
A Systematic Mapping Study on the Multi-tenant
Architecture of SaaS Systems

Victor Hugo S. C. Pinto, Helder J. F. Luz, Ricardo R. Oliveira, Paulo S. L. Souza and Simone R. S. Souza
Institute of Mathematical and Computer Sciences, University of São Paulo (ICMC-USP)

São Carlos-SP, Brazil
victor.santiago@usp.br, helderfl, ricardoramos, pssouza, srocio{@icmc.usp.br}

Abstract—Background: SaaS (Software as a Service) is a services
delivery model in Cloud Computing whose applications are re-
motely hosted by the service provider and available to customers
on demand over the Internet. Multi-tenant Architecture (MTA) is
an organizational pattern for SaaS that enables a single instance
of an application to be hosted on the same hardware and accessed
by multiple customers, so-called tenants, with the aim of lowering
costs. Tenants are able to configure the system according to their
particular needs. Objective: This research aims at the obtaining
an overview of the challenges and research opportunities in MTA
context for SaaS through a Systematic Mapping Study. Results:
Eighty nine primary studies were selected for discussions on
advances and opportunities for further investigations. The results
showed the relevancy of MTA and pointed out the main research
trends for next years in this topic.

Cloud Computing; software as a service; multi-tenant architec-
ture; systematic mapping study.

I. INTRODUCTION

Cloud Computing has emerged from the contribution of
techniques from parallel computing, distributed computing and
platform virtualization technologies [1]. It provides dynamic
resource allocation and has become one of the main research
fields in Software Engineering. Furthermore, this technology
enables cost reduction, optimization and opportunity for the
creation of new business models [2]. A set of resources can
be efficiently accessed on demand from anywhere and man-
aged with a minimum possible interaction [3]. Cloud can be
understood as a repository of virtualized resources (hardware,
development platforms/or services) easily accessible [4]. These
resources can be dynamically reconfigured to be adjusted
to diversified loads, which optimizes their usage. This wide
range of resources has directly contributed to the emerging of
different services delivery models, as SaaS (Software as a Ser-
vice), which is a software deployment model of applications
remotely hosted by a service provider and available to cus-
tomers on demand. It offers benefits, as improved operational
efficiency and reduced costs. As an instance, Salesforce.com1

provides an SaaS for Customer Relationship Management.
Salesforce uses a subscription revenue model and charges
clients per user on a monthly basis.

The cloud computing environment is different from a tra-
ditional environment in terms of hosted deployment, configu-

1www.salesforce.com/sales-cloud/overview/
DOI reference number: 10.18293/SEKE2016-068

ration, execution and management of applications. The main
difference is related to type of users, security and sharing
of resources such as databases, virtual machines or network
connections among customers [5]. The sharing of resources
among customers through logical separation is one of the main
characteristics of multi-tenant architecture (MTA) for SaaS
systems.

Multi-tenancy can be referred to an organizational pattern
in which a single instance of an application is hosted on the
service provider, and multiple companies, so-called tenants,
access the same instance [6]. MTA enables a high degree
of customization of software according to the requirements
of many tenants and resources required for its execution
are shared and provided on demand. For the end users, the
application is executed in a dedicated environment, i.e., a fault
of software in use by another tenant should not affect them.
Furthermore, they are able to exclusively configure the system
to their specific needs. MTA provides benefits, such as (i) opti-
mization of the use of hardware resources, (ii) costs reduction
by the maintenance of applications and (iii) new opportunities
for data aggregation. However, challenges as those related to
security, data sharing, database, customization, validation and
testing, performance and migration from conventional web
applications [7][8] must be overcome.

A Systematic Mapping Study (SMS) is a proper method to
map a certain topic when few evidence exists or the research
topic is wide or scattered. Therefore, we have carried out
an SMS on the multi-tenancy of SaaS systems following the
guidelines proposed by Kitchenham [9]. Eighty nine primary
studies were selected to answer two research questions from
the academic perspective. The analysis of the results focuses
on presenting the frequencies of publications for different
research categories. As main contribution, we have provided a
definition of main challenges to guide future research on the
multi-tenant architecture domain.

