
Stage-oriented Analysis on Factors Impacting

Bug Fixing Time
Hong Wu

1,2
, Junjie Wang

1
, Qing Wang

1,3
, Lin Shi

1
, Feng Yuan

1,4

1
Laboratory for Internet Software Technologies, Institute of Software, Chinese Academy of Sciences, Beijing, China

2
University of Chinese Academy of Sciences, Beijing, China

3
State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

4
Institute of Software Application Technology, Guangzhou & Chinese Academy of Sciences, Guangzhou, China

{wuhong, wangjunjie, wq, shilin}@itechs.iscas.ac.cn, yf@gz.iscas.ac.cn

Abstract—The timely fixing of bugs is important to ensure

software quality. In Open Source Software (OSS) development,

behaviors of stakeholders impact the bug fixing process,

especially the different stages respectively. However, most of the

existing studies on impact factors of bug fixing time usually treat

bug fixing process as a whole, while neglecting the particularity

at its different stages. Ignoring the detail of different stages

cannot let us understand why the fixing time is longer or shorter.

In this paper, we aimed at investigating whether the factors have

different impacts on the time of different stages and the whole

process. Three stages of the whole fixing process were formalized,

and twenty-four factors were defined and extracted from three

aspects: bug reports, their associated source code and code

changes. An empirical study based on two OSS projects, Eclipse

JDT Core and Linux Kernel, was conducted for the investigation.

The results of our study provide a very positive validation that

the influence of factors on bug fixing time is stage related, rather

than for the whole process. Our results can help developers better

understand influences of factors on the bug fixing process, and

thus provide opportunities to improve their process effectively.

Keywords-OSS maintenance; bug fixing time; stage-oriented

analysis; empirical study

I. INTRODUCTION

Fixing bugs is an inevitable and time-consuming activity in
the software development process. It is estimated that 80% of
the total cost of a software system is spent on fixing bugs [3,
13]. Therefore, it is crucial to investigate the impact factors of
bug fixing time, so as to effectively manage the fixing process.

In open source software communities, anyone who has
interests in maintaining a software can participant in the bug
fixing process, e.g., by posting comments to discuss the cause
of a bug, or by taking an assignment of bug fixing, and etc.
Behaviors of stakeholder usually change during the whole
fixing process, and many stakeholders might only participant at
certain stages of the whole process. In this case, stakeholders’
behaviors impact the bug fixing process in an uncertain manner,
especially at different stages of the process respectively.
Therefore, the self-governing of developers in OSS results in
the correlation between stakeholders’ effort and the time of the
whole bug fixing process may no longer be formed.

Prior studies have investigated the factors impacting bug
fixing time, and proposed techniques to predict the time to fix a
bug [1, 4, 7, 8, 11, 17, 19]. Most of them studied the time of the

bug fixing process as a whole (i.e., from a bug was reported
until it was resolved), while neglecting the particularity at its
different stages. However, some studies pointed out that factors
with the same value can usually result in different fixing time
[12]. This may derive from the inherent nature of the bug fixing
process, i.e., the whole process consists of several individual
stages, and different stages focus on different sub-activities of
the whole process with different stakeholders involved.

Moreover, our observations on two large open source
projects (i.e., Eclipse JDT Core and Linux Kernel) show that,
along with different stakeholders’ behaviors, the value of many
factors are frequently changed during the whole fixing process.
For instance, the assignee of bug #13939 in Eclipse JDT Core
was changed 7 times. The summary of bug #86231 in Linux
Kernel was modified 5 times. Due to the change in the value of
these factors, their influence on individual stage might be
different from that on the whole process. For example, the
location of a bug has been considered as an impact factor of
bug fixing time in prior study [8]. However, we found that, in
Linux Kernel, the product category of a bug report has
significant influence on the bug assignment stage and the bug
fixing stage, rather than on the whole process. The above
examples motivate this study.

In this paper, we presented a stage-oriented analysis of
factors impacting bug fixing time. Three major stages of the
bug fixing process were formalized, which are the bug
assignment stage, the bug fixing stage and the bug verification
stage. Twenty-four factors were defined and extracted from
three aspects: bug report, the associated source code and code
changes. We conducted an empirical study with three research
questions as follows.

RQ1: Do the factors have different correlations with the
time of different stages?

RQ2: Do the factors have different correlations between
the time of individual stages and the time of the whole process?

RQ3: Which factors have the highest correlation with the
time of each stage?

