
Heterogeneous Defect Prediction via Exploiting

Correlation Subspace

Ming Cheng1, Guoqing Wu1, Min Jiang2, Hongyan Wan1 , Guoan You1 and Mengting Yuan1

1. State Key Laboratory of Software Engineering, School of Computer, Wuhan University, Wuhan 430072, China

{chengming, wgq, why0511, 2014202110064, ymt}@whu.edu.cn

2. Department of Cognitive Science and Technology and Fujian Key Laboratory of Brain-Like Intelligent Systems, Xiamen

University, Xiamen 361005, China

minjiang@xmu.edu.cn

Abstract—Software defect prediction generally builds models

from intra-project data. Lack of training data at the early stage

of software testing limits the efficiency of prediction in practice.

Thereby researchers proposed cross-project defect prediction

using the data from other projects. Most previous efforts

assumed the cross-project defect data have the same metrics set

which means the metrics used and size of metrics set are same in

the data of projects. However, in real scenarios, this assumption

may not hold. In addition, software defect datasets have the class

imbalance problem increasing the difficulty for the learner to

predict defects. In this paper, we advance canonical correlation

analysis for deriving a joint feature space for associating cross-

project data and propose a novel support vector machine

algorithm which incorporates the correlation transfer

information into classifier design for cross-project prediction.

Moreover, we take different misclassification costs into

consideration to make the classification inclining to classify a

module as a defective one, alleviating the impact of imbalanced

data. Experiments on public heterogeneous datasets from

different projects show that our method is more effective,

compared to state-of-the-art methods.

Keywords-defect prediction; heterogeneous metrics; class

imbalance; canonical correlation analysis; support vector machine

I. INTRODUCTION

Recently, most effective software defect prediction
approaches have been proposed and attracted a lot of attention
from academic and industrial communities. Most prior studies
generally focused on Within-Project Defect Prediction (WPDP),
which trained prediction model from historical data to detect
the defect proneness of new software modules within the same
project [1][2][3][4]. However, researchers often confront the
situations that there are not enough historical data available,
and they have to resort to the data from other projects to aid the
learning of the target projects. Owing to this reason, Cross-
Project Defect Prediction (CPDP) is proposed. It is the art of
using data of inter-project to predict software defects in the
target project with a small amount of local data [5][6].

Existing CPDP approaches are based on the underlying
assumption that both source and target project data should
exhibit the same data distribution or are drawn from the same
feature space (i.e., the same software metrics). When the
distribution of the data changes, or when the metrics features
for source and target projects are different, one cannot expect
the resulting prediction performance to be satisfactory. We

consider this scenarios as Heterogeneous Cross-Project Defect
Prediction (HCPDP) [7][8].

Mostly, the software defect data sets are imbalanced, which
means the number of the defective modules is usually much
smaller than that of the defective-free modules [9][10]. The
imbalanced nature of data can cause poor prediction
performance. That is, the probability of defect prediction can
be low while the overall performance is high. Without taking
this issue into account, the effectiveness of software defect
prediction in many real-world tasks would be greatly reduced.

Recently, some researchers have noticed the importance of
these problems in software defect prediction. For example,
Nam et al. [7] used the metrics selection and metrics matching
to select similar metrics for building a prediction model with
heterogeneous metrics set. They discarded dissimilar metrics,
which may contain useful information for training. Jing et al. [8]
introduced Canonical Correlation Analysis (CCA) into HCPDP,
by constructing the common correlation space to associate
cross-project data. Then, one can simply project the source and
target project data into this space for defect prediction. Like
previous CPDP methods, the class imbalance problem of
software defect datasets was not taken into account. Ryu et al.
[10] designed the Value-Cognitive Boosting with Support
Vector Machine algorithm (VCB-SVM) which exploited
sampling techniques to solve the class imbalance issue for
cross-project environments. Nevertheless, sampling strategy
alters the distribution of the original data, where it may discard
some potentially useful samples that could be important for
prediction process. Therefore, these methods are not good
solutions for addressing the class imbalance issue under
heterogeneous cross-project environments.

Motivated by these observations, we advance CCA for
driving a joint feature space for associating cross-project data,
and incorporate the correlation transfer information in the
derived subspace for improved prediction performance. During
the defect prediction process, the two types of misclassification
errors are encountered. Type I misclassifies a defective-free
module as defective one (increasing the development cost),
while type II misclassifies a defective module as defective-free
one (leading to the more risk cost). Hence, we can take
different misclassification costs into consideration by
incorporating the cost factors into the SVM model. Fig. 1
shows a summary of our method.

In this paper, we propose a novel Cost-sensitive Correlation
Transfer Support Vector Machine (CCT-SVM) algorithm to

DOI reference number: 10.18293/SEKE2016-090

deal with the class imbalance problem under HCPDP settings.
Our contributions to the current state of research are
summarized as follows.