The paper is organized as follows: Section 2 discusses the
phases of the SMS; Section 3 addresses the threats to validity
and Section 4 reports the conclusions and future work.

II. THE SYSTEMATIC MAPPING STUDY

The SMS was conducted considering three main phases: (i)
planning, (ii) conducting and (iii) reporting. The next sections
address these phases and the obtained results.



A. Planning

In this phase, the review protocol containing (i) research
questions, (ii) search strategy, (iii) inclusion and exclusion
criteria and (iv) data extraction process and methodology for
the synthesis of the data was defined.

The main goal was the achievement of a background of dif-
ficulties related to MTA, alternatives proposed in the literature
and research opportunities. Therefore, two research questions
(RQ) were defined:
RQ1: What research topics related to MTA can be found on

the current literature?
RQ2: What are the main research challenges and opportunities

related to the development, testing and evolving of
multi-tenant SaaS applications?

A search string and the electronic databases were also de-
fined. The search string was elaborated and refined according
to an initial set of key papers selected and based on citations
of these papers. During the string validation these papers
must always be retrieved from electronic databases (Table I).
Although subjective, this control enabled the string calibration
and identification of possibly relevant studies.

TABLE I. List of key papers used to calibrate the search string

Authors Ref.
Seungseok et al. [10]
Sengupta and Roychoudhury [7]
Tsai et al. [8]
Ru et al. [11]

We defined the search string considering the following key-
words: cloud, SaaS and multi-tenancy, their frequent variations
and boolean operations. Figure 1 shows the search string
elaborated. The following databases were considered: ACM,
IEEE, Scopus and Wiley Online. Such databases cover the main
conferences and journals on cloud computing.

(cloud and (SaaS or "Software as a Service") and (multi-tenancy or 
multi-tenant or tenancy or tenant or tenants))

Fig. 1: Search String.

Relevant primary studies were selected based on the fol-
lowing inclusion (IC) and exclusion criteria (EC). Not all
inclusion criteria should be satisfied for each primary study;
ICa is the only mandatory criterion for the inclusion of papers.
ICa: The primary study presents at least one challenge or

research opportunity in the context of MTA;
ICb: The primary study presents at least one tool, framework,

process or APIs for MTA context;
ICc: The primary study addresses at least one difficulty

involving the MTA in usage and migration terms;
ICd: The primary study presents at least one property, classi-

fication or evaluation of a solution considering the MTA;
ECa: The study presents a challenge or a research opportunity

in the MTA context. However, it is a short paper;
ECb: The study is a Systematic Literature Review;

ECc: The whole study is unavailable.
We have used a data extraction form to answer the review

questions, presented in Table II. We have included some
categories (Item 5) in order to classify the main domain of each
primary study, for instance, “Customization” and “Database”
are defined categories.

TABLE II. Contents of data extraction form

Attributes

Metadata ID, reviewer and date.
Content Title, year, source (i.e. conference or journal) and search

database.
Data
extracted

1) Challenge/opportunities; 2) Tools, frameworks and APIs;
3) Difficulties in the MTA usage and adoption/migration; 4)
Specifications, classification and evaluation of solutions for
MTA and 5) Category of paper.

During the data extraction process, the data from primary
studies were collected by three reviewers, PhD candidates in
Computer Science. They were extracted by one researcher and
checked by another. This SMS was performed between May
and August, 2015 and the data have been documented and are
available2.

