
Multi-Objective Crowd Worker Selection in
Crowdsourced Testing

Qiang Cui∗§, Song Wang†, Junjie Wang∗, Yuanzhe Hu∗§, Qing Wang∗‡§ and Mingshu Li∗‡§
∗Laboratory for Internet Software Technologies, Institute of Software Chinese Academy of Sciences

†Electrical and Computer Engineering, University of Waterloo, Canada
‡State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences

§University of Chinese Academy of Sciences
{cuiqiang, junjie, yuanzhe, wq}@nfs.iscas.ac.cn, song.wang@uwaterloo.ca, mingshu@iscas.ac.cn

Abstract—Crowdsourced testing is an emerging trend in soft-
ware testing, which relies on crowd workers to accomplish test
tasks. Typically, a crowdsourced testing task aims to detect as
many bugs as possible within a limited budget. For a specific
test task, not all crowd workers are qualified to perform it,
and different test tasks require crowd workers to have different
experiences, domain knowledge, etc. Inappropriate workers may
miss true bugs, introduce false bugs, or report duplicated bugs,
which could not only decrease the quality of test outcomes, but
also increase the cost of hiring workers. Thus, how to select the
appropriate crowd workers for specific test tasks is a challenge
in crowdsourced testing.

This paper proposes a Multi-Objective crowd wOrker SE-
lection approach (MOOSE), which includes three objectives:
maximizing the coverage of test requirement, minimizing the cost,
and maximizing bug-detection experience of the selected crowd
workers. Specifically, MOOSE leverages NSGA-II, a widely used
multi-objective evolutionary algorithm, to optimize the three
objectives when selecting workers. We evaluate MOOSE on 42
test tasks (involve 844 crowd workers and 3,984 test reports)
from one of the largest crowdsourced testing platforms in China,
and the experimental results show MOOSE could improve the
best baseline by 17% on average in bug detection rate.

I. INTRODUCTION

Crowdsourced testing is an emerging trend in software
testing. In recent years, it has received much attention from
the research community [15, 16], and there are many success-
ful crowdsourced testing platforms in industry, e.g., uTest1,
TestBirds2, and Pay4Bugs3. Different from traditional testing,
crowdsourced testing entrusts test tasks to crowd workers, who
are available on Internet and located in different places. A
crowdsourced testing task aims at detecting as many bugs
as possible, meanwhile the cost of hiring workers should be
controlled within the limited budget.

In current practice, crowd workers search available test
tasks themselves and perform any tasks they interested. Thus,
test tasks are often performed by a random set of workers.
However, for a specific test task, not all crowd workers are
qualified to perform it, and different test tasks require crowd
workers to have different experiences, domain knowledge, etc.
Inappropriate workers may miss true bugs, introduce false

1https://www.utest.com/
2https://www.testbirds.com/
3https://www.pay4bugs.com/

bugs, or report duplicated bugs, while hiring them requires
nontrivial budget. Selecting inappropriate workers for a test
task, not only decreases the quality of test outcome but also
increases the cost of hiring workers. Thus, how to select the
appropriate crowd workers for specific test tasks is a challenge
in crowdsourced testing [9, 19].

The ultimate purpose of crowd workers selection is to select
as few workers as possible to detect as many bugs as possible.
However, there is no ideal test criterion for this purpose,
because the real bug detection information of a test task can
only be available until the test task is finished. In this work,
we leveraged three alternative criteria for selecting workers,
which are critical in crowdsourced testing, i.e., the coverage
of test requirement, bug-detection experience of the selected
crowd workers, and the cost of the selected crowd workers.

Specifically, the coverage of test requirement assures all the
test requirements should be tested by the workers with similar
expertise. If some test requirements were missed, correspond-
ing bugs might not be detected. This objective is measured
using the percentage of terms in test requirement mentioned
in workers’ historical reports. The bug-detection experience of
the selected crowd workers assures more experienced workers
should be selected to perform the test task, which is important
in crowdsourced testing. This is because the experiences of
workers vary significantly and experienced workers are more
likely to detect bugs [19]. We use the total number of bugs
detected by the selected workers to measure this criterion. The
cost of the selected crowd workers considers the limited budget
of a specific test task. Specifically, the cost is the reward for
workers, which is set as a constant for each worker performing
the test task in most of crowdsourced testing platforms.

