
A Systematic Mapping Study on Legacy System Modernization

Everton de Vargas Agilar Rodrigo Bonifácio de Almeida Edna Dias Canedo
Computer Centre Computer Science Department Faculty of Gama

University of Brası́lia University of Brası́lia University of Brası́lia
Brası́lia, Brazil Brası́lia, Brazil Brası́lia, Brazil

evertonagilar@unb.br rbonifacio@unb.br ednacanedo@unb.br

Abstract

Legacy system modernization has gained increasing at-
tention from both researchers and practitioners, mainly due
to the need of maintaining legacy systems towards business
needs and technology advances. In this way, a set of tech-
niques, tools and terms related to software modernization
have been proposed— although they have not been consoli-
dated yet. This hinders the characterization of real modern-
ization scenarios according to the existing literature. This
paper synthesize the existing contributions related to soft-
ware modernization by means of a mapping study that char-
acterizes the main results in terms of proposed processes,
techniques, and tools. As one of our main findings, we re-
port a lack of empirical studies trying to understand the
benefits of using the existing approaches for software mod-
ernization

Keywords Legacy Systems; Software Modernization;
Mapping Studies in Software Engineering.

1 Introduction

Modernizing legacy systems takes place when traditional
maintenance practices no longer meet the needs of the orga-
nizations [1, 3]. In such a scenario, the basic goal is to cut
maintenance costs, to turn the legacy systems more flexi-
ble to change, and to prolong their usage in a production
environment. From the standpoint of organizations, legacy
systems correspond to the applications that support business
operations in an institution and consolidate most of the cor-
porate data [3].

In spite of being a theme that attracts growing attention,
both in the academy and industry, we still lack a summa-
rization of the main research contributions related to the
modernization of legacy systems. That is, with the aim of

DOI reference number: 10.18293/SEKE2016-059

adequately describing real modernization scenarios in a spe-
cific institution, we realized the need to conduct a Mapping
Study (MS) to characterize the modernization of legacy sys-
tems in the context of software maintenance— for the rea-
son that a MS helps researchers to review and consolidate
results from studies on a given subject [7, 9]. Therefore,
the main contribution of this paper is to characterize soft-
ware modernization according to the existing literature, dis-
cussing the related terms, classifying the related research
contributions, and presenting the main reasons that moti-
vate an effort of software modernization (also according to
the literature).

Based on the results of our analysis, we found that most
of the research contributions to the area are related to the
managerial aspects of software modernization (55.88% of
the total publications). Accordingly, there existis a lack
of research contributions describing (and validating) tech-
niques and tools to support software modernization. The
remainder of the paper is organized as follows. Section 2
explains the research method and protocol we adopt to con-
duct the mapping study. Section 3 describes the main results
of the mapping study, by characterizing the research contri-
butions in the field. We conclude the paper presenting some
final remarks in Section 4.

2 Research Method

The execution of a MS in Software Engineering has be-
come a established practice that involves a well-defined set
of activities [9]. This section describes the protocol used,
according to the existing recommendations about how to
conduct this kind of research in software engineering. The
MS protocol is a plan that contains the basic procedures that
should be used in the MS [9], which favors the reproduction
of the mapping study by other researchers and diminishes
the risk of bias as mentioned in [7]. The remainder of this
section presents the research questions, the search strategy,
and the criteria for including and excluding the publications.

1



2.1 Research Questions

The research questions aim at characterizing the modern-
ization of legacy systems in the domain of software main-
tenance, by identifying the main contributions and studies
found in the literature on the subject. The questions are as
follows

(RQ1) What characterizes the modernization of legacy sys-
tems according to the existing literature?

(RQ2) What processes, techniques, and tools have been
suggested in the literature to support modernization
activities of legacy systems?

(RQ3) What are the reasons that lead organizations to mod-
ernize their legacy systems?

2.2 Search Strategy

The search strategy consisted of a manual activity sur-
veying publications provided in the main conferences and
journals of the Software Engineering research area. This
strategy, referenced in [7], was adopted because the terms
related to software modernization have not been well de-
fined yet, and thus this manual strategy would allow us to
find relevant articles that might be ignored in the case we
used an approach based on search strings in digital libraries.

