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Abstract—Software defect prediction generally builds models 

from intra-project data. Lack of training data at the early stage 

of software testing limits the efficiency of prediction in practice. 

Thereby researchers proposed cross-project defect prediction 

using the data from other projects. Most previous efforts 

assumed the cross-project defect data have the same metrics set 

which means the metrics used and size of metrics set are same in 

the data of projects. However, in real scenarios, this assumption 

may not hold. In addition, software defect datasets have the class 

imbalance problem increasing the difficulty for the learner to 

predict defects. In this paper, we advance canonical correlation 

analysis for deriving a joint feature space for associating cross-

project data and propose a novel support vector machine 

algorithm which incorporates the correlation transfer 

information into classifier design for cross-project prediction. 

Moreover, we take different misclassification costs into 

consideration to make the classification inclining to classify a 

module as a defective one, alleviating the impact of imbalanced 

data. Experiments on public heterogeneous datasets from 

different projects show that our method is more effective, 

compared to state-of-the-art methods. 

Keywords-defect prediction; heterogeneous metrics; class 

imbalance; canonical correlation analysis; support vector machine 

I.  INTRODUCTION  

Recently, most effective software defect prediction 
approaches have been proposed and attracted a lot of attention 
from academic and industrial communities. Most prior studies 
generally focused on Within-Project Defect Prediction (WPDP), 
which trained prediction model from historical data to detect 
the defect proneness of new software modules within the same 
project [1][2][3][4]. However, researchers often confront the 
situations that there are not enough historical data available, 
and they have to resort to the data from other projects to aid the 
learning of the target projects. Owing to this reason, Cross-
Project Defect Prediction (CPDP) is proposed. It is the art of 
using data of inter-project to predict software defects in the 
target project with a small amount of local data [5][6]. 

Existing CPDP approaches are based on the underlying 
assumption that both source and target project data should 
exhibit the same data distribution or are drawn from the same 
feature space (i.e., the same software metrics). When the 
distribution of the data changes, or when the metrics features 
for source and target projects are different, one cannot expect 
the resulting prediction performance to be satisfactory. We 

consider this scenarios as Heterogeneous Cross-Project Defect 
Prediction (HCPDP) [7][8].  

Mostly, the software defect data sets are imbalanced, which 
means the number of the defective modules is usually much 
smaller than that of the defective-free modules [9][10]. The 
imbalanced nature of data can cause poor prediction 
performance. That is, the probability of defect prediction can 
be low while the overall performance is high. Without taking 
this issue into account, the effectiveness of software defect 
prediction in many real-world tasks would be greatly reduced. 

Recently, some researchers have noticed the importance of 
these problems in software defect prediction. For example, 
Nam et al. [7] used the metrics selection and metrics matching 
to select similar metrics for building a prediction model with 
heterogeneous metrics set. They discarded dissimilar metrics, 
which may contain useful information for training. Jing et al. [8] 
introduced Canonical Correlation Analysis (CCA) into HCPDP, 
by constructing the common correlation space to associate 
cross-project data. Then, one can simply project the source and 
target project data into this space for defect prediction. Like 
previous CPDP methods, the class imbalance problem of 
software defect datasets was not taken into account. Ryu et al. 
[10] designed the Value-Cognitive Boosting with Support 
Vector Machine algorithm (VCB-SVM) which exploited 
sampling techniques to solve the class imbalance issue for 
cross-project environments. Nevertheless, sampling strategy 
alters the distribution of the original data, where it may discard 
some potentially useful samples that could be important for 
prediction process. Therefore, these methods are not good 
solutions for addressing the class imbalance issue under 
heterogeneous cross-project environments. 

Motivated by these observations, we advance CCA for 
driving a joint feature space for associating cross-project data, 
and incorporate the correlation transfer information in the 
derived subspace for improved prediction performance. During 
the defect prediction process, the two types of misclassification 
errors are encountered. Type I misclassifies a defective-free 
module as defective one (increasing the development cost), 
while type II misclassifies a defective module as defective-free 
one (leading to the more risk cost). Hence, we can take 
different misclassification costs into consideration by 
incorporating the cost factors into the SVM model. Fig. 1 
shows a summary of our method. 