In this paper, we propose a Multi-Objective crowd wOrker
SElection approach (MOOSE), which aims at selecting the
appropriate crowd workers for specific test tasks by consider-
ing the above three criteria. MOOSE maximizes the coverage
of test requirement, minimizes the cost, and maximizes bug-
detection experience of the selected workers. It leverages a
widely used multi-objective evolutionary algorithm, namely
NSGA-II, to optimize the three objectives when selecting
workers.

We evaluate MOOSE on an industrial dataset from Baidu
CrowdTest - one of the largest crowdsourced testing platforms

DOI reference number: 10.18293/SEKE2017-102

Task Publisher
Test Task

Candidate Workers
Finding Test Task

(Search / Recommendation)

Test Reports Test Performing Workers

Fig. 1: The typical procedure of crowdsourced testing.

in China. The experimental results show the effectiveness and
practical value of MOOSE.

The primary contributions of this paper are as follows:
• We propose a multi-objective crowd worker selection

approach, which can maximize the coverage of test
requirement, minimize the cost, and maximize the bug-
detection experience of the selected workers. To the best
of our knowledge, this is the first approach for the
multi-objective crowd worker selection problem.

• We evaluate our approach on 42 test tasks (involve 844
crowd workers and 3,984 test reports) from one of the
largest crowdsourced testing platforms in China. The
results show that MOOSE could improve the best baseline
on average by 17% in bug detection rate.

II. BACKGROUND

A. Crowdsourced Testing

The overall procedure of crowdsourced testing is shown in
Figure 1. A task publisher provides a test task for crowd-
sourced testing, including the software under test and test
requirements. Then crowd workers could sign in to perform
the task, and are required to submit crowdsourced test reports
after finishing the task. Finally, the task publisher needs to
further inspect the submitted reports and verify whether they
are bugs or not.

In current practice, crowd workers search and take proper
test tasks all by themselves. However, such process might be
ineffective for bug detection, because crowd workers would
perform test tasks they are not good at for financial incentive.
Consequently, inappropriate workers for a test task may miss
true bugs, introduce false bugs, or report duplicated bugs,
which could not only decrease the quality of test outcomes,
but also increase the cost of hiring workers.

Intuitively, to mitigate the above issue in crowdsourced
testing, an appropriate subset of workers should be selected for
a specific test task. The selected workers can be recommended
to the task publishers, who could then invite them to participate
in the task. In addition, the selection results can also assist
crowd workers to find proper test tasks so as to save their
effort in searching tasks.

In crowdsourced testing, a test task is provided by a task
publisher, which are described with the natural language test
requirements. A test report is the test outcome submitted by
a crowd worker. It contains the natural language description
about operation steps and test outcomes. Specifically, it is
labeled by test engineers in the platform to indicate whether
the report reveals a “bug”, or whether the report is “duplicated”

with other reports. A crowd worker is a registered worker in
the crowdsourced testing platform.

B. Multi-objective Optimization

The multi-objective optimization problem seeks to simul-
taneously optimize multiple objective functions. It can be
defined as to find a vector of variable x, which optimizes a
vector of M objective functions fi(x), where i = 1, 2, ...,M .

The multiple objective functions are optimized using Pareto
optimality [3], which is a strategy that supposed one player’s
situation cannot be improved without making the other play-
er’s situation worse. Specifically, a decision vector x1 will
dominate a decision vector x2 if and only if their objective
vectors fi(x1) and fi(x2) satisfy:

fi(x1) ≥ fi(x2)∀i ∈ 1, 2, ...,M ; and

∃i ∈ 1, 2, ...,M |fi(x1) > fi(x2)

All decision vectors that are not dominated by any other
decision vectors are called to form the Pareto optimal set, and
the corresponding objective vectors are called the the Pareto
frontiers.