B. Conducting

In this phase, the primary studies were identified in the
aforementioned search databases. Scopus returned a larger set
of studies (638). IEEE, ACM, Wiley returned 168, 594 and 25,
respectively. Figure 2 shows the distribution of papers retrieved
in each search database and after applying the inclusion and
exclusion criteria in the reading process. From this initial
set, 135 duplicated studies were identified and removed. In
the selection phase, based on the partial reading (titles and
abstracts), a set of 149 papers was selected according to the
inclusion and exclusion criteria; after the full reading, only
89 papers were selected. We wanted to be conservative as
possible, therefore the search string has become generic to
retrieve many studies from electronic databases, even if it
would give us more effort in the selection process. Many
papers were introduced as primary studies, but only few of
them had more contributions or larger impacts.

Total
1425

Duplicated papers
135

Partial 
reading

(title and abstract)

Full
reading

Selected 
papers
89

Total
149

Scopus
638

IEEE Xplore 
Digital Library

168

ACM Digital
Library
594

Wiley Online 
Library

25

Fig. 2: Distribution of papers (conduction phase).

In order to validate the inclusion and exclusion criteria
application, each primary study was scored by reviewers in

2https://goo.gl/0K68jp



both partial (title and abstract) and full readings. A score
“0” means rejected and “1” accepted. In cases of doubt, the
reviewer scored the paper with “0.5” and the other reviewers
were asked about its relevance, so that a consensus could be
reached through the adoption of score “0” or “1”.

The scoring process was conducted in a sequential and
independent way, i.e., one reviewer read and scored each paper
without interference from others. In partial reading all papers
were scored and posteriorly, in full reading they were classified
again by reviewers until reaching a set of relevant studies to
answer the research questions.

C. Reporting

This section discusses an overview of MTA based on
selected primary studies.

1) RQ1: What research topics related to MTA can be
found on the current literature?

In order to clarify the focus of the selected studies in
quantitative terms, we have defined some categories according
to the paper domain, as aforementioned. Figure 3 shows a
mapping containing number of primary studies distributed
according to publication year and category, which one paper
can be classified and more than one category.

Security, testing activity and experiments may be considered
important issues to quality assurance and, therefore, these
issues are into quality assurance category.

Frequency

2012

Development

2013

2014

2015

2010

2011

2009

Performance

Customization

Quality assurance
Database

1924 232552

6

2

1

1

1

85

1

4

10

1

7

6

9

2

3

3

2

2

5

7

2

17

11

12

6

4

2

9

4

Fig. 3: Distribution of primary studies according to categories.

Figure 4 presents the disposal of the papers selected from
workshops, journals and conferences. Conferences have a
dominant position with 63 papers (70.8%), followed by jour-
nals with 18 papers (20.2%) and workshops, 8 papers (9%).
It can indicate that workshops still have to be formed and
researchers submit their results to conferences and journals
with a larger scope.

The next sections discuss the main idea of the selected
studies organized by the categories shown in Figure 3.

a) Development: Architectures, frameworks, requirements
and variability management, and migration from web con-
ventional applications to multi-tenant SaaS applications are
mentioned in the current multi-tenancy literature as important
issues to address in future research.

Conference papers 63

Journals paper 18

Workshop papers 8

0 10 20 30 40 50 60 70

Conference papers
Journal papers

Workshop papers

63

18

8

Fig. 4: Quantity of selected papers from workshops, journals
and conferences.

Due to the complexity of the management and maintenance
costs, SaaS providers commonly develop a single version of
the application for all tenants. Truyen et al.[12] evaluated
the context-oriented programming (COP) for such applications
aiming to improve their development process. The main idea
was to enable the customization of specific requirements for
each tenant, providing positive results in terms of development
effort.

Requirements management is one of the difficulties related
to the supply of satisfactory applications for certain tenants.
Walraven et al. [13] presented an alternative based on product
lines and the co-existence of specific settings for tenants to
facilitate the requirements management. They used the ap-
proach in some multi-tenant SaaS applications and as a result,
the efforts to configure and compose variant applications were
reduced.

Multi-tenant SaaS applications aim at providing different
settings to address the demands of their tenants in functional
requirement terms. However, it is natural that different re-
quirements from the previously provided be needed by new
tenants. On the one hand, new features can be developed
and included in an application, so that the existing instances
continue running without failure. On the other hand, costs
related to efforts in the regression testing must be considered
during the development of new features [7].