Accordingly, our search strategy was organized to be run
in three stages. A list with the research sources was pro-
duced for each stage in an empirical way. This strategy
was supplemented by the “snowball technique” [7], aimed
at finding new primary research sources through the analy-
sis of the references of the articles we found. The research
sources selected were:

(a) Research sources in stage 1

• ICSE – Intl. Conf. on Software Engineering
• TSE – Transactions on Software Engineering
• SPE – Software: Practice and Experience
• IEEE Software

(b) Research sources in stage 2

• ICSM – Intl. Conf. on Software Maintenance
• WCRE – Working Conf. on Reverse Engineering
• CSMR – Software Evolution Week

(c) Research sources in stage 3

• ACM Digital Library
• IEEE Xplore
• SpringerLink
• SEI Digital Library
• Science Direct

Figure 1. Publications by research sources

2.3 Inclusion and Exclusion Criteria

In order to select the more relevant primary studies, re-
strictions were set in place for inclusion and exclusion. As
regards the inclusion criterion, we only considered publi-
cations that alluded to the software modernization theme
either in the publication title or in the abstract, and works
whose publication date fell between 1995 and 2015. This
interval was set in place to yield the highest possible num-
ber of relevant publications. We excluded short papers (less
than 4 pages in length) and works with less than 20 citations
according to Google Scholar.

2.4 Screening of Publications

The selection procedure started with a manual search of
the primary research sources that had been previously se-
lected, according to the research protocol. This led to an
initial list of 59 publications. This list was then reduced to
44 entries, following the use of a screening technique, as
suggested by [9], which discards some publications that did
not fit the criteria of the protocol. The final list of publi-
cations selected for our analysis can be found at the link
http://goo.gl/WwrGlY.

Figure 1 summarizes this distribution, grouping by the
main conferences and journals that published works re-
lated to the subject. The European Conference on Software
Maintenance and Re-Engineering (CSMR) is responsible
for the highest number of contributions (21.43%), followed
by technical reports from the Software Engineering Institute
(14.29%).

3 Results

This section describes the MS results obtained after the
assessment of the selected publications. As regards the first
question, we first analyzed the primary studies with the aim
at characterizing software modernization. This aspect was
then combined to produce the answer to the second question

2

http://goo.gl/WwrGlY


(RQ2). Finally, w.r.t RQ3 we tackled the reasons that lead
the organizations to modernize legacy systems, according
to the surveyed literature.

3.1 Analysis of the First Research Question

To answer our first research question, an attempt was
made to characterize the modernization of legacy systems
in the domain of software maintenance. Therefore, as dis-
cussed in [1, 2, 3], modernization can be defined as the evo-
lution of systems towards new business requirements of the
organizations, involving new functionalities, error correc-
tion, or technological updates. In this sense, many theories
have been suggested in the literature, as discussed below.

N. Weiderman et al. introduced a model for a soft-
ware life cycle to describe the evolution of a production sys-
tem [11]. According to this perspective, there are three dis-
tinct stages: maintenance, modernization, and replacement.
Small modifications are made during the maintenance stage
of a system, through small changes that aims at complying
the system with new requirements or bug fixes. The changes
with the greatest impact, such as important business require-
ments, changes in system architecture, or migration of a
system to another platform, are done in the modernization
stage. However, when the system becomes very resistant to
evolution for some specific reason, it must be replaced. In
this stage, the business needs of the organization are close
related with the implementation efforts to meet these needs.
Apart from introducing a life cycle model, Weiderman et
al. also propose two approaches for software moderniza-
tion: (a) white-box for understanding the internal structures
of systems and (b) black-box for understanding the external
interfaces of legacy systems.

K. Bennett et al. propose a model, entitled staged
model, to also describe a system life cycle that assist to
identify the main areas of the research on software modern-
ization [1]. This model has 5 stages: initial development,
evolution, servicing, phase-out, and close-down. Here, the
concept of modernization entails the evolution stage and,
differently to the model proposed by Weiderman et al., it is
considered a maintenance activity, that can be further clas-
sified into 4 classes: adaptive, when there are changes in
the software environment; perfective, for new user require-
ments; corrective, for bug fixes; and preventive, to avoid
future problems.

J. Bisbal et al. propose a life cycle model that focuses on
the evolutive activities as structured by the impact caused on
the systems [3]. Thus, they are divided in wrapping, aimed
at providing a new interface for the system’s components,
making them more accessible to other components; main-
tenance, for small adjustments and error correction; migra-
tion, aimed at moving the legacy system to a more flexible
settings, though keeping the original data and functionali-

ties; and re-development, to completely re-write the appli-
cations.

It is possible to realize that, although these models use
different terms to describe the life cycle of a system, they
have many similarities. For instance, the meaning of re-
placement [11] is the same as re-development [3] and the
meaning of migration [3] is equivalent to that of software
modernization [11, 12]. In addition, the wrapping stage de-
scribed by Bisbal et al. is similar to the black-box modern-
ization technique according to Weiderman et al [11, 12].