To answer the above three questions, we conducted the
empirical study on two large open source projects (i.e., Eclipse
JDT Core and Linux Kernel). The results revealed that factors
have different influence among individual stage as well as the
whole bug fixing process. For instance, the number of

DOI reference number: 10.18293/SEKE2016-079

comments and times of re-assignment have higher correlation
with the time of the assignment stage than the time of the
whole process. We believe our results can help developers
better understand the influence of factors on the time of the bug
fixing process, and illustrate the necessity of analyzing the
influence of factors on bug fixing time by stages instead of the
whole process.

Our study is different from prior work in that: we
performed a stage-oriented analysis on the factors impacting
bug fixing time, taking the change in the value of the factors
into account. We believe these findings can provide new
viewpoints and important references for efficient bug
management, and provide an opportunity of improving current
approaches of bug fixing time prediction for OSS.

The remainder of the paper is organized as follows. The
setup of our study is described in Section II, and the results on
two open source projects to answer our research questions are
reported in Section III. The threats to validity are listed in
Section IV. After summarizing the related work in Section V,
we conclude our work in Section VI.

II. STUDY SETUP

In this section, we present the detailed design of our
empirical study.

A. Subject Projects

The subject projects in our study are Eclipse JDT Core
(Eclipse for short) and Linux Kernel (Linux for short). We
choose these two projects for three reasons: (1) they are highly
active projects and have been widely used in practice and prior
studies; (2) they are from different domains (Integrated
Development Environment vs. Operating System) and written
in the two most famous and commonly used program
languages (Java and C); (3) their development processes are
well-managed with high-quality bug reports by Bugzilla and
source code by Git.

B. Formalization of Bug Fixing Process

We first introduced four timepoints, and then defined three
stages of the bug fixing process. Figure 1 visually presents the
four timepoints and three stages in a timeline.

Bug Reporting Timepoint (TR) is the timestamp when a
bug is reported to Bugzilla by a user or developer.

Bug Assignment Timepoint (TA) is the timestamp when a
bug is assigned to the appropriate developer through Bugzilla.
If reassignment occurred, we denote TA as the timestamp when
a bug is assigned to the developer who fixes the bug. Similar
with previous work [17], changing assignee back to the default
one (‘xxx-inbox’ in Eclipse or ‘product-component’ in Linux)
is not considered as a bug assignment in our study.

Bug Fixing Timepoint (TF) is the timestamp when the
commits for fixing the bug are submitted to Git. If multiple
commits are linked to one bug report, we use the submission
time of the last commit as TF.

Bug Verification Timepoint (TV) is the timestamp when
the status of a bug is marked as VERIFIED. We treat the time

when a bug is marked as CLOSED or RESOLVED as TV in the
case of the official VERIFIED status is missed out.

Based on these four timepoints, we defined the time of the
whole bug fixing process as the interval between TR and TV,
marked as BLT (standing for Bug Life Time). Moreover, we
divided the bug fixing process into three main stages as follows.

Bug Assignment Stage (SA) is the stage for understanding
a bug report and assigning it to an appropriate developer for the
fix. The time of SA is defined as the interval between TR and TA,
which is computed as IAS = TA − TR.

Bug Fixing Stage (SF) is the stage for the developer to fix
the assigned bug by modifying the source code files. The time
of SF is defined as the interval between TA and TF, which is
computed as IFS = TF – TA.

Bug Verification Stage (SV) is the stage for reviewers to
verify the developers’ resolution on the fix of assigned bugs.
The time of SV is defined as the interval between TF and TV,
which is computed as IVS = TV – TF.

TR TA TF TV

IAS IFS IVS

SA SF SV

Figure 1. The stages of the bug fixing process and related timepoints

C. Definition of Factors

We defined 24 factors, which might influence the bug
fixing time, from three aspects: 14 factors related to 8 attributes
of bug reports, 3 factors related to the complexity of a bug
fixing task measured by the source code, and 7 factors related
to the effort required to fix a bug measured by the code changes.
TABLE I shows the description of all defined factors. In
particular, the scale of ProdCat and CompCat is nominal, the
scale of PriLevel and SevLevel is ordinal, and the scale of the
rest twenty factors is ratio.