Kale and Borhade [14] provided a framework that covers
features as portability, customization, security and scalability
aiming to reduce the time spent on the software development.
In the same vein, Nam and Yeom [15] proposed a framework
to support different services for a large set of tenants. Accord-
ing to the authors, despite the benefits of MTA, few processes
can support the development of multi-tenant SaaS applications.

Manduca et al.[16] described an approach for the develop-
ment of multi-tenant SaaS applications with a single database
from conventional web applications. It employs architectural
components and design patterns and keeps the functionalities
in the current programming language with no need for sub-
stantial changes. As a difficulty, the authors highlighted the
platform documentation, which is often insufficient to develop
this type of applications.

Table III presents the issues related to development of multi-
tenant SaaS applications investigated. Due to space limitation
we are showing only some papers for each issue.

b) Performance: MTA has introduced new challenges re-
lated to load balancing and resource allocation, including
the requests on the tenant level, service level agreement,
performance objectives and quality of services. Sun et al. [18]



TABLE III. Main issues about development of multi-tenant
SaaS applications

Description Ref.

Requirements Composition of variant multi-tenant applications
following the product lines engineering

[13]

Implementing Context-oriented programming [12]

Guide to implementing new tenants without im-
pacting those already deployed

[7]

Frameworks Process to support the portability, customization,
security and scalability

[14]

Framework to address availability, extensibility
and scalability in a multi-tenant application

[17]

Migrating Process to support the migrating of conventional
web applications towards multi-tenant SaaS ap-
plication with relatively less effort

[16]

proposed a suitable load balancing policy for a multi-tenant
environment to provide satisfactory quality of services. On a
database level, Moon et al. [19] presented a load balancer for
multi-tenant databases to increase the performance and sharing
of resources among tenants. Patikirikorala et al. [20] developed
an approach that uses a nonlinear replenished control to
keep the performance in distinct usage levels for different
tenants, depending on their priorities. It enables the detection
of overload, therefore the control of tenants operations can be
dynamically changed.

Krebs et al. [21] extended a web benchmark called TPC-
W to include multi-tenancy and compared the cloud usage
under two perspectives: (i) multi-tenancy and (ii) virtualiza-
tion. Multi-tenancy shown higher efficiency than virtualization
considering the throughput, number of tenants and when
memory was a bottleneck.

c) Customization: A considerable number of papers have
addressed applications customization. A multi-tenant SaaS ap-
plication which address a large set of tenants should make pos-
sible a large number of customizations [22]. The customization
of a complex application is an error-prone task, it requires high
manual efforts and the users may not know the best choice in
terms of customization. Thus, the authors performed a study
of the possibilities available for the customization of an SaaS
application, and a semi-automatic customization process was
created to reduce efforts.

Ramachandran et al. [23] observe that the customization
may result in high cost of readjustments. For multi-tenant
systems, it involves the configuration of specific instances
and management of allocated resources for the tenants. For
Walraven et al. [24] customization involving variations in
the core of the application is expensive for SaaS providers,
introducing an additional complexity.

d) Quality assurance: Quality assurance is a promising
research topic in MTA [25] that includes testing strategies,
metrics and quality criteria, and alternatives related to security.
For Tsai et al. [8], one of the main challenges in the testing
activity of multi-tenant SaaS application is to deal with the
large set of composition possibilities and interactions among

components. The authors provided a combinatorial testing
approach to generate dynamic test sequences and achieve
a high structural coverage. The main idea was to identify
the compositions likely to result in failures by an algorithm.
When a new component is composed in a certain application
instance becomes available, the algorithm reveals defects in
the interactions among components.

The complexity of the cloud computing model and lack of
standardization become the security a critical issue for cloud
providers and customers. According to Wood et al. [26], multi-
tenancy directly impacts on the applications development and
the way they are provided. Almorsy et al. [27] created a
framework to improve collaboration between service providers
and consumers and manage the security of cloud platform and
its hosted services.