 We advance CCA for deriving a joint feature space to
associate cross-project data, so the correlation transfer
information can be exploited to improve the prediction
performance.

 During the software defect prediction process, we
emphasize the risk cost to make the classification
inclining to classify a module as a defective one,
alleviating the impact of imbalanced data.

 Conduct an extensive and large-scale empirical study
to evaluate our method.

II. RELATED WORK

A. Cross-project Defect Prediction

Software defect prediction employs historical data on
reported (or repaired) defects to predict the location of
previously unknown defects that hide in the code. However,
sufficient historical training data from the same project is not
always available or is hard to collect in practice. To address
this issue, researchers proposed CPDP as an alternative
solution in the last few years [11] [12] [13].

Zimmermann et al. [11] evaluated cross-project prediction
performance based on large-scale experiments for 12 real-
world projects. It indicated that current CPDP models do not
perform well in most cases. Similar to Zimmermann' work, He
et al. [12] investigated CPDP by focusing on training data
selection. They pointed out that the prediction performance was
related to the distributional attributes of datasets. Turhan et al.
[13] proposed a Nearest-Neighbor filter method (NN-filter) to
select similar data from source project. They only used nearest
neighbors for each test data to construct training set, which
have similar features to local data. Unlike the prior work
selecting training data which are similar from the test data, Ma
et al. [5] proposed Transfer Naive Bayes (TNB), by using the
information of all the proper features in training data. The TNB
transferred cross-project data information into the weights of
the training data. Based on these weighted data, the prediction
model was built. Nam et al. [6] applied Transfer Component
Analysis (TCA) to CPDP and proposed TCA+ by selecting a
suitable normalization automatically to preprocess data.

However, existing CPDP approaches are based on the
assumption that the source and target data have the same
software metrics set. When the metrics features for source and
target projects are different, these methods will be unavailable.
Recently, Nam et al. [7] proposed the Heterogeneous Defect
Prediction (HDP) to predict defects across projects with

heterogeneous metrics sets. They conducted metrics selection
and metrics matching to build a prediction model using 28
projects collected from public defect datasets. Jing et al. [8]
introduced CCA into CPDP to make the data distributions of
source and target projects similar. They extended CCA to
CCA+, by unified metric representation technique to
preprocess data, so that the correlation between the projected
data in CCA space is maximized.

Previous work proposed various defect prediction models
under heterogeneous cross-project settings, but the class
imbalance issue of defect datasets was not taken into account.
Hall et al. [14] pointed out that data imbalance with regard to
specific classification approaches may produce poor
performance. Ignoring this issue, a learner that minimizes the
prediction error would often produce a useless predictive model
that predicts all the modules as defect-free.

B. Class Imbalance Learning

Class imbalance learning refers to learning from data that
exhibit significant imbalance among classes. The challenge of
class imbalance is that relatively underrepresented class cannot
draw equal attention to the learning algorithm compared with
the majority class, which often leads poor prediction
performance [15]. To achieve better sensitivity to the minority
class, the class imbalance issue should be explicitly tackled.

Wang et al. [15] explored the impact of class imbalance
issue and provided guidance and valuable information for
designing good predictor for software defects. Zheng et al. [16]
employed three cost-sensitive boosting neural network
algorithms for software defect prediction and found that
threshold-moving algorithm was the best. Grbac et al. [17]
studied the performance of machine learning techniques with
different level of imbalance for software defect data. The
feature selection and data sampling were exploit together. This
method addressed class imbalance by modifying the training
data. Ren et al. [18] proposed kernel based prediction method
to address the class imbalance. The NASA and SOFTLAB
datasets were used for experiments. Sun et al. [19] presented a
coding based ensemble learning method, which converted class
imbalance data into balanced multiclass data with specific
coding scheme to avoid the class imbalance problem. Ryu et al.
[10] first investigated whether the class imbalance learning can
improve the prediction performance under CPDP settings. And
they designed the value-cognitive boosting with support vector
machine algorithm dealing with the class imbalance issue for
cross-project environments. Experimental results showed that
the class imbalance learning can be beneficial for CPDP.

III. HETEROGENEOUS SOFTWARE DEFECT PREDICTION

In this section, we present our method for HCPDP, which
includes two parts: unified metrics representation and the CCT-
SVM model.

A. Unified Metric Representation for Heterogeneous Data

To effectively utilize the heterogeneous metrics features
from cross-project data, Jing et al. [8] proposed a Unified
Metric Representation (UMR) to make the heterogeneous data
can be compared. Based on the UMR, the standard CCA was
exploited to find a common space for data from source and
target project such that the correlation between the projected
data in that space was maximized.