D. Data Collection and Filtering

We collected data from bug reports, the associated source
code and code changes to conduct our experiment, because we
believe all of them contain the information that can influence
bug fixing time for OSS. As we mentioned in Section II.A, for
the two subject projects, bug reports were obtained from
Bugzilla

1,2
, while source code and code change were obtained

from Git
3,4

, respectively. The process of data collection and
filtering is elaborated as follows.

Step 1: Retrieve commit logs and bug reports. We used

git log to retrieve all commit logs from Git. For the
collection of bug reports, we first obtained a set of bug IDs by
using Bugzilla’s search engine. In this study, we only collected
IDs of fixed bug reports with the following search criteria: (1)
the field of Status changed to RESOLVED, VERIFIED or
CLOSED before Dec. 31, 2015; (2) the Resolution is marked as
FIXED (in Eclipse) or CODE_FIX (in Linux). After removing

1 https://bugs.eclipse.org
2 https://bugzilla.kernel.org
3 git://git.eclipse.org/gitroot/jdt/eclipse.jdt.core.git
4 git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git

the duplicated IDs in the above search results, we got a set of
fixed bug IDs. Then we downloaded the webpage of the bug
report associated with each bug ID. In this way, we obtained a
set of bug reports.

Step 2: Link commit logs to bug reports to obtain a
preliminary dataset. To establish the linkage between bug
reports and its corresponding fixing commit, we first identify
the bug IDs appearing in the commit logs by two patterns: (1)
for Eclipse, bug IDs are included in the subject of commit logs;
(2) for Linux, bug IDs are appeared in the content of commit
logs with the form of the bug’s URL in Bugzilla. If a bug ID
was identified in the commit log, we compared it with the set
of bug reports obtained in Step 1. If matched, the commit was
considered as a bug-fixing commit dedicated to the
corresponding bug report. Thus we included a pair of bug
report and commit logs as a data item in the preliminary dataset.

TABLE I. SUMMARY OF DEFINED FACTORS

Aspect Factor Description

Bug
Reports

ProdCat The product category of a bug

CompCat The component category of a bug

PriLevel The priority level of a bug

SevLevel The severity level of a bug

LenSum
The length of the summary of a bug report
in terms of English words

LenDesc
The length of the description of a bug

report in terms of English words

NumCom The number of comments for the bug

LenCom
The length of total comments of a bug
report in terms of English words

CHSum
The number of changes for the summary

content of a bug

CHProd
The number of changes for the product
category of a bug

CHComp
The number of changes for the component

category of a bug

CHPri
The number of changes for the priority
level of a bug

CHSev
The number of changes for the severity

level of a bug

CHAssi
The number of changes for the assignee of
a bug

Source
Code

SLOC
The number of source lines of code of all

changed files

NumMethod
The number of methods of all changed
files

Method_CC
The cycomatic complexity of methods of

all changed files

Code

Changes

NumCFile The number of all changed files

AddSLOC_M
The number of added source lines within

methods

AddSLOC_F The number of added SLOC for fields

AddLOC_C
The number of added lines of changed
comments

DelSLOC
The number of deleted SLOC for changed

code

NumCMethod The number of all changed methods

CMethod_CC
The cycomatic complexity of all changed

methods

Step 3: Filter invalid data items to obtain a filtered
dataset. We filtered out certain invalid data items from the
preliminary dataset, and thus a filtered dataset was obtained.
The following exclusive criteria were used for filtering.

Data items that contain bug report whose severity is
enhancement: According to the regulation of Bugzilla, this
kind of bug reports is actually the feature request. We filtered
them out from the preliminary dataset, because they are out of
the scope of our study.

Data items that contain bug report which was reopened:
We found about 12% data items in both subject projects
contained reopened bug reports. Such data items often involved
a more complex fixing process, which is quite different from
the majority of the data items. Therefore, we filtered out these
data items for drawing more general conclusions.

Data items that contain commits which have no source code
changes: We filtered out the data items which contain commits
with configuration files, pictures and etc., because the factors
of source code and code changes cannot be extracted from such
data items.

Data items with negative time of the stage of bug fixing
process: About 10% data items in Eclipse and 20% in Linux
have negative value of IFS or IVS. This may be caused by several
reasons. For instance, the developer, who is both the bug
triager and the bug fixer, starts to fix a bug and submit commits
before he assigns the bug report to himself (e.g., bug #50781 in
Linux), or the developer changes the bug report status prior to
submitting the fixing commits (e.g., bug #140879 in Eclipse).
We filtered out those data to ensure the validity of our outcome.