Table IV presents the main issues investigated in relation to
quality assurance in the MTA context. Due to space limitation
we are showing only some papers for each issue.

TABLE IV. Main issues about quality assurance of multi-
tenant SaaS applications

Description Ref.

System
Testing

Combinatorial testing: dynamic test sequences were
used to achieve high architectural coverage

[8]

Regression
Testing

Continuous testing with partitioning of data from ten-
ants and generation of test case based on meta-data

[28]

Security Framework for security management [27]

SecPlac: resource allocation model to support the
security in the sharing of infrastructure among tenants

[29]

TOSSMA (Tenant Oriented SaaS Security Manage-
ment Architecture): an architecture to isolate resources
for tenants through the injection of authorization con-
trols

[30]

Data combination privacy [31]

QoS MSSOptimiser (Multi-tenant SaaS Optimizer): an ap-
proach to select services addressing quality require-
ments

[32]

e) Database: Nineteen papers in SMS have cited database-
related issues as a promising research direction. Saraswathi
and Bhuvaneswari [33] presented two alternatives for multi-
tenant data architecture: i) one related to authentication and
authorization and ii) a non-intrusive approach for large-scale
applications. The authors described a process to apply them
and guide engineers in the development of databases.

Maenhaut et al. [34] developed an approach for data man-
agement in a hierarchical way and taking into account some
performance metrics. The main question addressed concerned
the distribution of users and data into multiple instances of
database. Yaish et al. [35] discussed an access control model
based on a database schema. They also proposed an access
control algorithm that enables users to access the data granted
based on users groups or assigned roles.

2) RQ2: What are the main research challenges and
opportunities related to the development, testing and
evolving of multi-tenant SaaS applications?



Although most studies have addressed the development of
multi-tenant SaaS applications, standards are scattered, and
do not often follow a methodical approach. Furthermore, the
solutions are proprietary and rarely interoperable [25]. Tradi-
tional software testing cannot be applied to test applications
in a Cloud environment due to it is designed for on-premise
single-tenant applications [36].

Several issues should be considered during the testing of
multi-tenant SaaS application: (i) resources are shared among
tenants and their end-users, (ii) each variant application ad-
dresses a specific requirements set for a tenant, it is executed
as if it was in a dedicated environment and can be composed
of several components and (iii) a variant application is deliv-
ered to the customers through a run-time engine from cloud
provider that weaves the tenant customization data and specific
metadata to kernel code. Thus, each application provides
different screens and logic.

According to Alkhatib et al. [25], the community still does
not have effective quality metrics for the SaaS and new testing
strategies are required to meet the challenges imposed by the
cloud computing model. Software integration testing issues,
validation methods and quality assurance standards addressing
the interaction interfaces must be established. Since high sys-
tem availability is essential to SaaS, the re-testing techniques
considering the multi-tenancy feature are mandatory whenever
software is changed for improvements or bug-fixing.

Recent studies on tests in cloud computing have addressed
the verification of nonfunctional requirements as performance
and security. Considering the selected studies, we have identi-
fied that research fields as (i) adjustments of conventional test
criteria, (ii) test strategies for customization components, (iii)
alternatives to verify the composition interfaces and impact
new components, and (iv) approaches to regression test require
more cooperation between industry and academia.

Regarding the evolution of multi-tenant SaaS applications,
the community still has not provided well-defined approaches.
The evolving activity of distributed systems may indicate
guidelines for dealing with the isolated execution of instances
of these applications.

3) Research agenda: In order to guide future research in
the area of multi-tenancy, this section presents the major trends
identified in this study, as follows:

Development process. Most of selected studies about de-
velopment process proposed a solution or a process without a
practical evaluation. Methodical approaches to guide the de-
velopment of cloud-based applications require more research
effort, especially taking into account the multi-tenancy.