Figure 1. The overview of heterogenous cross-project prediction

Source

Project

Target

Project

Heterogeneous

Metrics sets

Source Metrics

 Software

Archives

Ps

Target Metrics
Vs,t

1

Vs,t

k
CCA Subspace

Pt

: the th feature metrics at source space

: the th feature metrics at target space

: the th feature in CCA subspace

Vs

i

Vt

j

Vs,t
k

i

j

k

classifier

Vs

2

Vs

i

Source SpaceVs

1

Vt

1

Vt

2

Target Space

Vt

j

Similar to [8], we also exploit the UMR technique to make
heterogeneous data to be compared. Suppose that 𝐗𝑠 =
{𝐱𝑠

1, 𝐱𝑠
2, ⋯ , 𝐱𝑠

𝑁} ∈ ℝ𝑑𝑠×𝑁 and 𝐗𝑡 = {𝐱𝑡
1, 𝐱𝑡

2, ⋯ , 𝐱𝑡
𝑀} ∈ ℝ𝑑𝑡×𝑀

separately denote the source and target project data, where 𝐱s
𝑖

indicates the 𝑖𝑡ℎ model in 𝐗𝑠, N and M denote the numbers of

modules in 𝐗𝑠 and 𝐗𝑡 , respectively. 𝐱s
𝑖 = [𝑎𝑠

𝑖1, 𝑎𝑠
𝑖2, ⋯ , 𝑎𝑠

𝑖𝑑𝑠]

and 𝐱𝑡
𝑖 = [𝑎𝑡

𝑖1, 𝑎𝑡
𝑖2, ⋯ , 𝑎𝑡

𝑖𝑑𝑡] represent a module in the source

and target project, where 𝑎𝑠
𝑖𝑗

 indicates the 𝑗𝑡ℎ metrics feature

of the 𝑖𝑡ℎ model in source projcet, 𝑑𝑠 and 𝑑𝑡 are the numbers of
metrics in 𝐗𝑠 and 𝐗𝑡 , 𝑑𝑠 ≠ 𝑑𝑡 . Here, we exploit UMR to
restructure data as follows:

�̅�𝑠 = [

𝐗𝑠
𝑐

𝐗𝑠
𝑠

0(𝑑𝑡−𝑑𝑐)×𝑁

]�̅�𝑡 = [

𝐗𝑡
𝑐

𝐗𝑡
𝑡

0(𝑑s−𝑑𝑐)×𝑀

]

where the 𝐗𝑠
𝑐 and 𝐗𝑡

𝑐 are the same common metrics, 𝐗𝑠
𝑠 and 𝐗𝑡

𝑡
are specific metrics in source and target project, respectively.
Note that if there exist no common metrics, then 𝐗𝑠

𝑐 = 𝐗𝑡
𝑐 = 0.

B. Learning Correlation Subspace via CCA

Based on the obtained UMR for heterogeneous data, we
employ CCA technique to determine a common representation
(e.g. a joint subspace) for features extracted from source and
target projects, so that the model trained in the source project
can be applied to detect the test modules in the target project.

CCA learns two projection vectors 𝐩𝑠 ∈ ℝ𝑑𝑠 and 𝐩𝑡 ∈ ℝ𝑑𝑡 ,
which maximize the following linear correlation coefficient 𝜌:

max
𝐩𝑠,𝐩𝑡

𝜌 =
𝐩𝑠

𝑇Σ𝑠𝑡𝐩𝑡

√𝐩𝑠
𝑇Σ𝑠𝑠𝐩𝑠√𝐩𝑡

𝑇Σ𝑡𝑡𝐩𝑡

 (2)

where Σ𝑠𝑠 and Σ𝑡𝑡 represent the within-project covariance

matrices of 𝐗𝑠 and 𝐗𝑡 respectively, while Σ𝑠𝑡 = Σ𝑡𝑠 represents

the cross-project covariance matrix of 𝐗𝑠 and �̅�𝑡 . Σ𝑠𝑠 , Σ𝑡𝑡 and

Σ𝑠𝑡 are separately defined as:

1

1
()()

N
i i T

ss s s s s

iN

 x m x m (3)

1

1
()()

M
i i T

tt t t t t

iM

 x m x m (4)

1 1

1
()()

N M
i j T

st s s t t

i jNM

 x m x m (5)

where 𝐱𝑠
𝑖
 represents the 𝑖𝑡ℎ software module in 𝐗𝑠, 𝐦𝑠 and 𝐦𝑡

are the mean modules of 𝐗𝑠 and 𝐗𝑡 . As proved in [8], the

optimization of (2) can be solved as a generalized eigenvalue

decomposition problem:

 (
0 Σ𝑠𝑡

Σ𝑠𝑡 0
) (

𝐩𝑠

𝐩𝑡
) = λ (

Σ𝑠𝑠 0
0 Σ𝑡𝑡

) (
𝐩𝑠

𝐩𝑡
) (6)