Step 4: Retrieve source code and code change files to
obtain the final dataset. For each data item in the filtered

dataset, based on its commit logs, we used git show to get
the detailed code changes of each commit. Moreover, for each

commit, we used git checkout to get the source code files
with the post-fix version and change history logs of those files.
Then we get the commit ID in the pre-fix version of each
changed source code file from its change history log, and we

used git checkout again to get the source code files in the
pre-fix version. In our study, we defined the pre-fix version of
source code file as the first previous version that has diffs with
the post-fix version. We used the current version (i.e., post-fix
version) for a new added source code file, because there is no
pre-fix version for new added source code files in Git.

Finally, we obtained 5493 data items, including 4297 bug
reports linked with 4984 commits from Eclipse, and 1196 bug
reports linked with 1272 commits from Linux. In particular, for
each commit, we obtained its detailed change log, a set of
changed source code files in the pre-fix version and those in the
post-fix version. Due to the page limitation, we present the
detailed statistics of the data set in our project webpage

5
, and

also make the data set available.

E. Computation of Factor Value

For factors related with bug reports, we extracted their
values from the downloaded webpages. In particular, we parsed
the modification history of the bug report, with each
modification record (MR) including who, when, removed or
added what. We divided MRs into SA, SF and SV according to its
timestamp as well as the timestamp of each stage illustrated in
Section II.B, and then we got the value of each factor in each

5 http://itechs.iscas.ac.cn/cn/membersHomepage/wuhong/seke_project.html

defined stage and for the whole bug fixing process. For factors
related with source code, we applied Lizard

6
 to parse the source

code files in the pre-fix version and compute the value of these
factors. For factors related with code changes, first, we
developed a tool to parse the detailed commit change log to
obtain the index of changed lines of each source code file in the
commit. Then we applied the tool Lizard again to parse the
source code files in the post-fix version to get their detailed
source code structure. Based on the above results, we computed
the value of factors related with code changes.

F. Analysis Methods

In order to investigate the relationship between the defined
factors and the time of different stages (i.e., IAS, IFS and IVS) as
well as the time of the whole process (BLT), two different tests
were performed based on the scale of the factors for two
subject projects respectively.

For nominal and ordinal factors, we used Kruskal-Wallis
test [14] to examine whether there are significant differences in
bug fixing time among different values of each factor. Taking
PriLevel as an example, we first divided the data items into
different groups according to their priority levels (e.g. there are
five priority levels in Eclipse), then we extracted the time of
corresponding data items for each individual stage as well as
the whole process. Kruskal-Wallis test was performed among
these groups of data items. P-value < 0.05 denotes that there
exit significant differences among the time of data items with
different priority levels, which might indicate that the factor of
priority level has significant influence on bug fixing time.

For ratio factors, we used Spearman rank correlation test
[16] to examine whether there are correlations between the
value of certain factors and the bug fixing time. Taking
NumCom as an example, we first established two groups of
data, one group corresponding to the value of NumCom of each
data item, and the other group corresponding to its bug fixing
time. Then we performed Spearman rank correlation test for
these two groups. P-value < 0.05 denotes NumCom correlates
with bug fixing time significantly, further reflecting that it has
significant influence on bug fixing time.

III. RESULTS AND ANALYSIS

In this section, we report the results and analysis on the
three research questions. As mentioned in Section II.F, the
results of Kruskal-Walls test for nominal and ordinal factors
and Spearman rank correlation test for ratio factors are
presented in TABLE II. We used ‘-’ to denote factors whose
correlation is greater than 0.05 and use ‘n/a’ to denote the
factors that are not applicable for the test.

A. RQ1: Do the factors have different correlations with the

time of different stages?

It is quite common that the factors have different
correlations with the time of different stages. From TABLE
II, we can observe that all the ratio factors have different
correlations with the time of different stages, and many of these
factors have large different correlations with the time among

6 http://www.lizard.ws/

stages, e.g., the correlations between NumCom and the time of
each stage are 0.873, 0.390 and 0.081 respectively in Linux.

Moreover, we can observe that the value of correlations in
SA is the highest in general, while the value of correlations in SV
is the lowest or even absent. For instance, for both subject
projects, factors related with comments (NumCom and LenCom)
have higher correlations with IAS (0.541 and 0.531 in Eclipse)
and IFS (0.361 and 0.368 in Eclipse) than with IVS (0.204 and ‘-’
in Eclipse). Another example is the factors related with code
changes. They have correlations with IFS, but most of their
correlations with IVS are quite low or even absent. This is also
hold good for the nominal and ordinal factors. For instance, for
both subject projects, CompCat and PriLevel have no
significant influence on IVS, while their influences on IAS are
usually significant.