In this paper, we propose a novel Cost-sensitive Correlation 
Transfer Support Vector Machine (CCT-SVM) algorithm to 
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deal with the class imbalance problem under HCPDP settings. 
Our contributions to the current state of research are 
summarized as follows. 

 We advance CCA for deriving a joint feature space to 
associate cross-project data, so the correlation transfer 
information can be exploited to improve the prediction 
performance. 

 During the software defect prediction process, we 
emphasize the risk cost to make the classification 
inclining to classify a module as a defective one, 
alleviating the impact of imbalanced data. 

 Conduct an extensive and large-scale empirical study 
to evaluate our method.  

II. RELATED WORK 

A. Cross-project Defect Prediction 

Software defect prediction employs historical data on 
reported (or repaired) defects to predict the location of 
previously unknown defects that hide in the code. However, 
sufficient historical training data from the same project is not 
always available or is hard to collect in practice. To address 
this issue, researchers proposed CPDP as an alternative 
solution in the last few years [11] [12] [13]. 

Zimmermann et al. [11] evaluated cross-project prediction 
performance based on large-scale experiments for 12 real-
world projects. It indicated that current CPDP models do not 
perform well in most cases. Similar to Zimmermann' work, He 
et al. [12] investigated CPDP by focusing on training data 
selection. They pointed out that the prediction performance was 
related to the distributional attributes of datasets. Turhan et al. 
[13] proposed a Nearest-Neighbor filter method (NN-filter) to 
select similar data from source project. They only used nearest 
neighbors for each test data to construct training set, which 
have similar features to local data. Unlike the prior work 
selecting training data which are similar from the test data, Ma 
et al. [5] proposed Transfer Naive Bayes (TNB), by using the 
information of all the proper features in training data. The TNB 
transferred cross-project data information into the weights of 
the training data. Based on these weighted data, the prediction 
model was built. Nam et al. [6] applied Transfer Component 
Analysis (TCA) to CPDP and proposed TCA+ by selecting a 
suitable normalization automatically to preprocess data. 

However, existing CPDP approaches are based on the 
assumption that the source and target data have the same 
software metrics set. When the metrics features for source and 
target projects are different, these methods will be unavailable. 
Recently, Nam et al. [7] proposed the Heterogeneous Defect 
Prediction (HDP) to predict defects across projects with 

heterogeneous metrics sets. They conducted metrics selection 
and metrics matching to build a prediction model using 28 
projects collected from public defect datasets. Jing et al. [8] 
introduced CCA into CPDP to make the data distributions of 
source and target projects similar. They extended CCA to 
CCA+, by unified metric representation technique to 
preprocess data, so that the correlation between the projected 
data in CCA space is maximized.  

Previous work proposed various defect prediction models 
under heterogeneous cross-project settings, but the class 
imbalance issue of defect datasets was not taken into account. 
Hall et al. [14] pointed out that data imbalance with regard to 
specific classification approaches may produce poor 
performance. Ignoring this issue, a learner that minimizes the 
prediction error would often produce a useless predictive model 
that predicts all the modules as defect-free. 

B. Class Imbalance Learning 

Class imbalance learning refers to learning from data that 
exhibit significant imbalance among classes. The challenge of 
class imbalance is that relatively underrepresented class cannot 
draw equal attention to the learning algorithm compared with 
the majority class, which often leads poor prediction 
performance [15]. To achieve better sensitivity to the minority 
class, the class imbalance issue should be explicitly tackled. 

Wang et al. [15] explored the impact of class imbalance 
issue and provided guidance and valuable information for 
designing good predictor for software defects. Zheng et al. [16] 
employed three cost-sensitive boosting neural network 
algorithms for software defect prediction and found that 
threshold-moving algorithm was the best. Grbac et al. [17] 
studied the performance of machine learning techniques with 
different level of imbalance for software defect data. The 
feature selection and data sampling were exploit together. This 
method addressed class imbalance by modifying the training 
data. Ren et al. [18] proposed kernel based prediction method 
to address the class imbalance. The NASA and SOFTLAB 
datasets were used for experiments. Sun et al. [19] presented a 
coding based ensemble learning method, which converted class 
imbalance data into balanced multiclass data with specific 
coding scheme to avoid the class imbalance problem. Ryu et al. 
[10] first investigated whether the class imbalance learning can 
improve the prediction performance under CPDP settings. And 
they designed the value-cognitive boosting with support vector 
machine algorithm dealing with the class imbalance issue for 
cross-project environments. Experimental results showed that 
the class imbalance learning can be beneficial for CPDP. 