Quality metrics. Metrics are used to guide managers during
the software quality evaluation. Despite many studies mention-
ing their importance, there is still a lack of quality metrics for
this context.

Testing activity. Few organizations and academy provide
security testing, recovery testing, fault-tolerance testing or
some alternative to cover the complexity of multi-tenancy for
SaaS. In addition, there is a lack of standards to driven the de-
velopment of interoperable test tools. From our point of view,

an ideal testing environment for multi-tenant SaaS systems
needs to support the testing of a tenant specific application
in runtime, without impacting others. For this, there are two
main issues that should be carefully considered: (i) a variant
application is generated through a dynamic compiler that
combines the tenant specific metadata and customization data
to kernel code and (ii) tenants can apply changes according to
their concerns. Thus, it is important to ensure that the testing
will not result in side effects to other tenants. A possible testing
strategy is to generate the variant application that we want
to test, perform its isolating and conduct the testing activity
without making the other applications unavailable.

Continuous validation. Despite the on-demand software
validation in the cloud environment includes the regression
testing and frequent changes in the application, most of the
regression test studies have focused on retest a version in a
previously configured test environment. However, validation
methods must be dynamic to deal with multi-tenancy.

Empirical studies to evaluate testing techniques and
criteria. There is a lack for guidelines about which testing
techniques and criteria to use considering the testing objectives
in context of SaaS systems. It is necessary to know the usabil-
ity, effectiveness and cost of these techniques and criteria. We
have observed a lack of empirical studies to evaluate the use of
techniques and testing criteria in cloud computing domain. In
addition, many researchers argue that the traditional software
testing cannot be satisfactorily applied to test cloud computing
applications. This happens due to implicit characteristics of
these applications, such as the high customization capabilities,
dynamic environment and multi-tenancy.

Migrating process. Consolidated processes to guide the
migration from web conventional to multi-tenant SaaS model
can contribute with the adoption of this model for applications
where only the multi-user model is not enough.

III. THREATS TO VALIDITY

Selection of primary studies. In order to ensure an
unbiased selection process, research questions were defined
and exclusion and inclusion criteria were specified for the
obtaining of relevant studies. However, threats cannot be ruled
from a quality evaluation perspective, although the studies
were selected by a score assignment based on relevance.

Relevant primary studies not selected. Although many
sources were used for the selection of primary studies, some
might have been neglected. We tried to reduce this threat by
selecting sources that index studies from the main scientific
sources in cloud computing and covering most of the relevant
papers.

Reviewers reliability. All reviewers that participated in this
study work on cloud computing. The protocol was assessed
by specialists, so that deviations during the analysis could be
avoided.

Data extraction. It is worth mentioning that not all in-
formation was obvious to answer the research questions.
Several sources, as external papers and technical reports were
consulted, so that the validity of the process could be ensured.



In case of disagreement among the reviewers, a specialist was
called to guarantee the correct decision.

IV. CONCLUDING REMARKS
Software as a service is a way of delivering applications

over the Internet as a service for multiple customers. From the
point of view of service providers, the computing resources
to be offered must be broadly shared. For the users, it is
important to customize the application according to their
specific requirements. In this scenario, an architectural pattern
called multi-tenancy is gaining more ground in the application
space on cloud.

In order to provide a mapping of research topics on the
multi-tenancy of SaaS systems and identifying new research
opportunities, we have conducted an SMS in which 89 primary
studies were selected for discussions. We have defined two
research questions that reflect the scope of the study and five
categories to map the contributions and challenges.

This mapping study also points out the need for experi-
mental studies evaluating the proposed approaches and a sys-
tematic test strategy extending different techniques to increase
the quality of these applications. In our future research, we
intend to compare the evidence identified in this work with
evidence from industrial cloud projects in order to define new
hypotheses, which will guide the definition of approaches for
testing of multi-tenant SaaS applications.

REFERENCES

[1] J. Ru and J. Keung, “An empirical investigation on the simulation
of priority and shortest-job-first scheduling for cloud-based software
systems,” in Software Engineering Conference. IEEE, 2013, pp. 78–87.