The λ is the generalized eigenvalue corresponding to the

generalized eigenvector (
𝐩𝑠

𝐩𝑡
). Generally, we can derive more

than one pair of canonical components {𝐩𝑠
𝑘}𝑘=1

𝑑𝑣 and {𝐩𝑡
𝑘}𝑘=1

𝑑𝑣

with corresponding 𝜌𝑖 in a descending order (𝜌𝑖 > 𝜌𝑖+1). Note

that 𝑑𝑣 is the dimension number of the correlation subspace of

CCA. We can construct the projective transformation matrices

𝐏𝑠 = [𝐩𝑠
𝑖 , ⋯ , 𝐩𝑠

𝑑𝑣] ∈ ℝ𝑑𝑠×𝑑𝑣 and 𝐏𝑡 = [𝐩𝑡
𝑖 , ⋯ , 𝐩𝑡

𝑑𝑣] ∈ ℝ𝑑𝑡×𝑑𝑣 .

Once the correlation subspace is derived, the test modules at

target project can be directly detected by the model learned

from the source project data projected onto the subspace.

C. Cost-sensitive Correlation-transfer SVM

In derived CCA subspace, each dimension 𝐯𝑠,𝑡
𝑖 is associated

with a different correlation coefficient 𝜌𝑖. A higher 𝜌𝑖 denotes a
better correlation, which results in a better transfer ability for

the associated dimension 𝐯𝑠,𝑡
𝑖 . On the other hand, poorer

transfer ability will increase classification error, even the
classifier is trained using the projected source project data.
Obviously, higher correlation coefficient can obtain more class
discriminant information which is more useful for constructing
classifiers [20].

In SVM, if the 𝑖𝑡ℎ feature attribute has the better
discrimination ability, the classical SVM could produce a
larger magnitude for the corresponding model (e.g., a larger
|𝑤𝑖|). Here, we introduce a correlation regularizer and propose
a linear SVM model which integrates the cross-project transfer
ability and class discrimination in a unified formulation.
Moreover, we employ a specifical misclassification costs to
minimize a classification-oriented loss. We set two
misclassification cost values C+ and C− . C+ is the
misclassification cost for the defective modules, while C− is the
misclassification cost for the defective-free modules. By
assigning a higher misclassification cost for the minority
defective modules than the majority defective-free modules
(i.e., C+> C−), the effect of class imbalance could be reduced.
Then, the modified SVM decision function can be represented
as follows:

min
𝐰

(
1

2
‖𝐰‖2

2 + C+ ∑ ε𝑖

N

[𝑖|𝑦𝑖=+1]

+ C− ∑ ε𝑖 − Φ(𝜌𝑖)

N

[𝑖|𝑦𝑖=−1]

)

s.t. 𝑦𝑖 (〈𝐰, 𝐏𝑠
𝑇𝐱𝑠

𝑖
〉 + 𝑏) ≥ 1 − ε𝑖 , ε𝑖 ≥ 0, ∀(𝐱𝑠

𝑖
, 𝑦𝑖) ∈ 𝒟𝑙

𝑠 (7)

where Φ(𝜌𝑖) =
1

2
𝐴𝑏𝑠(𝐰)𝒓𝑇 , 𝐴𝑏𝑠(𝐰) = [|𝑤1|, |𝑤2|, ⋯ , |𝑤𝑑𝑣

|]

and 𝒓 = [𝜌1, ⋯ , 𝜌𝑑𝑣
] is the correlation vector in which each

element denotes the correlation coefficient of CCA subspace
for each pair of projection dimension. Parameter ε𝑖 is slack
variable as in standard SVM. It should be noted that only

labeled source data 𝐱𝑠
𝑖

∈ 𝒟𝑙
𝑠 is available for training, and 𝑦𝑖 is

the associated class label. We put 𝐏𝑠
𝑇𝐱𝑠

𝑖
 as the projection of

source project data 𝐱𝑠
𝑖
 onto the correlation subspace.

In (7), the term Φ(𝜌𝑖) is introduced for model adaptation
based on CCA. By doing so, a smaller correlation coefficient 𝜌𝑖

is obtained for the 𝑖𝑡ℎ dimension of CCA subspace, then the
above equation would enforce the reduction of the
corresponding |𝑤𝑖| and restrict the trained SVM model along
that dimension. On the other side, a larger 𝜌𝑖 favors the
contribution of the associated |𝑤𝑖| when minimizing (7).