III. HETEROGENEOUS SOFTWARE DEFECT PREDICTION 

In this section, we present our method for HCPDP, which 
includes two parts: unified metrics representation and the CCT-
SVM model.  

A. Unified Metric Representation for Heterogeneous Data 

To effectively utilize the heterogeneous metrics features 
from cross-project data, Jing et al. [8] proposed a Unified 
Metric Representation (UMR) to make the heterogeneous data 
can be compared. Based on the UMR, the standard CCA was 
exploited to find a common space for data from source and 
target project such that the correlation between the projected 
data in that space was maximized. 

 
Figure 1.  The overview of heterogenous cross-project prediction 
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Similar to [8], we also exploit the UMR technique to make 
heterogeneous data to be compared. Suppose that 𝐗𝑠 =
{𝐱𝑠

1, 𝐱𝑠
2, ⋯ , 𝐱𝑠

𝑁} ∈ ℝ𝑑𝑠×𝑁 and 𝐗𝑡 = {𝐱𝑡
1, 𝐱𝑡

2, ⋯ , 𝐱𝑡
𝑀} ∈ ℝ𝑑𝑡×𝑀 

separately denote the source and target project data, where 𝐱s
𝑖  

indicates the 𝑖𝑡ℎ model in 𝐗𝑠, N and M denote the numbers of 

modules in 𝐗𝑠  and 𝐗𝑡 , respectively. 𝐱s
𝑖 = [𝑎𝑠

𝑖1, 𝑎𝑠
𝑖2, ⋯ , 𝑎𝑠

𝑖𝑑𝑠] 

and  𝐱𝑡
𝑖 = [𝑎𝑡

𝑖1, 𝑎𝑡
𝑖2, ⋯ , 𝑎𝑡

𝑖𝑑𝑡] represent a module in the source 

and target project, where 𝑎𝑠
𝑖𝑗

 indicates the 𝑗𝑡ℎ  metrics feature 

of the 𝑖𝑡ℎ model in source projcet, 𝑑𝑠 and 𝑑𝑡 are the numbers of 
metrics in 𝐗𝑠  and 𝐗𝑡 , 𝑑𝑠 ≠ 𝑑𝑡 . Here, we exploit UMR to 
restructure data as follows: 

�̅�𝑠 = [

𝐗𝑠
𝑐

𝐗𝑠
𝑠

0(𝑑𝑡−𝑑𝑐)×𝑁

]�̅�𝑡 = [

𝐗𝑡
𝑐

𝐗𝑡
𝑡

0(𝑑s−𝑑𝑐)×𝑀

]

where the 𝐗𝑠
𝑐  and 𝐗𝑡

𝑐  are the same common metrics, 𝐗𝑠
𝑠 and 𝐗𝑡

𝑡  
are specific metrics in source and target project, respectively. 
Note that if there exist no common metrics, then 𝐗𝑠

𝑐 = 𝐗𝑡
𝑐 = 0. 

B. Learning Correlation Subspace via CCA 

Based on the obtained UMR for heterogeneous data, we 
employ CCA technique to determine a common representation 
(e.g. a joint subspace) for features extracted from source and 
target projects, so that the model trained in the source project 
can be applied to detect the test modules in the target project. 

CCA learns two projection vectors 𝐩𝑠 ∈ ℝ𝑑𝑠  and 𝐩𝑡 ∈ ℝ𝑑𝑡 , 
which maximize the following linear correlation coefficient 𝜌: 

max
𝐩𝑠,𝐩𝑡

𝜌 =   
𝐩𝑠

𝑇Σ𝑠𝑡𝐩𝑡

√𝐩𝑠
𝑇Σ𝑠𝑠𝐩𝑠√𝐩𝑡

𝑇Σ𝑡𝑡𝐩𝑡

                            (2) 

where Σ𝑠𝑠  and Σ𝑡𝑡  represent the within-project covariance 

matrices of 𝐗𝑠 and 𝐗𝑡 respectively, while Σ𝑠𝑡 = Σ𝑡𝑠 represents 

the cross-project covariance matrix of  𝐗𝑠 and �̅�𝑡 . Σ𝑠𝑠 , Σ𝑡𝑡 and  

Σ𝑠𝑡  are separately defined as: 