III. MOOSE

We first present a definition of multi-objective crowd worker
selection problem. Given a set of candidate workers W , a
vector of M objective functions fi, where i = 1, 2, ...,M ,
the problem is to find a subset of workers S that is a Pareto
efficient set with respect to the objective functions.

To solve the problem, we propose a multi-objective worker
selection approach (MOOSE), which maximizes the coverage
of test requirement, minimizes the cost, and maximizes the
bug-detection experience of the selected workers. Specifically,
the cost is the inevitable constraint for worker selection, the
other two objectives, i.e., the coverage of test requirement
and the bug-detection experience of the selected workers, are
critical criteria in crowdsourced testing. We use search-based
method to solve the multi-objective optimization. Like other
search-based software engineering tasks [4, 7, 10, 13, 20],
MOOSE contains representation, fitness function, and com-
putational search algorithm. It also contains a fourth part to
illustrate how to handle multiple objectives.

A. Representation

Like other selection problems [4, 6, 14], we encode each
worker as a binary variable. If the worker is selected, the value
is one; otherwise, the value is zero. The solution is a vector
of binary variables, which includes all the candidate workers
in crowdsourced testing. The initial population is generated
randomly, and the feasible solution would be selected when
their values are positive for all objective functions.

B. Fitness

To evaluate the fitness of each solution, we employed
a multi-objective function to simultaneously maximize the
coverage of test requirement, the bug-detection experience of
the selected workers, and minimize the cost.

1) Coverage of test requirement: Test requirement cov-
erage is an important test criterion in software testing. In
crowdsourced testing, to cover the test requirements, on the
one hand, the selected workers should have similar expertise
with the requirements; on the other hand, the workers should
be different with each other, so as to cover different parts
of the requirements. In this work, we use the conducted
crowdsourced tasks and accomplished reports of a worker to
represent his/her expertise. Therefore, we use the technical
terms in one’s historical test reports to represent his expertise.
The coverage of test requirement (TR) is measured by the
percentage of all terms in the test requirement covered by
the expertise of the selected workers. Note that, not all the
natural language terms are meaningful for testing, we only use
the technical terms obtained based on the method in Section
IV-D. Formally, the coverage of test requirement is defined as
follows.

Coverage =
unique terms of TR mentioned by workers

unique terms in TR
(1)

2) Bug-detection experience of the selected workers: In
crowdsourced testing, it often has a very distinguished situ-
ation that the experiences of crowd workers vary a lot. Some
workers have detected many bugs. With the rich experience,
they hardly miss true bugs during testing. While some other
workers are almost new and do not have much experience,
which makes them easily miss true bugs, introduce false bugs,
and report duplicate bugs. Thus, it is important to select the
experienced workers to perform a specific test task. The bug-
detection experience is measured as the total number of bugs
the worker detected before. Since duplicated bugs detected by
different workers are useless to the overall test outcomes, we
use the number of unique bugs detected by a set of workers
to represent their bug-detection experience. As mentioned in
Section II, duplicated bugs are labeled by test engineers in the
platform, thus the unique bugs can be easily picked out.

3) Cost: The cost is an unavoidable objective in crowd
worker selection, because the constraint of the cost must be
considered when selecting workers in crowdsourced tasks. The
straightforward cost in crowdsourced testing is the reward for
workers. We suppose all the workers who participate in a test
task are equally paid, which is a common practice in real-
world crowdsourced testing platforms. The cost is measured
as the total reward of the selected workers.
C. Computational Search

We employed a widely used evolutionary algorithm, namely
NSGA-II, to simultaneously optimize the three objectives.
NSGA-II is a genetic algorithm based optimization technique
developed by Deb et al. [3], which is the state-of-the-art
optimization technique and has already been widely used in
other multi-objective optimization tasks [10].
D. Handling Multiple Objectives

