objects
(english version),” 2005.

[7] M. Bourquin, A. King, and E. Robbins, “Binslayer: accurate comparison
of binary executables,” 2013.

[8] L. Liu, B. S. Wang, Y. U. Bo, and Q. X. Zhong, “Automatic malware
classification and new malware detection using machine learning*,”

[9] J. Feist, L. Mounier, and M. L. Potet, “Statically detecting use after free
on binary code,” Journal of Computer Virology and Hacking Techniques,
vol. 10, no. 3, pp. 211–217, 2014.

[10] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discovre: Efficient
cross-architecture identification of bugs in binary code,” in The Network
and Distributed System Security Symposium, 2016.

[11] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“Sok: (state of) the art of war: Offensive techniques in binary analysis,”
2016.

[12] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution,” 2016.

[13] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna,
“Firmalice - automatic detection of authentication bypass vulnerabilities
in binary firmware,” 2015.


