
1 INTRODUCTION

Delphi: A Source-code Analysis and Manipulation System for

Bricklayer

Victor Winter
Department of Computer Science
University of Nebraska-Omaha

Omaha, Nebraska
vwinter@unomaha.edu

Betty Love
Department of Mathematics

University of Nebraska-Omaha
Omaha, Nebraska

blove@unomaha.edu

Chris Harris
Department of Computer Science
University of Nebraska-Omaha

Omaha, Nebraska
charris@unomaha.edu

Abstract

Delphi is a source-code analysis and manipulation
system being developed to analyze and transform
Bricklayer programs. The information obtained from
Delphi analysis can be used to generate problem-
specific text in the form of a mini-lecture. This
opens the door to the automated integration of such
texts with commercial animation software and text-
to-speech (TTS) tools. The result is a scalable infras-
tructure capable of providing formative feedback to
students in the form of an animated cartoon whose
information is personalized (e.g. male/female actors,
use of slang and dialects) and problem-specific. This
feedback can be provided in a timely fashion and can
ease technical burdens on educators that teach coding
across the K-12 spectrum.

1 Introduction

This paper debuts Delphi, a source-code analysis sys-
tem we are developing for analyzing Bricklayer pro-
grams. Within the Delphi infrastructure, it is possi-
ble to perform a wide range of customized analysis.

The information obtained from such analysis can be
used to generate problem-specific text in the form of
a mini-lecture. This opens the door to the integra-
tion of such texts with commercial animation soft-
ware and text-to-speech tools. The result is a system
which provides formative feedback to students in the
form of an animated cartoon whose information is
personalized. Formative feedback is defined as “infor-
mation communicated to the learner that is intended
to modify his or her thinking or behavior to improve
learning” [2].

The rest of the paper is organized as follows: Sec-
tion 2 gives an overview of related work. Sections 3
and 4 give brief overviews of the Bricklayer ecosystem
and Delphi respectively. Section 5 gives an example
showing how Delphi can be used to provide animated
formative feedback for pixel art artifacts constructed
in Bricklayer. Section 6 looks towards the future and
describes the kinds of analysis that is possible using
Delphi, and Section 7 concludes.

DOI reference number: 10.18293/SEKE2017-010



5 AN EXAMPLE OF ANIMATED
FORMATIVE FEEDBACK

2 Related Work

A literature review paper written by Keuning et. al
focuses on tools that provide automated feedback for
programming exercises [1]. They report on 69 feed-
back generation tools. A finding of their review is
that tools (1) generally do not “give feedback on fix-
ing problems and taking a next step”, and (2) cannot
easily be adapted to specific needs of teachers. Delphi
can address both of these concerns.

3 Overview of the Bricklayer
Ecosystem

Bricklayer [5] is an online educational ecosystem de-
signed in accordance with a “low-threshold infinite-
ceiling” philosophy. Its purpose is to teach coding to
people of all ages and coding backgrounds. A signif-
icant portion of the Bricklayer ecosystem has been
developed specifically to help novices, especially pri-
mary school children, learn how to code. When ex-
ecuted, Bricklayer programs can produce LEGO R©
artifacts, Minecraft artifacts, as well as artifacts suit-
able for 3D printing. Bricklayer resides in a domain
in which there is a strong connection between math,
art, and computer science. The Bricklayer ecosystem
is freely-available and can be found at:

http://bricklayer.org

Bricklayer programs are written in the functional
programming language SML. Graphical capabilities
are provided by the Bricklayer library. The output of
Bricklayer programs are files which are input to third-
party tools which include: LEGO R© Digital Designer
(LDD), LDraw, Minecraft, and STL viewers such as
3D Builder.

Bricklayer programs can also be developed using a
block-based editor called bricklayer-lite. Bricklayer-
lite is built using Google Blockly. A noteworthy ca-
pability of bricklayer-lite is that, in addition to pro-
ducing a Bricklayer (graphical) artifact, the execu-
tion of a bricklayer-lite program will produce a well-
formed and well-formatted Bricklayer program text
which can be executed outside of the bricklayer-lite
framework.