In MOOSE, the three objectives are handled on orthogonal
scales. Then we employed Pareto optimality: a solution x1 is
said to dominate another solution x2, if x1 is no worse than
x2 in all objectives and x1 is strictly better than x2 in at least

TABLE I: Running Example.
Technical terms of TRs of example tasks Experience (unique bug) Cost
t1 t2 t3 t4 t5 t6 b1 b2 b3 b4 value

w1
√ √ √ √

1
w2

√ √ √ √ √
1

w3
√ √ √ √ √ √

1
w4

√ √ √ √
1

one objective. According to Pareto optimality, we can search
for the set of solutions which are non-dominating.

E. Running example

To make MOOSE more clear, we describe it using a running
example. As shown in Table I, there are four candidate workers
(i.e., w1 to w4).

• The workers’ historical test reports and test requirements
are pre-processed to extract the technical terms. Then
for each test task, whether a technical term of test
requirements is mentioned by a worker is encoded into
a binary vector. For simplicity, we only use six terms as
shown in Table I.

• The bug-detection experience of a worker is extracted and
encoded into a binary vector. For simplicity, we only use
four historical bugs as shown in Table I.

• The cost of selecting each worker is set to “1” and also
encoded into a vector.

• The above three binary vectors of a worker are merged
into one vector. Then the vectors of workers for a specific
test task are passed into the NSGA-II. Through the several
iterative generation, selection, and evaluation of NSGA-
II, the non-dominating solutions are finally obtained.

In our running example, the solution {w1, w2} is dom-
inant {w1, w3}, because it has a better coverage, a better
bug-detection experience, and equal cost. Similarly, {w3}
dominates all the solutions containing one worker, {w1, w2},
{w1, w2, w4} are the best solutions for selecting two or three
workers respectively.

IV. EMPIRICAL STUDY DESIGN

A. Research Questions

• RQ1: (Effectiveness of MOOSE) How effective is
MOOSE for crowd worker selection?

• RQ2: (Necessity of the objectives) Look inside of
MOOSE, is each of the three objectives necessary in
MOOSE?

• RQ3: (Quality of results) Do the results of MOOSE
achieve high quality?

B. Evaluation Metric

In this work, bug detection data are used to evaluate the
performance of our approach. Given a test task, we measure
the performance of a worker selection approach according to
whether it can select the “right” workers, who have performed
this test task and detected true bugs.

Bug Detection Rate (BDR) is the percentage of bugs
detected by the selected crowd workers in a test task out of
all bugs historically detected in the same test task. Formally,

TABLE II: Statistics of the dataset used in this work.
Statistic Number
of test tasks 42
of categories 13
of candidate workers 844
of test reports 3,984
average # of test reports per task 40
average # of bugs per task 25

given a set of selected workers, i.e., W , and a test task, i.e.,
T , the bug detection rate is defined as follows:

BDR =
#bugs detected by workers in W

#all bugs of T
(2)

Since a smaller subset is usually preferred in crowd worker
selection due to the limited budget, we investigate the BDR
when selecting from 1% to 50% of the total number of
candidate workers for a test task.

C. Baselines

To evaluate the performance of MOOSE, we introduce
three baselines. Random simulates the current practice in
most crowdsourced testing platforms, where workers search
test tasks to perform. It randomly selects workers from the
candidate set of workers. We run Random for 10 times and
record the best performance as its performance.

To further evaluate MOOSE, we also introduce two common
ranking baselines, i.e., Bug Ranking and IR Ranking. Bug
Ranking ranks all the candidate workers according to the
number of historical bugs the worker detected before, and
recommends the top workers. IR Ranking ranks all the can-
didate workers according to the textual similarity between the
workers’ historical test reports and test requirement (Similarity
is calculated using Euclidean distance between technical term
vectors [18]), and recommends the top workers.