1
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where 𝐱𝑠
𝑖
 represents the 𝑖𝑡ℎ software module in 𝐗𝑠, 𝐦𝑠 and 𝐦𝑡 

are the mean modules of  𝐗𝑠  and 𝐗𝑡 . As proved in [8], the 

optimization of (2) can be solved as a generalized eigenvalue 

decomposition problem: 

                  (
0 Σ𝑠𝑡

Σ𝑠𝑡 0
) (

𝐩𝑠

𝐩𝑡
) = λ (

Σ𝑠𝑠 0
0 Σ𝑡𝑡

) (
𝐩𝑠

𝐩𝑡
)                  (6) 

The λ  is the generalized eigenvalue corresponding to the 

generalized eigenvector (
𝐩𝑠

𝐩𝑡
). Generally, we can derive more 

than one pair of canonical components {𝐩𝑠
𝑘}𝑘=1

𝑑𝑣  and {𝐩𝑡
𝑘}𝑘=1

𝑑𝑣  

with corresponding 𝜌𝑖 in a descending order (𝜌𝑖 > 𝜌𝑖+1). Note 

that 𝑑𝑣 is the dimension number of the correlation subspace of 

CCA. We can construct the projective transformation matrices 

𝐏𝑠 = [𝐩𝑠
𝑖 , ⋯ , 𝐩𝑠

𝑑𝑣] ∈ ℝ𝑑𝑠×𝑑𝑣  and 𝐏𝑡 = [𝐩𝑡
𝑖 , ⋯ , 𝐩𝑡

𝑑𝑣] ∈ ℝ𝑑𝑡×𝑑𝑣 . 

Once the correlation subspace is derived, the test modules at 

target project can be directly detected by the model learned 

from the source project data projected onto the subspace. 

C. Cost-sensitive Correlation-transfer SVM 

In derived CCA subspace, each dimension 𝐯𝑠,𝑡
𝑖  is associated 

with a different correlation coefficient 𝜌𝑖. A higher 𝜌𝑖 denotes a 
better correlation, which results in a better transfer ability for 

the associated dimension 𝐯𝑠,𝑡
𝑖 . On the other hand, poorer 

transfer ability will increase classification error, even the 
classifier is trained using the projected source project data. 
Obviously, higher correlation coefficient can obtain more class 
discriminant information which is more useful for constructing 
classifiers [20].  

In SVM, if the 𝑖𝑡ℎ  feature attribute has the better 
discrimination ability, the classical SVM could produce a 
larger magnitude for the corresponding model (e.g., a larger 
|𝑤𝑖|). Here, we introduce a correlation regularizer and propose 
a linear SVM model which integrates the cross-project transfer 
ability and class discrimination in a unified formulation. 
Moreover, we employ a specifical misclassification costs to 
minimize a classification-oriented loss. We set two 
misclassification cost values C+  and C− . C+  is the 
misclassification cost for the defective modules, while C− is the 
misclassification cost for the defective-free modules. By 
assigning a higher misclassification cost for the minority 
defective modules than the majority defective-free modules 
(i.e., C+> C−), the effect of class imbalance could be reduced. 
Then, the modified SVM decision function can be represented 
as follows: 

min
𝐰

(
1

2
‖𝐰‖2

2 + C+ ∑ ε𝑖

N

[𝑖|𝑦𝑖=+1]

+ C− ∑ ε𝑖 − Φ(𝜌𝑖)

N

[𝑖|𝑦𝑖=−1]