These findings indicate that the influences of factors on bug
fixing time are stage related, and during the bug fixing process,
the influence of the factors on bug fixing time weaken over
time. Moreover, the results verify the necessity of adopting a
stage-oriented method for analyzing the relationship between
factors and the bug fixing time.

B. RQ2: Do the factors have different correlations between

the time of individual stages and the time of the whole

process?

It is quite different between the correlations of the
factors with the time of stages and those of the whole
process. We can observe from TABLE II that, some factors
which have no correlations with BLT are actually correlated
with certain stages, e.g., source code related factors in both
subject projects. Moreover, most of the factors have higher
correlations with IAS or IFS than with BLT, e.g., CHProd,
CHComp and CHAssi in both subject projects. This can be
understood that a wrong assignment of location and assignee of
bug reports could prolong the time of the assignment stage.
However, when putting them to the whole process, their
influences become much weaker.

These findings might imply that the influence of the factors
on bug fixing time could mainly exist on SA and SF, which
reflects a more accurate relationship between the factors and
the time of the bug fixing process. In addition, the results verify
the necessity of adopting a stage-oriented analysis again.

C. RQ3: Which factors have the highest correlation with the

time of each stage?

In TABLE II, we highlighted the top three correlations for
each stage (only one for SV due to the few and low correlation
results), and we can make the following observations.

In SA, the factors with top three highest correlations are
NumCom, LenCom and CHAssi in both subject projects. Let’s
first focus on NumCom. The high correlation value (0.541 in
Eclipse and 0.873 in Linux) means the number of comments
could influence the time of the assignment stage. People might
expect that more comments signify there is more attention
focused on the bug, which should help find the right bug fixer,
and thus it results in a shorter assignment time. However, in
reality, bug reports with more comments may accompany with

TABLE II. TEST RESULTS FOR THE IMPACT OF FACTORS ON BUG FIXING TIME

Factor
Eclipse Linux

IAS IFS IVS BLT IAS IFS IVS BLT

P-value of Kruskal-Walls test for the nominal and ordinal factor

ProdCat - - - n/a 0.000 0.015 - -

CompCat 0.000 - - n/a 0.000 0.000 - 0.003

PriLevel 0.000 - - 0.041 0.000 0.000 - 0.000

SevLevel 0.000 0.000 0.000 0.000 - - - -

Correlation values of Spearman rank correlation test for the ratio factor (p-value = 0.05)

LenSum - 0.078 -0.024 0.056 - - - -

LenDesc 0.203 0.091 0.026 0.075 - 0.065 - 0.070

NumCom 0.541 0.361 0.204 0.266 0.873 0.390 0.081 0.139

LenCom 0.531 0.368 - 0.215 0.871 0.357 0.129 0.143

CHSum 0.261 0.131 - 0.181 0.386 0.081 0.061 0.066

CHProd 0.139 - - 0.061 0.325 0.161 - 0.075

CHComp 0.304 - - 0.113 0.413 0.153 - 0.102

CHPri 0.087 0.086 - 0.046 0.091 - - -

CHSev 0.100 0.036 - 0.035 0.161 - - -

CHAssi 0.628 - - 0.208 0.958 - - 0.094

SLOC n/a 0.140 - - n/a - - -

NumMethod n/a 0.133 0.036 - n/a 0.084 - -

Method_CC n/a 0.131 - - n/a 0.058 - -

NumCFile n/a 0.134 0.032 - n/a 0.172 - 0.087

AddSLOC_M n/a 0.239 - - n/a 0.203 - 0.109

AddSLOC_F n/a 0.089 - - n/a 0.156 - 0.138

AddLOC_C n/a 0.210 - - n/a 0.135 - 0.070

DelSLOC n/a 0.115 0.030 - n/a 0.085 - -

NumCMethod n/a 0.179 - - n/a 0.183 - 0.094

CMethod_CC n/a 0.160 - - n/a 0.130 0.061 0.082

a longer assignment time, especially for Linux. This might
because that more comments indicate the bug is difficult to fix,
which brings in more people to discuss the resolution in
comments. Furthermore, more comments would call for more
time and effort from developers to read and make final
decisions, which could also potentially extend the bug
assignment time. The results in TABLE II also reveal that the
number of changes in assignee could influence IAS. This is
obvious that the change of assignee, commonly known as bug
tossing [2, 6], would prolong the bug assignment time. Hence,
distributing bug reports to appropriate fixers quickly and
precisely can effectively shorten the bug assignment time.