D. Baidu CrowdTest Dataset

We collected crowdsourced testing data from an industrial
crowdsourced testing platform, namely Baidu CrowdTest. We
collected the test tasks that are closed between Nov. 1st 2015
and Nov. 30th 2015. In total, there are 42 tasks covering 13
categories, such as utilities, lifestyle, finance, etc. For each test
task, we manually collected all the detected true bugs of it.
The detail statistics of data set are shown in Table II.

To process the dataset, we employed Natural Language Pro-
cessing to extract a technical term vocabulary for measuring
the coverage of test requirements in Section III-B1. Firstly,
ICTCLAS4 is used for word segmentation, then stopwords are
removed, and part-of-speech tags are conducted. Finally terms
except verbs and nouns are removed. Filtering meaningless
terms like existing work [15], we obtain a vocabulary of
technical terms.

E. Experimental Setup

To evaluate MOOSE, following existing work [12], we use
cross-validation in our experiments. We first randomly selected
70% test tasks as a training dataset and the remaining ones as
the test dataset. To mitigate the randomness, the experiment

4http://ictclas.org

����������	
����������	����������

��� �� �� �� �� ��

�
�
�
��
�
	�
�
	�
�
�
��

	�

���

��

��

��

�

�
���!

�����
�����

"���
�����

#$$%&

Fig. 2: Comparison of MOOSE with different baseline ap-
proaches (RQ1).
is repeated 20 times, and we use the average BDR to evaluate
MOOSE’s performance.

For NSGA-II used in MOOSE , we used a random initial
population of size 200, and we iterated the algorithm for
200,000 max evaluation, with single point crossover and bit-
flip mutation. We set the max evaluation to 200,000, since
extended number of evaluations does not show any noticeable
improvement in performance. To take into account the inherent
randomness of the algorithm, for each test task, we executed
20 independent runs of the algorithm. Note that the running
time for NSGA-II is 3,000 ms on average for each test
task, which is negligible. We implemented MOOSE based
on jMetal5, a widely used Java framework aiming at solving
multi-objective optimization problems.

V. RESULTS

RQ1: How effective is MOOSE for crowd worker selec-
tion?

We first compare MOOSE with Random, which rep-
resents the current practice of worker selection in crowd-
sourced testing platforms. It can be easily observed from
Figure 2 that MOOSE outperforms Random. Specifically,
compared with Random, the BDR improvement ((MOOSE-
Random)/Random) achieved by MOOSE is 158% (0.16 vs.
0.42) when selecting only 10% workers, and the BDR im-
provement is 48% (0.45 vs. 0.67) when selecting 30% workers.
In addition, from selecting 1% to 50% workers, the average
improvement of BDR is 58%.

Furthermore, MOOSE also outperforms both Bug Ranking
and IR ranking, which are two commonly-used ranking
methods. The average improvement of BDR for Bug Ranking
is 17% and for IR Ranking is 25%. It can be found that Bug
Ranking and IR Ranking largely outperform Random, and in
some test tasks, they are close to MOOSE. They leverage the
measurements that are also about the workers’ bug-detection
experience and expertise, which implies these two criteria are
really useful for selecting workers.

In addition, Table III shows the average BDR when selecting
between 1% and 50% workers for each of the 42 test tasks.
In most of test tasks (37/42, 88%), MOOSE achieves the best
performance compared with the three baseline methods. In the

5http://jmetal.github.io/jMetal/

TABLE III: The detailed results of MOOSE and other compared methods.
Bug Detection Rate of all compared methods (RQ1,RQ2) Bug Detection Rate of all compared methods (RQ1,RQ2)