) 

s.t.  𝑦𝑖 (〈𝐰, 𝐏𝑠
𝑇𝐱𝑠

𝑖
〉 + 𝑏) ≥ 1 − ε𝑖 ,  ε𝑖 ≥ 0, ∀(𝐱𝑠

𝑖
, 𝑦𝑖) ∈ 𝒟𝑙

𝑠      (7) 

where Φ(𝜌𝑖) =
1

2
𝐴𝑏𝑠(𝐰)𝒓𝑇 , 𝐴𝑏𝑠(𝐰) = [|𝑤1|, |𝑤2|, ⋯ , |𝑤𝑑𝑣

|] 

and 𝒓 = [𝜌1, ⋯ , 𝜌𝑑𝑣
]  is the correlation vector in which each 

element denotes the correlation coefficient of CCA subspace 
for each pair of projection dimension. Parameter ε𝑖  is slack 
variable as in standard SVM. It should be noted that only 

labeled source data 𝐱𝑠
𝑖

∈ 𝒟𝑙
𝑠 is available for training, and 𝑦𝑖  is 

the associated class label. We put 𝐏𝑠
𝑇𝐱𝑠

𝑖
 as the projection of 

source project data 𝐱𝑠
𝑖
 onto the correlation subspace. 

In (7), the term Φ(𝜌𝑖) is introduced for model adaptation 
based on CCA. By doing so, a smaller correlation coefficient 𝜌𝑖 

is obtained for the 𝑖𝑡ℎ  dimension of CCA subspace, then the 
above equation would enforce the reduction of the 
corresponding |𝑤𝑖| and restrict the trained SVM model along 
that dimension. On the other side, a larger 𝜌𝑖  favors the 
contribution of the associated |𝑤𝑖| when minimizing (7). 

Since it is not forthright to solve the minimization problem 
in (7), we seek the approximated solution by modifying the 
correlation regularizer term Φ(𝜌𝑖) into the following form: 

           Φ(𝜌𝑖) =
1

2
 𝐴𝑏𝑠(𝐰⨀𝐰)(𝒓⨀𝒓)𝑇                           (8) 

where ⨀  denotes the element-wise multiplication. By 
incorporating (8) into (7), the objective function can be 
rewritten into a unified form: 



    min
𝐰

(
1

2
∑(1 − 𝜌𝑖

2)𝑤𝑖
2

𝑑𝑐

𝑖=1

+ C+ ∑ ε𝑖

N

[𝑖|𝑦𝑖=+1]

+ C− ∑ ε𝑖

N

[𝑖|𝑦𝑖=−1]

) 

s.t.   𝑦𝑖 (〈𝐰, 𝐏𝑠
𝑇𝐱𝑠

𝑖
〉 + 𝑏) ≥ 1 − ε𝑖 ,  ε𝑖 ≥ 0, ∀(𝐱𝑠

𝑖
, 𝑦𝑖) ∈ 𝒟𝑙

𝑠          (9) 

We refer to (9) as our cost-sensitive correlation transfer SVM. 
Since the correlation coefficient 𝜌𝑖  ranges from 0 to 1, the 
above object function is a convex optimization problem. We 
apply the Newton-Armijo algorithm for solving SVM 
optimization problems. As a result, our modified SVM could 
adapt the derived classification model w relied on the cross-
project transfer ability of CCA. Moreover, we assign two 
misclassification costs to alleviate the effect of class imbalance. 
Thus, it can present the better classification performance in 
correlation subspace. The decision function for classifying the 
test modules in target project is shown as follows: 

                       𝑓(𝐱) = 𝑠𝑔𝑛(〈𝐰, 𝐏𝑡
𝑇�̅�𝑡〉 + 𝑏)                         (10) 

where 𝐏𝑡
𝑇 projects the target data �̅�𝑡 from the target space onto 

the correlation subspace. Finally,  𝑠𝑔𝑛(𝑧) returns 1 if and only 
if 𝑧 > 0, and -1 otherwise. 

IV. EXPERIMENTS 

A. Experimental Datasets 

We collect publicly available defect datasets from prior 
researches, including NASA, SOFTLAB, AEEEM and ReLink  
[7][8]. Among these datasets, the percentage of defective 
components ranges from 8.65% to 50.52%. It is obvious that 
most datasets are imbalanced. Table I shows detailed project 
information in our experiments.  

B. Experimental Design 

To validate the effectiveness of the proposed approach for 
HCPDP, we compare our approach with several representative 
methods including TNB [5], TCA+ [6], CCA+ [8] and NN-
filter [13]. We design the three experiments to evaluate our 
approach: (1) HCPDP with partially different metrics. We build 
model using common metrics between source and target 
datasets as in previous studies [8]. (2) HCPDP with entire 
different metrics. In this part, we present CCA+ and the within-
project defect prediction results as references. (3) The impact 
of different class-imbalance rates on HCPDP, exploring 
whether or not our proposed method can effectively deal with 
class-imbalance problem in HCPDP. 