[2] S. Tai, J. Nimis, A. Lenk, and M. Klems, “Cloud service engineering,”
in 32nd Int. Conf. on Software Engineering, 2010, pp. 475–476.

[3] P. Mell and T. Grance, “The nist definition of cloud computing,” NIS,
Tech. Rep., 2010.

[4] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A
break in the clouds,” ACM Computer Communication Review, vol. 39,
no. 1, p. 50, 2008. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1496091.1496100

[5] I. Chana and P. Chawla, “Testing perspectives for cloud-based applica-
tions,” in Software Engineering Frameworks for the Cloud Computing
Paradigm. Springer, 2013, pp. 145–164.

[6] C.-P. Bezemer and A. Zaidman, “Multi-tenant saas applications: Main-
tenance dream or nightmare?” in Work. on Software Evolution and Int.
Work. on Principles of Software Evolution, 2010, pp. 88–92.

[7] B. Sengupta and A. Roychoudhury, “Engineering multi-tenant software-
as-a-service systems,” in 3rd Int. Work. on Principles of Engineering
Service-Oriented Systems, 2011, pp. 15–21.

[8] W.-T. Tsai, Q. Li, C. J. Colbourn, and X. Bai, “Adaptive fault detection
for testing tenant applications in multi-tenancy saas systems,” in IEEE
Int. Conf. on Cloud Engineering, 2013, pp. 183–192.

[9] B. Kitchenham, “Procedures for performing systematic reviews,” Keele
University, Tech. Rep., 2004.

[10] S. Kang, J. Myung, J. Yeon, S.-w. Ha, T. Cho, J.-m. Chung, and S.-
g. Lee, “A general maturity model and reference architecture for saas
service,” in Database Systems for Advanced Apps., 2010, pp. 337–346.

[11] J. Ru, J. Grundy, and J. Keung, “Software engineering for multi-tenancy
computing challenges and implications,” in Int. Work. on Innovative Soft.
Dev. Methodologies and Practices, 2014, pp. 1–10.

[12] E. Truyen, N. Cardozo, S. Walraven, J. Vallejos, E. Bainomugisha,
S. Günther, T. D’Hondt, and W. Joosen, “Context-oriented programming
for customizable SaaS applications,” in 27th ACM symposium on applied
computing, 2012, pp. 418–425.

[13] S. Walraven, D. Van Landuyt, E. Truyen, K. Handekyn, and W. Joosen,
“Efficient customization of multi-tenant software-as-a-service applica-
tions with service lines,” JSS, vol. 91, pp. 48–62, 2014.

[14] S. S. Kale and R. H. Borhade, “Development of multitenant saas
framework at single instance and with zero effort multitenancy,” in
Advances in Computing, Communications and Informatics (ICACCI).
IEEE, 2013, pp. 834–839.

[15] T. Nam and K. Yeom, “Ontology model to support multi-tenancy in
software as a service environment,” in Int. Conf. on Future Internet of
Things and Cloud, 2014, pp. 146–151.

[16] A. M. Manduca, E. V. Munson, R. P. Fortes, and M. G. C. Pimentel,
“A nonintrusive approach for implementing single database, multitenant
services from web applications,” in 29th ACM Symposium on Applied
Computing, 2014, pp. 751–756.

[17] P. Morakos and A. Meliones, “Design and implementation of a cloud
saas framework for multi-tenant applications,” in 5th Int. Conf. on
Information, Intelligence, Systems and Applications, 2014, pp. 273–278.

[18] H. Sun, T. Zhao, Y. Tang, and X. Liu, “A qos-aware load balancing
policy in multi-tenancy environment,” in 8th Int. Symposium on Service
Oriented System Engineering, 2014, pp. 140–147.

[19] H. J. Moon, H. Hacigumus, Y. Chi, and W.-P. Hsiung, “Swat: A
lightweight load balancing method for multitenant databases,” in 16th
Int. Conf. on Extending Database Technology, 2013, pp. 65–76.