Random Bug Rank IR Rank Bug+Cost Cov+Cost MOOSE Random Bug Rank IR Rank Bug+Cost Cov+Cost MOOSE
T1 0.235 0.334 0.274 0.494 0.417 0.529 T22 0.337 0.498 0.606 0.548 0.636 0.631
T2 0.480 0.467 0.413 0.411 0.506 0.520 T23 0.473 0.492 0.534 0.542 0.492 0.503
T3 0.374 0.429 0.518 0.474 0.537 0.554 T24 0.400 0.617 0.676 0.525 0.700 0.659
T4 0.536 0.677 0.501 0.667 0.670 0.671 T25 0.315 0.150 0.396 0.198 0.492 0.519
T5 0.516 0.803 0.810 0.756 0.809 0.823 T26 0.302 0.584 0.579 0.492 0.635 0.646
T6 0.000 0.684 0.292 0.861 0.846 0.881 T27 0.307 0.405 0.307 0.282 0.452 0.472
T7 0.469 0.475 0.381 0.609 0.593 0.611 T28 0.717 0.620 0.487 0.605 0.703 0.723
T8 0.193 0.401 0.204 0.404 0.360 0.391 T29 0.310 0.117 0.338 0.328 0.220 0.338
T9 0.598 0.723 0.560 0.681 0.756 0.763 T30 0.113 0.009 0.360 0.126 0.175 0.107

T10 0.246 0.713 0.600 0.612 0.732 0.744 T31 0.876 0.909 0.707 0.928 0.723 0.933
T11 0.157 0.492 0.500 0.740 0.719 0.742 T32 0.376 0.390 0.221 0.471 0.344 0.425
T12 0.169 0.633 0.083 0.480 0.547 0.636 T33 0.138 0.000 0.000 0.169 0.000 0.153
T13 0.400 0.415 0.451 0.512 0.569 0.507 T34 0.217 0.378 0.323 0.362 0.347 0.397
T14 0.405 0.674 0.623 0.756 0.615 0.728 T35 0.326 0.325 0.314 0.304 0.369 0.345
T15 0.249 0.633 0.486 0.616 0.520 0.651 T36 0.309 0.493 0.440 0.540 0.575 0.593
T16 0.371 0.348 0.225 0.348 0.389 0.371 T37 0.404 0.419 0.438 0.461 0.506 0.436
T17 0.000 0.598 0.576 0.630 0.640 0.659 T38 0.528 0.579 0.600 0.574 0.771 0.783
T18 0.030 0.104 0.070 0.144 0.092 0.150 T39 0.750 0.764 0.723 0.810 0.707 0.826
T19 0.365 0.614 0.786 0.587 0.548 0.558 T40 0.584 0.510 0.560 0.676 0.630 0.609
T20 0.380 0.407 0.368 0.462 0.440 0.440 T41 0.292 0.617 0.558 0.780 0.817 0.822
T21 0.357 0.605 0.619 0.365 0.523 0.620 T42 0.646 0.476 0.680 0.638 0.668 0.685

����������	
����������	����������

��� �� �� �� �� ��

�
�
�
��
�
	�
�
	�
�
�
��

	�

���

��

��

��

�

!""#$

���%&��	

&�'%&��	

Fig. 3: Comparison between MOOSE and two bi-objective
approaches: Bug+Cost and Cov+Cost (RQ2).

rest test tasks, the performance of MOOSE is also relatively
high.

For all experimental results reported above, we conduct
Mann-Whitney U test, and the p-value is much smaller than
0.05. This further implies that MOOSE can significantly
improve the three baselines.

In summary, MOOSE can significantly outperform the
current practice in worker selection, as well as two commonly-
used ranking methods. Therefore, MOOSE is effective for
crowd worker selection.
RQ2: Is each of the three objectives necessary in MOOSE?

In crowd worker selection problem, the objective of cost
is indispensable, which cannot be removed. Hence, we com-
pare the performance of MOOSE when removing either
of the other two objectives. We therefore design two bi-
objective approaches: Bug+Cost (Bug experience of the s-
elected workers+Cost) and Cov+Cost (Coverage of the test
requirements+Cost).

We can easily see from Figure 3 that our MOOSE out-
performs the two bi-objective approaches in terms of BDR.
The average improvement of BDR for Bug+Cost is 9.7%, for
Cov+Cost is 5.7%.