For WPDP, we employ the standard SVM as their base 
classifier. We use the 50:50 random splits to obtain training 
and test sets. Thus, we repeat this process 30 times to get the 
average prediction results. In our approach, in order to 
emphasize the risk cost, the parameters C+ and C− are set as 
C+ :C− =5:1. For different projects, user can select different 
ratios [21]. The parameter 𝜀 is determined by searching a wide 
range and choosing the one which produces the best F-measure 
value. Although we have verified that these choices of 
parameters work well in our experiments, we recognize that a 
finer tuning of them may further improve the performance.       

To evaluate the performance of our method, we use two 
widely-used evaluation measures, F-measure and Area Under 
the Receiver Operating Characteristic (ROC) Curve (AUC). F-
measure is the harmonic mean of precision and recall, falling 

TABLE I.     HETEROGENEOUS DATASETS FROM DIFFERENT PROJECTS 

Group Dataset Instances Buggy (%) Metrics 

NASA 

CM1 327 42(12.84%) 

37 MW1 253 27(10.67%) 

PC1 705 61(8.65%) 

AEEEM 

EQ 325 129(39.69%) 

61 

JDT 997 206(20.66%) 

LC 399 64(9.26%) 

ML 1862 245(13.16%) 

PDE 1492 209(14.01%) 

ReLink 

Apache 194 98(50.52%) 

26 Safe 56 22(39.29%) 

ZXing 399 118(29.57%) 

SOFTLAB 

AR3 63 8(12.72%) 

29 AR4 107 20(18.69%) 

AR5 36 8(22.22%) 

in the range [0, 1], as (11). The recall is defined as the ratio of 
the number of modules correctly classified as defect to the 
number of defective modules. The precision is the ratio of the 
number of modules correctly classified as defect to the number 
of modules classified as defect. 

                       𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2×𝑟𝑒𝑐𝑎𝑙𝑙×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
              (11) 

For more comprehensive evaluation of predictors in the 
imbalanced context, the AUC is exploited to evaluate the 
prediction performance. AUC estimates the area under the 
ROC curve, which illustrates the trade-off between detection 
and false alarm rates, varying in [0, 1]. A better classifier 
should produce a higher F-measure and AUC.         

C. Experimental results 

Table II and Table III show that the F-measure and AUC 
values of heterogeneous defect prediction, where 28 common 
metrics exist in source and target data. In each table, the best 
performance are presented with boldface in all experimental 
datasets. The last rows of tables show the average 
performances on all the experimental datasets. 

From Table II, we see that CCT-SVM can obtain better F-
measure values in most prediction scenes, compared with other 
methods, and the average F-measure of CCT-SVM is the 
highest. This indicates that after carefully taking the class 
imbalance nature of defect data into consideration, CCT-SVM 
is able to improve defect performance dramatically. The trends 
in Table III are similar to that shown in Table II. The reason is 
that our method uses all metrics rather than only common 
metrics, and these metrics usually contain some useful 
discriminant information. We exploit the cross-project transfer 
ability in derived subspace when designing the associated SVM 
classifier. And we emphasize the risk cost to make the 
classification inclining to classify a module as a defective one, 
alleviating the impact of imbalanced data. Wilcoxon's rank sum 
test at a 0.05 significance level indicates that performance 
improvement on each pair dataset is statistical significance. 
This fact suggests that addressing the class imbalance problem 
is beneficial to construct better predictive model in software 
defect prediction.  