4 Delphi

Delphi is a source-code analysis tool that is being
developed for Bricklayer. From an implementation
standpoint, Delphi represents a non-trivial extension
of the TL system (a general-purpose program trans-
formation system) specialized to the domain of Brick-
layer. The TL system [6][3] is a powerful and mature
meta-programming system which has been used to
develop tools for a variety of domains including: (1)
a source-code analysis system for Java, (2) a com-
piler for an architecture independent microprogram-
ming language, (3) compiler optimizations, and (4)
automated test generators.

One of the primary design goals of Delphi is to pro-
vide a tool facilitating specification of custom analy-
sis rules (e.g., domain specific or even problem spe-
cific analysis rules).

The basic capabilities of Delphi include depen-
dency analysis as well as standard syntax-driven met-
rics such as source lines of code (SLOC) as well as
metrics relating to the use of various programming
language constructs (e.g., conditional expressions and
curried function declarations).

5 An Example of Animated
Formative Feedback

A very engaging and artistic activity in Bricklayer in-
volves the creation of pixel art – an example of which
is shown in Figure 1. This activity centers on the
translation of pixel art images into Bricklayer code.
Pixel art projects can be individual or group oriented
and the choices of what pixel art image to code are
enormous. Pixel art images found on the web range
from very simple to extremely complex.

Given an assignment to “code up” a pixel art im-
age, a student has a wide range of options. This
enables the selection of images that have special in-
terest or meaning to the coder. The selection process
is also influenced by an assessment of the complexity
of the image as well as a self assessment of the ability
of the individual.

It is not uncommon for a student to employ a
greedy algorithm when coding a pixel art artifact.

DOI reference number: 10.18293/SEKE2017-010



5.1 A Row-Major Algorithm
5 AN EXAMPLE OF ANIMATED

FORMATIVE FEEDBACK

Figure 1: An example of a pixel art artifact created
by an elementary school student.

When using such an algorithm one strives to place as
many large bricks as possible and then places smaller
bricks and so on. This approach can minimize the
number of function calls in the source code. How-
ever, our experiences in working with student coding
pixel art have led us to believe that the complexity
of the boundary between the portion of the pixel art
image that has been completed and the portion that
remains to be completed becomes intellectually un-
manageable when using a greedy algorithm. Though
our results are anecdotal in nature, we have found
that, due to its high cognitive load, a greedy algo-
rithm for coding pixel art is fairly unreliable and, in
the end, extremely labor intensive.

5.1 A Row-Major Algorithm

The most effective way to code pixel art is “one row/-
column at a time”. You code a row, run the code,
validate that the row you coded is correct, and then
move on and code the next row. We refer to such a
construction algorithm as a row-major algorithm.

Bricklayer currently has five coding levels. Each
level has greater expressive powers than the level that
precedes it. Coding levels 1 and 2 only provide a
standard set of brick shapes and colors for coding in

the xz-plane. In particular, when subjected to the
constraints imposed by a row-major algorithm, only
2×1 and 1×1 bricks are available for use. In levels 1
through 4, such bricks are placed using put function
calls.

In order to be minimal, a program (i.e., code)
implementing a row-major algorithm must satisfy a
number of properties. First, the sequence of coordi-
nates as which bricks are placed must satisfy a row-
major order. Let (xi, zi) and (xj , zj) denote the co-
ordinates of two put function calls, where a brick is
placed at (xi, zi) before (xj , zj). To satisfy row-major
order, zi < zj ∨ (zi = zj ∧ xi < xj).

A minimal program may not contain any brick col-
lisions. A collision occurs when two or more put func-
tion calls place a brick in the same cell. In this case,
Bricklayer’s default behavior is to overwrite the con-
tents of the cell according to the most recent put
function call (i.e., the last brick you place is what
you will see).