Since it is not forthright to solve the minimization problem
in (7), we seek the approximated solution by modifying the
correlation regularizer term Φ(𝜌𝑖) into the following form:

 Φ(𝜌𝑖) =
1

2
 𝐴𝑏𝑠(𝐰⨀𝐰)(𝒓⨀𝒓)𝑇 (8)

where ⨀ denotes the element-wise multiplication. By
incorporating (8) into (7), the objective function can be
rewritten into a unified form:

 min
𝐰

(
1

2
∑(1 − 𝜌𝑖

2)𝑤𝑖
2

𝑑𝑐

𝑖=1

+ C+ ∑ ε𝑖

N

[𝑖|𝑦𝑖=+1]

+ C− ∑ ε𝑖

N

[𝑖|𝑦𝑖=−1]

)

s.t. 𝑦𝑖 (〈𝐰, 𝐏𝑠
𝑇𝐱𝑠

𝑖
〉 + 𝑏) ≥ 1 − ε𝑖 , ε𝑖 ≥ 0, ∀(𝐱𝑠

𝑖
, 𝑦𝑖) ∈ 𝒟𝑙

𝑠 (9)

We refer to (9) as our cost-sensitive correlation transfer SVM.
Since the correlation coefficient 𝜌𝑖 ranges from 0 to 1, the
above object function is a convex optimization problem. We
apply the Newton-Armijo algorithm for solving SVM
optimization problems. As a result, our modified SVM could
adapt the derived classification model w relied on the cross-
project transfer ability of CCA. Moreover, we assign two
misclassification costs to alleviate the effect of class imbalance.
Thus, it can present the better classification performance in
correlation subspace. The decision function for classifying the
test modules in target project is shown as follows:

 𝑓(𝐱) = 𝑠𝑔𝑛(〈𝐰, 𝐏𝑡
𝑇�̅�𝑡〉 + 𝑏) (10)

where 𝐏𝑡
𝑇 projects the target data �̅�𝑡 from the target space onto

the correlation subspace. Finally, 𝑠𝑔𝑛(𝑧) returns 1 if and only
if 𝑧 > 0, and -1 otherwise.

IV. EXPERIMENTS

A. Experimental Datasets

We collect publicly available defect datasets from prior
researches, including NASA, SOFTLAB, AEEEM and ReLink
[7][8]. Among these datasets, the percentage of defective
components ranges from 8.65% to 50.52%. It is obvious that
most datasets are imbalanced. Table I shows detailed project
information in our experiments.

B. Experimental Design

To validate the effectiveness of the proposed approach for
HCPDP, we compare our approach with several representative
methods including TNB [5], TCA+ [6], CCA+ [8] and NN-
filter [13]. We design the three experiments to evaluate our
approach: (1) HCPDP with partially different metrics. We build
model using common metrics between source and target
datasets as in previous studies [8]. (2) HCPDP with entire
different metrics. In this part, we present CCA+ and the within-
project defect prediction results as references. (3) The impact
of different class-imbalance rates on HCPDP, exploring
whether or not our proposed method can effectively deal with
class-imbalance problem in HCPDP.

For WPDP, we employ the standard SVM as their base
classifier. We use the 50:50 random splits to obtain training
and test sets. Thus, we repeat this process 30 times to get the
average prediction results. In our approach, in order to
emphasize the risk cost, the parameters C+ and C− are set as
C+ :C− =5:1. For different projects, user can select different
ratios [21]. The parameter 𝜀 is determined by searching a wide
range and choosing the one which produces the best F-measure
value. Although we have verified that these choices of
parameters work well in our experiments, we recognize that a
finer tuning of them may further improve the performance.

To evaluate the performance of our method, we use two
widely-used evaluation measures, F-measure and Area Under
the Receiver Operating Characteristic (ROC) Curve (AUC). F-
measure is the harmonic mean of precision and recall, falling

TABLE I. HETEROGENEOUS DATASETS FROM DIFFERENT PROJECTS

Group Dataset Instances Buggy (%) Metrics

NASA

CM1 327 42(12.84%)

37 MW1 253 27(10.67%)

PC1 705 61(8.65%)

AEEEM

EQ 325 129(39.69%)

61

JDT 997 206(20.66%)

LC 399 64(9.26%)

ML 1862 245(13.16%)

PDE 1492 209(14.01%)

ReLink

Apache 194 98(50.52%)

26 Safe 56 22(39.29%)

ZXing 399 118(29.57%)

SOFTLAB

AR3 63 8(12.72%)

29 AR4 107 20(18.69%)

AR5 36 8(22.22%)

in the range [0, 1], as (11). The recall is defined as the ratio of
the number of modules correctly classified as defect to the
number of defective modules. The precision is the ratio of the
number of modules correctly classified as defect to the number
of modules classified as defect.

 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2×𝑟𝑒𝑐𝑎𝑙𝑙×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (11)

For more comprehensive evaluation of predictors in the
imbalanced context, the AUC is exploited to evaluate the
prediction performance. AUC estimates the area under the
ROC curve, which illustrates the trade-off between detection
and false alarm rates, varying in [0, 1]. A better classifier
should produce a higher F-measure and AUC.