Table III also presents the average BDRs when selecting
between 1% and 50% workers for each of the 42 test tasks.
In most of test tasks (29/42, 69%), MOOSE is better than
both of the bi-objective approaches. In the rest test tasks,
the performance of MOOSE is also relatively high. For all
these experimental results reported above, we conduct Mann-
Whitney U test, and the p-value is much smaller than 0.05.

In summary, all the three objectives, which are the coverage
of test requirement, bug-detection experience of the selected
workers, and cost, are necessary in MOOSE.
RQ3: Do the results of MOOSE achieve high quality?

Since MOOSE is a search-based approach, which produces
Pareto fronts. To evaluate the quality of Pareto fronts, existing
studies in Search-based Software Engineering have applied
quality indicators, such as Contribution (IC), Hypervolume
(IHV), and Generational Distance (IGD) [17]. To illustrate the
quality of an algorithm, these quality indicators compare the
results of the algorithm with the reference Pareto front, which
consists of best solutions. To assess the quality of results of
MOOSE, we employed these three quality indicators. The set
of non-dominated solutions found by MOOSE, Bug+Cost,
and Cov+Cost are used as Reference Set (RS) [17].

IC is the proportion of solutions given by an algorithm
that lie on the reference front. The higher this proportion, the
more contribution the algorithm to the best solutions and the
better the corresponding algorithm. IHV calculates the volume
covered by members of a non-dominated set of solutions
from an algorithm. The larger this volume, the better the
corresponding algorithm. IGD computes the average distance
between set of solutions from the algorithm and the reference
set. The smaller this distance, the better the corresponding
algorithm. Due to the limited space, for details about the three
quality indicators, please refer to [17].

For MOOSE, we measure these three quality indicators
for each test task, then the average values are obtained. The
average IC of MOOSE is 0.89, the average IHV is 0.90, and
the average IGD is 0.00. The results suggest that the results
of MOOSE achieve high quality.

VI. THREATS TO VALIDITY

The threats to external validity concern the generality of
this study. First, our experimental data consists of 42 test
tasks collected from one of the largest crowdsourced testing
platforms in China. The results of our study may not generalize
beyond this environment where our experiments were conduct-
ed. However, we used different sizes and a variety of data to
control this threat. Second, all crowdsourced reports investigat-
ed in this study are written in Chinese, and it is not guaranteed
that similar results can be observed on crowdsourced projects
in other languages. This threat, however, is alleviated as we did

not conduct semantic comprehension, but instead we simply
tokenized sentences and used words as tokens for modeling.

The main threat to construct validity in this study involves
three objectives in multi-objective formulation. These three
objectives are designed from different test criteria: such as
the coverage of test requirements, bug detection experience of
the selected workers, and cost, but other objectives may also
contribute to bug detection in crowdsourced testing. Further
exploration of other objectives would address this threat.

VII. RELATED WORK
Crowdsourced testing has been applied to generate test cases

[2], solve the oracle problem [11], help usability testing [8],
etc. All these studies use crowdsourced testing to solve the
problems in traditional software testing activities. There are
studies focusing on solving the new encountered problem in
crowdsourced testing, e.g., crowdsourced reports prioritiza-
tion [5] and crowdsourced reports classification [15, 16]. Our
approach is also to solve the new encountered and important
problem in crowdsourced testing.

The Search Based Software Engineering (SBSE) is an
increasingly trend in software engineering. In SBSE, many
software engineering problems are reformulated as search
problems, such as test case selection [4, 10, 20], and mutation
testing [7, 13].

There are several related researches focusing on selecting
workers for various software engineering tasks, such as bug
triage [6], mentor recommendation [1], expert recommenda-
tion [14], etc. All the aforementioned studies either select one
worker, or assume the selected set of workers are independent
with each other. However, our work selects a set of workers
who are dependent on each other, because their performance
can together influence the final test outcomes.