A minimal program should not be locally compress-
ible. For example, two put function calls that place
1×1 blue bricks adjacent to one another should be
replaced by a single put function call that places a
2×1 blue brick.

5.2 About Delphi Analysis

Through the use of 22 rules, Delphi is able to
transform any input program pin that creates a
2-dimensional artifact into a corresponding output
program pout such that (1) pout constructs the 2-
dimensional artifact according to a row-major algo-
rithm, and (2) pout is minimal according to the defi-
nition given above. During this program transforma-
tion, Delphi also records, in a database, which trans-
formation rules are used as well as how they are used.
The information stored in this database is then used
to generate a natural language report describing the
modifications that need to be performed in order to
make the pin compliant with a row-major algorithm.
Figure 2 describes two of the rules used by Delphi.

Delphi is able to analyze and transform the con-
tents of file hierarchies (e.g., hundreds of Bricklayer
programs) at the touch of a single button. For each
program that is processed a resulting text can be pro-

DOI reference number: 10.18293/SEKE2017-010



5.2 About Delphi Analysis
5 AN EXAMPLE OF ANIMATED

FORMATIVE FEEDBACK

Condition Action Rationale

1. Two put function calls place
bricks of the same color at
adjacent coordinates (e.g.,
(0,0) and (1,0)).

2. The first put function call
places a 2×1 brick and
the second put function call
places a 1×1 brick.

The second put function
call can be removed.

The 1×1 brick placed by the second func-
tion call will overwrite the brick placed
by the first put function call. However,
since both put functions place the same
color brick no visible change will occur as
a result of the second put function call.
Therefore, the second put function call
can be removed without changing the ap-
pearance of the artifact.

1. In a sequence consisting of
three put function calls, the
first two put function calls
place bricks of different col-
ors at the same coordinate.
Let (x, z) denote this coordi-
nate.

2. The first put function call
places a 2×1 brick, and
the second put function call
places a 1×1 brick.

3. The third put function call
places a 2×1 brick at the co-
ordinate (x + 2, z).

Modify the first put func-
tion call so that it places
a 1x1 brick at the co-
ordinate (x + 1, z), and
then lexically commute
the first and second put
function calls (i.e., posi-
tion the modified (previ-
ously) first function call
after the second function
call).

The first put function call places a 2×1
brick which will occupy cells (x, z) and
(x + 1, z). In contrast, second put func-
tion call places a 1×1 brick which will only
occupy the cell (x, z). Since the bricks
placed by the first two put function calls
have different colors the bricks at (x, z)
and (x + 1, z) will have different colors.
Furthermore, the third put function call
places a 2×1 brick so its shape cannot
be increased. Thus, the first put function
call must be modified so that is places a
1×1 brick at (x+ 1, z). The first and sec-
ond put function calls must then be com-
muted in order for the coordinates asso-
ciated with put function calls to conform
to a row-major order.

Figure 2: Descriptions of some rules used by Delphi.

duced explaining, at a level deemed appropriate for
the author of the code, the changes that would need
to be made in order to place the Bricklayer program
under consideration into row-major form. This text
can then be given as input to a text-to-speech (TTS)
translator and the result can be given as input to an
animation program.

Figure 3 shows a screenshot of a video created in
CrazyTalk in the manner just described: The dia-
log was produced automatically using Delphi. This
was then copy-and-pasted into the text-to-speech

(TTS) translator for CrazyTalk. The animations
were hand made, but used canned motions provided
by CrazyTalk. The images of the Bricklayer program
were constructed by hand as was the rendering of the
artifact. Though the creation of this demonstration
involved manual steps, in the future, animation tools,
such as CrazyTalk, could be parameterized on such
inputs. The result would be a system where the pro-
duction of such custom videos would be completely
automatic.