C. Experimental results

Table II and Table III show that the F-measure and AUC
values of heterogeneous defect prediction, where 28 common
metrics exist in source and target data. In each table, the best
performance are presented with boldface in all experimental
datasets. The last rows of tables show the average
performances on all the experimental datasets.

From Table II, we see that CCT-SVM can obtain better F-
measure values in most prediction scenes, compared with other
methods, and the average F-measure of CCT-SVM is the
highest. This indicates that after carefully taking the class
imbalance nature of defect data into consideration, CCT-SVM
is able to improve defect performance dramatically. The trends
in Table III are similar to that shown in Table II. The reason is
that our method uses all metrics rather than only common
metrics, and these metrics usually contain some useful
discriminant information. We exploit the cross-project transfer
ability in derived subspace when designing the associated SVM
classifier. And we emphasize the risk cost to make the
classification inclining to classify a module as a defective one,
alleviating the impact of imbalanced data. Wilcoxon's rank sum
test at a 0.05 significance level indicates that performance
improvement on each pair dataset is statistical significance.
This fact suggests that addressing the class imbalance problem
is beneficial to construct better predictive model in software
defect prediction.

In practical scenario, we often confront the situations that
there are no common metrics between source and target project
data. Hence we conduct experiment to investigate the
performance of CCT-SVM with entire different metrics. In this
section, we conduct within-project prediction results of a target
project as baseline. Specifically for each dataset, we randomly

TABLE II. MEDIAN F-MEASURES WITH 28 COMMON METRICSS

Source⇒Target NN TNB TCA+ CCA + CCT–SVM

CM1 ⇒ AR3 0.403 0.271 0.333 0.582 0.612

CM1 ⇒ AR4 0.632 0.337 0.416 0.772 0.756

CM1 ⇒ AR5 0.293 0.325 0.376 0.686 0.711

PC1 ⇒ AR3 0.596 0.467 0.323 0.791 0.802

PC1 ⇒ AR4 0.551 0.331 0.373 0.716 0.733

PC1 ⇒ AR5 0.512 0.379 0.516 0.723 0.719

MW1 ⇒ AR4 0.591 0.326 0.396 0.689 0.707

AR4 ⇒ CM1 0.256 0.296 0.279 0.781 0.786

AR4 ⇒ PC1 0.281 0.337 0.219 0.712 0.751

AR4 ⇒ MW1 0.523 0.386 0.433 0.768 0.781

AVG 0.463 0.346 0.366 0.722 0.736

TABLE III. MEDIAN AUCS WITH 28 COMMON METRICSS

Source⇒Target NN TNB TCA+ CCA + CCT–SVM

CM1 ⇒ AR3 0.583 0.556 0.543 0.692 0.703

CM1 ⇒ AR4 0.550 0.509 0.539 0.709 0.705

CM1 ⇒ AR5 0.581 0.627 0.619 0.744 0.771

PC1 ⇒ AR3 0.601 0.593 0.639 0.751 0.763

PC1 ⇒ AR4 0.621 0.608 0.613 0.753 0.759

PC1 ⇒ AR5 0.653 0.686 0.673 0.839 0.856

MW1 ⇒ AR4 0.507 0.567 0.556 0.690 0.705

AR4 ⇒ CM1 0.501 0.530 0.522 0.694 0.691

AR4 ⇒ PC1 0.431 0.489 0.453 0.571 0.584

AR4 ⇒ MW1 0.473 0.516 0.513 0.627 0.631

AVG 0.550 0.570 0.567 0.707 0.721

choose the 50% samples as the training data and the other 50%
are testing data. We repeat this process 30 times and report the
average prediction results.

Table IV and V show the F-measure and AUC of different
compared methods, where no common metrics exist in the
source and target data. From Table IV and Table V, we can see
that CCT-SVM can obtain better results in contrast with the
CCA+ and within-project prediction in most cases. The results
suggest that our method takes the misclassification costs into
consideration, which makes the prediction tending to classify
the defective-free modules as the defective ones in order to get
higher prediction performance. Table V tabulates the AUC
values. The trends of AUC values in Table V are similar to that
of F-measure shown in Table IV. Therefore, CCT-SVM can be
used to address HCPDP effectively.

CCT-SVM can effectively address heterogeneous defect
prediction problem even if the class distribution is imbalanced.
In order to study the influence of the different class-imbalance
rates on CCT-SVM under heterogeneous cross-project setting,
we conduct additional experiments, where we alter the different
classes distribution of the source data which is customized so
that the number of the defective samples over the number of
the defective-free samples is roughly δ, 1 δ⁄ ∈ {1,2, ⋯ 10}. If
the original proportion is larger than δ, we randomly abandon
some defective samples; otherwise, we randomly abandon
some defective-free samples. Here, we build a prediction
model by using the customized source project data and then
apply the model to the target project data.