In SF, the factors with top three highest correlations are
NumCom, LenCom and AddSLOC_M in both subject projects.
Number and length of comments can influence IFS due to
similar reason as mentioned above. Moreover, AddSLOC_M
has correlation with IFS, which is under our expectation because
the more coding effort in terms of number of added source
code can easily result in a longer bug fixing time.

In SV, there are almost no correlations between the defined

factors and IVS. However, we also found that, in the two

subject projects, IVS can occupy more than 50% of BLT. To

investigate the reason for this phenomenon, we randomly

sampled 10% bug reports for each project, and manually

examined their contents. We found that, almost all the

sampled bug reports in both projects changed their status to

VERIFIED on the day when the associated version released or

a new release tag was assigned. Put another way, the time of

verification stage cannot precisely reflect the situation of bug

verification activity. That’s why there are few factors that have

correlation with the long IVS in both projects.

IV. THREATS TO VALIDITY

In this section, we discuss the threats to validity of our
study with respect to construct validity, internal validity and
external validity [16].

Construct Validity: The factors used in our study are
generally well understood and straightforward to compute
based on publicly available datasets of two OSS projects,
which enable the replication of this study. Therefore, our study
can achieve a strong confidence in construct validity.

Internal Validity: In our study, we relied on the
information stored in Bugzilla and Git repositories to construct
the link between bug reports and commits. The treatment can
obtain precise links at the cost of filtering some bug reports
without such a link. This may influence the internal validity.
We note that there are techniques to recover the missing link
between bug reports and commit (e.g., [20]). In the future, we
would like to employ such techniques to help find more links,
and further minimize this threat.

External Validity: The subject projects used in our study
are highly active in open source community and have been
widely used in previous work. Moreover, they are of different
domains and use different development languages. However,
we have used only two projects, which might make our
findings not generalizable enough to other open source projects.
This risk could be mitigated by adding more subject projects.
This will be explored in our future work.

V. RELATED WORK

A lot of researches have been conducted to empirically
investigate the impact factors of bug fixing time. Mockus et al.

[9] found that in Apache and Mozilla, bugs with higher priority
were fixed faster. Panjer [11] found that, in Eclipse project,
bugs with little discussion tend to be resolved quickly, however,
when bugs receive more conversation, the resolution times
become dependent on their severity level. Marks et al. [8]
studied bug fixing time in Eclispe and Mozilla, and found that
the time taken to report a bug and its location have the most
impact on bug fixing time. Anbalagan and Vouk [1] studied the
bug reports of Ubuntu project and found that there is a strong
linear relationship between the number of users participating in
a bug report and the median time taken to fix it. Besides the
attribute of bug reports, Saha et al. [12] extracted code change
metrics, e.g., number of changed files, for analyzing the reason
of long live bugs in four Eclipse projects. Hooimeijer and
Weimer [5] measured bug-report-triage time using regression
analysis based on bug report metrics. Zhang et al. [17]
investigated impact factors in order to understand why delays
incurred during bug fixing. These prior researches treated bug
fixing as a whole process, or only focused on a particular phase
of the process. An ignored phenomenon is that bug fixing is
multi-stage process, in which case the influence of factors cross
the whole fixing process might not remain the same. In contrast
to prior researches, our work performed a stage-oriented
analysis to explore such situation.

VI. CONCLUSIONS

In this paper, we performed a stage-oriented analysis to
investigate the factors impacting bug fixing time based on two
large OSS projects. We extracted twenty-four factors from
three aspects: bug reports, their associated source code and
code changes, and empirically investigated the influence of
them on the time of three stages of the bug fixing process and
the whole process. Our results show that the influences of
factors on bug fixing time are stage related, and thus it is
necessary to analyze the relationship between factors and the
bug fixing time in a stage-oriented way. We believe our
findings can help developers better understand impact factors
on bug fixing time, and thus improve bug fixing process
management effectively.

In the future, we plan to study more data sources from more
projects (both OSS projects and industry oriented projects), and
investigate more factors extracted from new dimensions (e.g.,
participants and code review activities) in order to make more
generic findings.