DOI reference number: 10.18293/SEKE2017-010



6 FUTURE WORK

Watch the video at: https://www.youtube.com/watch?v=o6aoW5rgOhU&feature=youtu.be

A sample of a dialog generated by Delphi

The artifact created by the Bricklayer program in the file called panda.bl is not constructed according to a
row-major algorithm. Not to worry, I will tell you how you can change your program so that it conforms to a
row-major algorithm. The 1-by-1 brick created by the function call on line number 78 is overwritten by the
function call that follows it. Therefore, it can be removed without changing the appearance of your artifact.
Your program contains a pair of function calls that put a 2-by-1 brick and a 1-by-1 brick, having different
colors, at coordinates whose x-value differ by 1. The function-call at line number 85 can be changed so that
it puts a 1-by-1 brick instead of a 2-by-1 brick.

Figure 3: Animated problem-specific feedback provided by Delphi.

6 Future Work

One of the primary design goals of Bricklayer was
to create a coding domain that is “example rich and
problem dense” [4]. In such a domain, the creation
of smooth learning curves become possible which can
be supported through numerous examples and similar
problems/exercises.

The learning curve in Bricklayer is, in part, re-

alized through a sequence of concepts. In many
cases the transition from one concept to the next can
be understood in equational terms. This is by de-
sign and is facilitated by the underlying semantics
of functional programming languages like SML (the
language in which Bricklayer programs are written)
in which referential transparency play a central role.
Consequently, this also provides a domain in which a
program transformation system, like Delphi, can play

DOI reference number: 10.18293/SEKE2017-010



REFERENCES

an important role.

In traditional textbooks, new concepts are intro-
duced using a static set of examples. Examples that
were created when the textbook was published. With
Delphi, it is possible to create examples dynami-
cally. For example, a student program containing
no user-defined functions can be transformed auto-
matically by Delphi into an equivalent program con-
taining user-defined function declarations and calls.
This results in a “living textbook” in which learning
examples are (transformationally) derived from indi-
vidual programs created by students. Furthermore,
it is also possible for such transformations to gener-
ate text explaining what was done. Such texts can
then be fed into animation systems to produce per-
sonalized learning material.

7 Conclusion

We believe that educational technology has just
scratched the surface regarding what is possible.
Technologies lying within our near-term reach can
be developed to provide significant technical support
for educators interested in teaching coding. Tech-
nologies, such as Delphi, when added to the support
services provided by online help desks can address
teacher needs in effective and cost-efficient ways.
Such a model also geographically decouples techni-
cal expertise from teaching expertise. One help desk
can serve the educational needs of schools around
the world. We believe that such approaches will be
needed to solve the problem of teaching coding across
the K-12 spectrum.

References

[1] H. Keuning, J. Jeuring, and B. Heeren. Towards a
systematic review of automated feedback generation
for programming exercises. In Proceedings of the 2016
ACM Conference on Innovation and Technology in
Computer Science Education, ITiCSE ’16, pages 41–
46, New York, NY, USA, 2016. ACM.

[2] V. J. Shute. Focus on Formative Feedback. Review
of Educational Research, 78(1):153–189, 2008.

[3] The TL System, 2010. http://faculty.ist.

unomaha.edu/winter/ShiftLab/TL_web/TL_index.

html.
[4] V. Winter. Bricklayer: An Authentic Introduction to

the Functional Programming Language SML. Elec-
tronic Proceedings in Theoretical Computer Science
(EPTCS), 2014.

[5] V. Winter. The world needs more computer science!
what to do? In D. Conway, S. A. Hillen, M. Landis,
M. T. Schlegelmilch, and P. Wolcott, editors, Dig-
ital Media, Tools, and Approaches in Teaching and
Their Added Value, pages 119–141. Waxmann Verlag
GmbH, Germany, 2015.

[6] V. L. Winter. Stack-based Strategic Control. In Pre-
proceedings of the Seventh International Workshop on
Reduction Strategies in Rewriting and Programming,
June 2007.

DOI reference number: 10.18293/SEKE2017-010