We repeat the experiment in each customized dataset for 30
times. We plot the average F-measures and AUCs versus the
inverse of the minority-majority ratio (1 δ⁄) on the
experimental datasets. We only report the experimental results
on the three pair representative datasets: MW1 ⇒ AR4 (28
common metrics), ZXing⇒AR4 (3 common metrics), JDT⇒
ZXing (no common metrics), as shown in Fig. 2-4.

TABLE IV. MEDIAN F-MEASURES WITH NO COMMON METRICS

Source⇒Target CCA + CCT–SVM
Within

Target⇒Target

CM1 ⇒ EQ 0.581 0.612 0.576

EQ ⇒ CM1 0.238 0.276 0.336

LC ⇒ Apache 0.266 0.307 0.645

Apache ⇒ LC 0.288 0.291 0.373

ML ⇒ PC1 0.541 0.567

0.369 JDT ⇒ PC1 0.501 0.523

PDE ⇒ PC1 0.431 0.455

ML ⇒ AR4 0.573 0.559

0.392 JDT ⇒ AR4 0.493 0.517

PDE ⇒ AR4 0.540 0.536

PC1 ⇒ ML 0.336 0.333

0.273 AR4 ⇒ ML 0.353 0.336

ZXing ⇒ ML 0.405 0.446

PC1 ⇒ JDT 0.521 0.533

0.563 AR4 ⇒ JDT 0.592 0.631

ZXing ⇒ JDT 0.647 0.675

PC1 ⇒ PDE 0.376 0.401

0.312 AR4 ⇒ PDE 0.383 0.413

ZXing ⇒ PDE 0.421 0.473

ML ⇒ ZXing 0.486 0.501

0.336 JDT ⇒ ZXing 0.466 0.508

PDE ⇒ ZXing 0.474 0.497

AVG 0.451 0.475 0.394

TABLE V. MEDIAN AUCS WITH NO COMMON METRICS

Source⇒Target CCA + CCT–SVM
Within

Target⇒Target

CM1 ⇒ EQ 0.711 0.752 0.651

EQ ⇒ CM1 0.798 0.816 0.728

LC ⇒ Apache 0.806 0.797 0.769

Apache ⇒ LC 0.718 0.757 0.608

ML ⇒ PC1 0.861 0.827

0.796 JDT ⇒ PC1 0.759 0.823

PDE ⇒ PC1 0.791 0.815

ML ⇒ AR4 0.765 0.809

0.654 JDT ⇒ AR4 0.676 0.717

PDE ⇒ AR4 0.730 0.766

PC1 ⇒ ML 0.673 0.726

0.754 AR4 ⇒ ML 0.653 0.696

ZXing ⇒ ML 0.725 0.746

PC1 ⇒ JDT 0.720 0.751

0.809 AR4 ⇒ JDT 0.612 0.679

ZXing ⇒ JDT 0.751 0.883

PC1 ⇒ PDE 0.702 0.727

0.711 AR4 ⇒ PDE 0.681 0.719

ZXing ⇒ PDE 0.731 0.701

ML ⇒ ZXing 0.684 0.652

0.609 JDT ⇒ ZXing 0.667 0.723

PDE ⇒ ZXing 0.721 0.707

AVG 0.724 0.751 0.715

As expected, F-measure and AUC values of all the
compared methods decrease as the dataset becomes more
imbalanced, but the influence of the increase of class imbalance
on CCT-SVM is the smallest. Fig. 2-4 show that CCT-SVM
almost always performs better than the other methods, and
when the class distribution is more imbalanced the superiority
is more preponderant. This fact suggests that the degree of
imbalance has great influence on HCPDP, if it does not address
the class imbalance problem explicitly. Therefore, it can be
concluded that explicitly tackling the class-imbalance problem
is helpful to HCPDP.

Figure 2. The performance of compared methods on MW1⇒AR4
(28 common metrics) at different minority-majority.

Figure 3. The performance of compared methods on ZXing⇒AR4
(3 common metrics) at different minority-majority

Figure 4. The performance of compared methods on JDT⇒ZXing

(no common metrics) at different minority-majority

V. CONCLUSION AND FUTURE WORK

Cross-project software defect prediction plays an important
role in improving the quality of a software product in case of
projects without sufficient historical data. However, it is
difficult to conduct with heterogeneous metrics set. In addition,
software defect datasets have the class-imbalance characteristic.
Without taking this issue into account, the effectiveness of
software defect prediction would be greatly reducing. In this
paper, we addressed these two important issues simultaneously
and proposed a novel cost-sensitive correlation transfer support
vector machine method for heterogeneous defect prediction.
Experimental results on the open source projects from different
groups showed that our method is feasible and yields promising
results.