[20] T. Patikirikorala, I. Kumara, A. Colman, J. Han, L. Wang, D. Weerasiri,
and W. Ranasinghe, “Dynamic performance management in multi-
tenanted business process servers using nonlinear control,” in Int. Conf.
on Service-Oriented Computing, 2012, pp. 206–221.

[21] R. Krebs, A. Wert, and S. Kounev, “Multi-tenancy performance bench-
mark for web application platforms,” in Int. Conf. on Web Eng., 2013,
pp. 424–438.

[22] W.-T. Tsai and X. Sun, “SaaS multi-tenant application customization,”
in IEEE 7th Int. Symposium on Service Oriented System Engineering,
2013, pp. 1–12.

[23] L. Ramachandran, N. C. Narendra, and K. Ponnalagu, “Dynamic pro-
visioning in multi-tenant service clouds,” Service Oriented Computing
and Applications, vol. 6, no. 4, pp. 283–302, 2012.

[24] S. Walraven, E. Truyen, and W. Joosen, “A middleware layer for flexible
and cost-efficient multi-tenant applications,” in Int. Conf. on Middleware.
Springer, 2011, pp. 370–389.

[25] H. Alkhatib, P. Faraboschi, E. Frachtenberg, H. Kasahara, D. Lange,
P. Laplante, A. Merchant, D. Milojicic, and K. Schwan, ““IEEE CS
2022 report”,” IEEE Computer Society, Tech. Rep., 2014.

[26] K. Wood and M. Anderson, “Understanding the complexity surrounding
multitenancy in cloud computing,” in IEEE 8th Int. Conf. on e-Business
Engineering, 2011, pp. 119–124.

[27] M. Almorsy, J. Grundy, and A. S. Ibrahim, “Collaboration-based cloud
computing security management framework,” in IEEE Int. Conf. on
Cloud Computing, 2011, pp. 364–371.

[28] W.-T. Tsai, Q. Shao, Y. Huang, and X. Bai, “Towards a scalable and
robust multi-tenancy SaaS,” in Asia-Pacific Symp. on Internetware, 2010,
p. 8.

[29] E. Saleh, J. Sianipar, I. Takouna, and C. Meinel, “Secplace: A security-
aware placement model for multi-tenant SaaS environments,” in Int.
Conf. on Ubiquitous Intell. and Comp., 2014, pp. 596–602.

[30] M. Almorsy, J. Grundy, and A. S. Ibrahim, “Tossma: A tenant-oriented
saas security management architecture,” in IEEE 5th Int. Conf. on Cloud
Computing, 2012, pp. 981–988.

[31] K. Zhang, Q. Li, and Y. Shi, “Data privacy preservation during schema
evolution for multi-tenancy applications in cloud computing,” in Web
Information Systems and Mining. Springer, 2011, pp. 376–383.

[32] Q. He, J. Han, Y. Yang, J. Grundy, and H. Jin, “Qos-driven service
selection for multi-tenant saas,” in Int. Conf. on Cloud Computing, 2012,
pp. 566–573.

[33] M. Saraswathi and T. Bhuvaneswari, “Multitenant SaaS model of
cloud computing: Issues and solutions,” in Communication and Network
Technologies. IEEE, 2014, pp. 27–32.

[34] P.-J. Maenhaut, H. Moens, M. Decat, J. Bogaerts, B. Lagaisse,
W. Joosen, V. Ongenae, and F. De Turck, “Characterizing the perfor-
mance of tenant data management in multi-tenant cloud authorization
systems,” in Network Operations and Management Symposium (NOMS),
IEEE, 2014, pp. 1–8.

[35] H. Yaish and M. Goyal, “A multi-tenant database architecture design for
software applications,” in ICCSE, 2013, pp. 933–940.

[36] Z. Mahmood and S. Saeed, Software engineering frameworks for the
cloud computing paradigm. Springer, 2013.