In practical scenario, we often confront the situations that 
there are no common metrics between source and target project 
data. Hence we conduct experiment to investigate the 
performance of CCT-SVM with entire different metrics. In this 
section, we conduct within-project prediction results of a target 
project as baseline. Specifically for each dataset, we randomly  



TABLE II.    MEDIAN F-MEASURES WITH 28 COMMON METRICSS 

Source⇒Target NN TNB TCA+ CCA + CCT–SVM 

CM1 ⇒ AR3 0.403 0.271 0.333 0.582 0.612 

CM1 ⇒ AR4 0.632 0.337 0.416 0.772 0.756 

CM1 ⇒ AR5 0.293 0.325 0.376 0.686 0.711 

PC1 ⇒ AR3 0.596 0.467 0.323 0.791 0.802 

PC1 ⇒ AR4 0.551 0.331 0.373 0.716 0.733 

PC1 ⇒ AR5 0.512 0.379 0.516 0.723 0.719 

MW1 ⇒ AR4 0.591 0.326 0.396 0.689 0.707 

AR4 ⇒ CM1 0.256 0.296 0.279 0.781 0.786 

AR4 ⇒ PC1 0.281 0.337 0.219 0.712 0.751 

AR4 ⇒ MW1 0.523 0.386 0.433 0.768 0.781 

AVG 0.463 0.346 0.366 0.722 0.736 

TABLE III.    MEDIAN AUCS WITH 28 COMMON METRICSS 

Source⇒Target NN TNB TCA+ CCA + CCT–SVM 

CM1 ⇒ AR3 0.583 0.556 0.543 0.692 0.703 

CM1 ⇒ AR4 0.550 0.509 0.539 0.709 0.705 

CM1 ⇒ AR5 0.581 0.627 0.619 0.744 0.771 

PC1 ⇒ AR3 0.601 0.593 0.639 0.751 0.763 

PC1 ⇒ AR4 0.621 0.608 0.613 0.753 0.759 

PC1 ⇒ AR5 0.653 0.686 0.673 0.839 0.856 

MW1 ⇒ AR4 0.507 0.567 0.556 0.690 0.705 

AR4 ⇒ CM1 0.501 0.530 0.522 0.694 0.691 

AR4 ⇒ PC1 0.431 0.489 0.453 0.571 0.584 

AR4 ⇒ MW1 0.473 0.516 0.513 0.627 0.631 

AVG 0.550 0.570 0.567 0.707 0.721 

choose the 50% samples as the training data and the other 50% 
are testing data. We repeat this process 30 times and report the 
average prediction results. 

Table IV and V show the F-measure and AUC of different 
compared methods, where no common metrics exist in the 
source and target data. From Table IV and Table V, we can see 
that CCT-SVM can obtain better results in contrast with the 
CCA+ and within-project prediction in most cases. The results 
suggest that our method takes the misclassification costs into 
consideration, which makes the prediction tending to classify 
the defective-free modules as the defective ones in order to get 
higher prediction performance. Table V tabulates the AUC 
values. The trends of AUC values in Table V are similar to that 
of F-measure shown in Table IV. Therefore, CCT-SVM can be 
used to address HCPDP effectively. 

CCT-SVM can effectively address heterogeneous defect 
prediction problem even if the class distribution is imbalanced. 
In order to study the influence of the different class-imbalance 
rates on CCT-SVM under heterogeneous cross-project setting, 
we conduct additional experiments, where we alter the different 
classes distribution of the source data which is customized so 
that the number of the defective samples over the number of 
the defective-free samples is roughly δ, 1 δ⁄ ∈ {1,2, ⋯ 10}. If 
the original proportion is larger than δ, we randomly abandon 
some defective samples; otherwise, we randomly abandon 
some defective-free samples. Here, we build a prediction 
model by using the customized source project data and then 
apply the model to the target project data.  

We repeat the experiment in each customized dataset for 30 
times. We plot the average F-measures and AUCs versus the 
inverse of the minority-majority ratio ( 1 δ⁄ ) on the 
experimental datasets. We only report the experimental results 
on the three pair representative datasets: MW1 ⇒  AR4 (28 
common metrics), ZXing⇒AR4 (3 common metrics), JDT⇒ 
ZXing (no common metrics), as shown in Fig. 2-4. 