For the future work, we will introduce other sophisticated
class imbalance learning techniques in the heterogeneous cross-
project defect prediction, and we will evaluate our approach in
more heterogeneous defect datasets.

ACKNOWLEDGMENT

The research in this paper was partially supported by the
National Natural Science Foundation of China under Projects
No. 61373039, No. 61170022, No. 61003071 and No.
91118003).

REFERENCES

[1] G. Czibula, Z. Marian, and I. G. Czibula, “Software defect prediction
using relational association rule mining,” Information Sciences, vol. 264,
pp. 260–278, 2014.

[2] X. Y. Jing, S. Ying, Z. W. Zhang, S. S. Wu, and J. Liu, “Dictionary
learning based software defect prediction,” In Proceedings of the 36th
International Conference on Software Engineering, 2014, pp. 414–423.

[3] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” Software Engineering, IEEE
Transactions on, vol. 33, no.1, pp. 2–13, 2007.

[4] I. H. Laradji, M. Alshayeb, and L. Ghouti. Software defect prediction
using ensemble learning on selected features. Information and Software
Technology, 58:388–402, 2015.

[5] Y. Ma, G. C. Luo, X. Zeng and A. Chen, “Transfer learning for
crosscompany software defect prediction,” Information and Software
Technology, vol. 54, no. 3, pp. 248-256, 2012.

[6] J. Nam, S. J. Pan and S. Kim, “Transfer defect learning,” Proceedings of
the 35th International Conference on Software Engineering . San
Francisco, 2013, pp. 382-391.

[7] J. Nam and S. Kim, “Heterogeneous defect prediction,” In Proceedings
of the 10th Joint Meeting on Foundations of Software Engineering, 2015,
pp. 508–519.

[8] X. Y. Jing, F. Wu, X. Dong, F. Qi, and B. Xu, “Heterogeneous cross-
company defect prediction by unified metric representation and cca-
based transfer learning,” In Proceedings of the 10th Joint Meeting on
Foundations of Software Engineering, 2015, pp. 496–507.

[9] Y. Jiang, M. Li, and Z.-H. Zhou, “Software defect detection with rocus,”
Journal of Computer Science and Technology, vol. 26, no. 2, pp. 328–
342, 2011.

[10] D. Ryu, O. Choi, and J. Baik, “Value-cognitive boosting with a support
vector machine for cross-project defect prediction,” Empirical Software
Engineering, vol. 21, no. 1, pp. 43-71, 2016.

[11] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: a large scale experiment on data vs.
domain vs. process,” In Proceedings of the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, 2009, pp. 91–
100.

[12] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, “An investigation on the
feasibility of cross-project defect prediction,” Automated Software
Engineering, vol. 19, no. 2, pp. 167–199, 2012.

[13] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the relative
value of cross-company and within-company data for defect prediction,”
Empirical Software Engineering, vol. 14, no. 5, pp. 540–578, 2009.

[14] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A systematic
literature review on fault prediction performance in software
engineering,” Software Engineering, IEEE Transactions on, vol. 38, no.
6, pp. 1276–1304, 2012.

[15] S. Wang and X. Yao, “Using class imbalance learning for software
defect prediction,” Reliability, IEEE Transactions on, vol. 62, no. 2, pp.
434–443, 2013.

[16] J. Zheng, “Cost-sensitive boosting neural networks for software defect
prediction,” Expert Systems with Applications, vol. 37, no. 6, pp. 4537–
4543, 2010.

[17] T. G. Grbac, G. Mausa, and B. D. Basic, “Stability of software defect
prediction in relation to levels of data imbalance,” In SQAMIA, 2013,
pp. 1–10.

[18] J. Ren, K. Qin, Y. Ma, and G. Luo, “On software defect prediction using
machine learning,” Journal of Applied Mathematics, 2014.

[19] Z. Sun, Q. Song, and X. Zhu, “Using coding-based ensemble learning to
improve software defect prediction,” Systems, Man, and Cybernetics,
Part C: Applications and Reviews, IEEE Transactions on, vol.42, no. 6,
pp. 1806–1817, 2012.

[20] Y. R. Yeh, C. H. Huang, and Y. C. F. Wang, “Heterogeneous domain
adaptation and classification by exploiting the correlation subspace,”
Image Processing, IEEE Transactions on, vol. 23, no. 5, pp. 2009–2018,
2014.

[21] Y. Jiang, B. Cukic, and T. Menzies, “Cost curve evaluation of fault
prediction models,” In Software Reliability Engineering, ISSRE, 19th
International Symposium on, pp. 197–206, 2008.

http://sanfranciscoregency.hyatt.com/
http://sanfranciscoregency.hyatt.com/