ACKNOWLEDGMENT

This work is sponsored by the NSFC under Grant No.
91218301, 91318302 and 61432001, and this work is also
sponsored by the FoShanCAS under Grant No. 2014HT100022.

REFERENCES

[1] P. Anbalagan, and M. Vouk, “On predicting the time taken to correct
bug reports in open source projects,” In ICSM’09: Proceeding of IEEE
International Conference on Software Maintenance, pp. 523–526,
September 2009.

[2] P. Bhattacharya, and I. Neamtiu, “Fine-grained incremental learning and
multi-feature tossing graphs to improvebug triaging,” In ICSM’10:
Proceedings of IEEE International Conference on Software Maintenance,
pp. 1–10, September 2010.

[3] J. Frederick P. Brooks, The Mythical Man-month (Anniversary Ed.),
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1995.

[4] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy,
“Characterizing and predicting which bugs get fixed: An empirical study
of Microsoft Windows,” In ICSE’10: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, pp. 495–
504, May 2010.

[5] P. Hooimeijer, and W. Weimer, “Modeling bug report quality,” In
ASE’07: Proceedings of the Twenty-second IEEE/ACM International
Conference on Automated Software Engineering, pp. 34–43, November
2007.

[6] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with bug
tossing graphs,” In ESEC/FSE’09: Proceedings of the 7th joint meeting
of the European software engineering conference and the ACM
SIGSOFT symposium on The Foundations of Software Engineering, pp.
111–120, August 2009.

[7] S. Kim, and J. E. James Whitehead, “How long did it take to fix bugs?”
In MSR’06: Proceedings of the 2006 International Workshop on Mining
Software Repositories, pp. 173–174, May 2006.

[8] L. Marks, Y. Zou, and A. E. Hassan, “Studying the fixtime for bugs in
large open source projects,” In Promise’11: Proceedings of the 7th
International Conference on Predictive Models in Software Engineering,
pp. 11:1–11:8, September 2011.

[9] A.Mockus, R.T. Fielding, and J. D. Herbsleb, “Two case studies of open
source software development: Apache and mozilla,” ACM Transaction
Software Engineering Methodology, 11(3):309–346, July 2002.

[10] H. Naguib, N. Narayan, B. Brugge, and D. Helal, “Bug report assignee
recommendation using activity profiles,” In MSR’13: Proceedings of the
10th IEEEWorking Conference on Mining Software Repositories, pp.
22–30, May 2013.

[11] L. D. Panjer, “Predicting eclipse bug lifetimes,” In MSR’07:
Proceedings of the Fourth International Workshop on Mining Software
Repositories, pp. 29–32, May 2007.

[12] R. K. Saha, S. Khurshid, and D. E. Perry, “Understanding the triaging
and fixing processes of long lived bugs,” Information and Software
Technology,65:114–128, September 2015.

[13] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai, “Bug
characteristics in open source software,” Empirical Software
Engineering, 19(6):1665–1705, 2014.

[14] E. Theodorsson-Norheim, “Kruskal-wallis test: Basic computer program
to perform nonparametric one-way analysis of variance and multiple
comparisons on ranks of several independent samples,” Computer
Methods and Programs in Biomedicine, 23(1):57–62, August 1986.

[15] Y. Tian, D. Lo, and C. Sun, “Information retrieval basednearest
neighborclassification for fine-grained bug severity prediction,” In
WCRE’12: Proceedings of the 19th Working Conference on Reverse
Engineering, pp. 215–224, October 2012.

[16] C. Wohlin, R. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A.
Wesslen, Experimentation in Software Engineering, Springer Science
and Business Media, 2012.

[17] F. Zhang, F. Khomh, Y. Zou, and A. E. Hassan, “An empirical study on
factors impacting bug fixing time,” In WCRE’12: Proceedings of the
19th Working Conference on Reverse Engineering, pp. 225–234,
October 2012.

[18] T. Zhang, and B. Lee, “How to recommend appropriate developers for
bug fixing?” In COMPSAC’12: Proceedings of the 36th IEEE Annual
Computer Software and Applications Conference, pp. 170–175, July
2012.

[19] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How long will it
take to fix this bug?” In MSR’07: Proceedings of the Fourth
International Workshop on Mining Software Repositories, pp. 1–8, May
2007.

[20] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “Relink:Recovering links
between bugs and changes,” In ESEC/FSE’11: Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, pp. 15–25, September 2011.