TABLE IV.    MEDIAN F-MEASURES WITH NO COMMON METRICS 

Source⇒Target CCA + CCT–SVM 
Within 

Target⇒Target 

CM1 ⇒ EQ 0.581 0.612 0.576 

EQ ⇒ CM1 0.238 0.276 0.336 

LC ⇒ Apache 0.266 0.307 0.645 

Apache ⇒ LC 0.288 0.291 0.373 

ML ⇒ PC1 0.541 0.567 

0.369 JDT ⇒ PC1 0.501 0.523 

PDE ⇒ PC1 0.431 0.455 

ML ⇒ AR4 0.573 0.559 

0.392 JDT ⇒ AR4 0.493 0.517 

PDE ⇒ AR4 0.540 0.536 

PC1 ⇒ ML 0.336 0.333 

0.273 AR4 ⇒ ML 0.353 0.336 

ZXing ⇒ ML 0.405 0.446 

PC1 ⇒ JDT 0.521 0.533 

0.563 AR4 ⇒ JDT 0.592 0.631 

ZXing ⇒ JDT 0.647 0.675 

PC1 ⇒ PDE 0.376 0.401 

0.312 AR4 ⇒ PDE 0.383 0.413 

ZXing ⇒ PDE 0.421 0.473 

ML ⇒ ZXing 0.486 0.501 

0.336 JDT ⇒ ZXing 0.466 0.508 

PDE ⇒ ZXing 0.474 0.497 

AVG 0.451 0.475 0.394 

TABLE V.    MEDIAN AUCS WITH NO COMMON METRICS 

Source⇒Target CCA + CCT–SVM 
Within 

Target⇒Target 

CM1 ⇒ EQ 0.711 0.752 0.651 

EQ ⇒ CM1 0.798 0.816 0.728 

LC ⇒ Apache 0.806 0.797 0.769 

Apache ⇒ LC 0.718 0.757 0.608 

ML ⇒ PC1 0.861 0.827 

0.796 JDT ⇒ PC1 0.759 0.823 

PDE ⇒ PC1 0.791 0.815 

ML ⇒ AR4 0.765 0.809 

0.654 JDT ⇒ AR4 0.676 0.717 

PDE ⇒ AR4 0.730 0.766 

PC1 ⇒ ML 0.673 0.726 

0.754 AR4 ⇒ ML 0.653 0.696 

ZXing ⇒ ML 0.725 0.746 

PC1 ⇒ JDT 0.720 0.751 

0.809 AR4 ⇒ JDT 0.612 0.679 

ZXing ⇒ JDT 0.751 0.883 

PC1 ⇒ PDE 0.702 0.727 

0.711 AR4 ⇒ PDE 0.681 0.719 

ZXing ⇒ PDE 0.731 0.701 

ML ⇒ ZXing 0.684 0.652 

0.609 JDT ⇒ ZXing 0.667 0.723 

PDE ⇒ ZXing 0.721 0.707 

AVG 0.724 0.751 0.715 

As expected, F-measure and AUC values of all the 
compared methods decrease as the dataset becomes more 
imbalanced, but the influence of the increase of class imbalance 
on CCT-SVM is the smallest. Fig. 2-4 show that CCT-SVM 
almost always performs better than the other methods, and 
when the class distribution is more imbalanced the superiority 
is more preponderant. This fact suggests that the degree of 
imbalance has great influence on HCPDP, if it does not address 
the class imbalance problem explicitly. Therefore, it can be 
concluded that explicitly tackling the class-imbalance problem 
is helpful to HCPDP. 



Figure 2.    The performance of compared methods on MW1⇒AR4                    
(28 common metrics) at different minority-majority. 

 

Figure 3.   The performance of compared methods on ZXing⇒AR4                      
(3 common metrics) at different minority-majority 

 

Figure 4.    The performance of compared methods on JDT⇒ZXing                     

(no common metrics) at different minority-majority 

V. CONCLUSION AND FUTURE WORK 

Cross-project software defect prediction plays an important 
role in improving the quality of a software product in case of 
projects without sufficient historical data. However, it is 
difficult to conduct with heterogeneous metrics set. In addition, 
software defect datasets have the class-imbalance characteristic. 
Without taking this issue into account, the effectiveness of 
software defect prediction would be greatly reducing. In this 
paper, we addressed these two important issues simultaneously 
and proposed a novel cost-sensitive correlation transfer support 
vector machine method for heterogeneous defect prediction. 
Experimental results on the open source projects from different 
groups showed that our method is feasible and yields promising 
results.  

For the future work, we will introduce other sophisticated 
class imbalance learning techniques in the heterogeneous cross-
project defect prediction, and we will evaluate our approach in 
more heterogeneous defect datasets. 
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