VIII. CONCLUSION
In this paper, we propose MOOSE for crowd worker se-

lection, which maximizes the coverage of test requirement,
minimizes the cost and maximizes the bug-detection experi-
ence of the selected workers. Experimental results show that
MOOSE is effective in bug detection.

In the future, we plan to explore more test criteria that
may be helpful for worker selection in crowdsourced testing.
Collaborating with Baidu CrowdTest, we are on the way
to deploying MOOSE online in order to better evaluate its
performance in practice.

IX. ACKNOWLEDGMENTS
This work is supported by the National Natural Science

Foundation of China under grant No.61432001, No.61602450.
We would like to thank the testers in Baidu for their great
efforts in supporting this work.

REFERENCES

[1] G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella.
Who is going to mentor newcomers in open source
projects? In FSE’12, pages 44:1–44:11.

[2] N. Chen and S. Kim. Puzzle-based automatic testing:
Bringing humans into the loop by solving puzzles. In
ASE ’12, pages 140–149.

[3] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A
fast elitist non-dominated sorting genetic algorithm for
multi-objective optimization: NSGA-II. In ICPPSFN’00,
pages 849–858.

[4] M. G. Epitropakis, S. Yoo, M. Harman, and E. K. Burke.
Empirical evaluation of pareto efficient multi-objective
regression test case prioritisation. In ISSTA’15, pages
234–245.

[5] Y. Feng, J. A. Jones, Z. Chen, and C. Fang. Multi-
objective test report prioritization using image under-
standing. In ASE’16, pages 202–213.

[6] G. Jeong, S. Kim, and T. Zimmermann. Improving bug
triage with bug tossing graphs. In FSE’09, pages 111–
120, 2009.

[7] W. B. Langdon, M. Harman, and Y. Jia. Efficient
multi-objective higher order mutation testing with genetic
programming. JSS’10, 83(12):2416 – 2430.

[8] D. Liu, R. G. Bias, M. Lease, and R. Kuipers. Crowd-
sourcing for usability testing. ASIS&T’12, 49(1):1–10.

[9] K. Mao, L. Capra, M. Harman, and Y. Jia. A survey of the
use of crowdsourcing in software engineering. JSS’16,
126:57–84.

[10] D. Mondal, H. Hemmati, and S. Durocher. Exploring test
suite diversification and code coverage in multi-objective
test case selection. In ICST’15, pages 1–10.

[11] F. Pastore, L. Mariani, and G. Fraser. CrowdOracles:
Can the crowd solve the oracle problem? In ICST’2013,
pages 342–351, March 2013.

[12] F. Sarro, A. Petrozziello, and M. Harman. Multi-objective
software effort estimation. In ICSE ’16, pages 619–630.

[13] R. A. Silva, S. d. R. S. de Souza, and P. S. L. de Souza.
A systematic review on search based mutation testing.
IST’17, 81:19 – 35.

[14] A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi, and T. N.
Nguyen. Fuzzy set and cache-based approach for bug
triaging. In FSE’11, pages 365–375.

[15] J. Wang, Q. Cui, Q. Wang, and S. Wang. Towards ef-
fectively test report classification to assist crowdsourced
testing. In ESEM’16, pages 6:1–6:10.

[16] J. Wang, S. Wang, Q. Cui, and Q. Wang. Local-based
active classification of test report to assist crowdsourced
testing. In ASE’16, pages 190–201.

[17] S. Wang, S. Ali, T. Yue, Y. Li, and M. Liaaen. A
practical guide to select quality indicators for assessing
pareto-based search algorithms in search-based software
engineering. In ICSE ’16, pages 631–642.

[18] I. H. Witten and E. Frank. Data Mining: Practical ma-
chine learning tools and techniques. Morgan Kaufmann,
2005.

[19] Y. Yang, M. R. Karim, R. Saremi, and G. Ruhe. Who
should take this task?: Dynamic decision support for
crowd workers. In ESEM’16, page 8.

[20] S. Yoo and M. Harman. Pareto efficient multi-objective
test case selection. In ISSTA’07, pages 140–150.