In continuing with this appraisal, and due to the diver-
sity of terms to describe the approaches for modernization,
we answer the other research questions using the model and
terminology proposed by Weiderman et al [11, 12]. Ac-
cordingly, we briefly introduce each stage in this evolutive
model as follows

• Maintenance is the first stage in the life cycle of a
system. It starts as soon as the system enter into pro-
duction, being considered an iterative and incremental
process through which small modifications are made in
the system in a more localised way [1, 12]. However,
as discussed in [11], these modifications only meet the
needs of an organization for a certain period of time
and eventually deteriorate the architecture of the sys-
tems.

• Modernization takes place when maintenance is not
enough to keep the system up to date and aligned with
the business goals. According to [1, 3, 12], moderniza-
tion entails more significant changes, such as imple-
menting a novel and relevant functional requirement, a
modification on the software architecture, or a system
migration to a new software platform. Therefore, as
pointed in [1], modernization is more pervasive than
maintenance, and this is one of the main aspects in
their difference. Finally, as pointed out by [11], the
work for modernization should preserve the data and
the functionalities of a system, as it would otherwise
be characterized as a replacement.

• Replacement (also known as Big Bang [3]) occurs
usually when a legacy system becomes too resistant or
inflexible to the work of modernization, there is a lack
of documentation, or the cost of software maintenance
can no longer be justified [1, 3, 12].

With this brief summary of the features of each stage
in the life cycle of a system, the word-cloud of Figure 2
presents the 30 terms most cited in the abstracts of the pri-
mary sources selected. It should be noted that, from a tech-
nological perspective, there is a certain degree of interest on
service-oriented computing in this figure.

3



Figure 2. Terms most frequently cited in se-
lected publications

3.2 Analysis of the Second Research Question

To carry out the analysis and answer the second research
question (RQ2), we split the publications into three groups,
according to the classification proposed in [9]. First, re-
garding the focus areas, we identified three recurrent mod-
ernization strategies: black-box modernization, white-box
modernization, and replacement. In this group we charac-
terized all publications that propose a new modernization
strategy.

We also classified the works by contribution type. Ac-
cording to this dimension, a contribution might be (a) man-
agerial, for primary sources that describe some process,
method, or methodology to manage the modernization pro-
cess; (b) technical, for publications that propose a tool-
based solution, such as frameworks, software libraries, and
service buses, amongst others; and (c) management and
technical, in the cases where the work describes a manage-
rial and technical contribution. Finally, we classified the
published works by considering the research type (as dis-
cussed in [13]).

Note in Figure 3 that 63.64% of the publications corre-
spond to solution proposal, which suggests a lack of em-
pirical studies trying to understand the benefits of using the
existing approaches for software modernization. After con-
cluding the classification of the primary sources, we then
generated a bubble-plot reporting the frequencies and dis-
tributions of the approaches to modernize legacy systems as
identified in the literature. Figure 4 presents that resulting
distribution, synthesizing the studies identified in the liter-
ature on the subject, along with the gaps and opportunities
for future research.

Figure 3. Types of research as reflected in the
publications.

It is also possible to see that over 70% of the research
work relates to the managerial aspects of the modernization
activities. This scenario, according to [10], might be due to
the fact that modernization projects have to be aligned with
business, organizational, and technical perspectives. In this
sense, a process of modernization can assist with several
factors, such as: deciding whether developers should (a)
continue to maintain the systems (since the costs still jus-
tify it); (b) proceed as a modernization effort (which might
the best option instead); or (c) conduct a replacement task
when it is the only alternative.

Apart from that, when an organization has already de-
cided that modernization is the only way to keep a compet-
itive edge, one needs to decide which strategies and tech-
niques will be the most appropriate for each situation. This
way, as explained by [8], the decision on how a modern-
ization project should be conducted requires a well-defined
process, including modernization strategies, good practices,
and the recommendations for an effective management of
the project towards modernization. Several works have
been proposed in this sense.

For example, Ransom et al. proposes a method for as-
sisting in system comprehension [10] that should be un-
dertaken as first activity of a modernization project. This
method provides a guide to obtain the necessary informa-
tion to understand a system, and thus allowing the architects
to select a modernization strategy. Moreover, as regards the
approaches used, 73.52% resorts to white-box techniques,
with 23.52% proposing black-box ones. This suggests that
reverse engineering techniques are promising and have been
used to gain a grasp of the systems and to create tools to as-
sist in the modernization process [5, 6, 10].

3.3 Analysis of the Third Research Question

According to the publications considered, it was possible
to realize that there are four main reasons for modernizing
a legacy systems, as described in the remaining of this sec-
tion.

4



Figure 4. View of the studies identified

3.3.1 Lack of integration between systems

The demand for integrating existing systems is a growing
factor in organizations. Software integration allows the au-
tomation of business process with improved resource man-
agement. However, according to [3, 5], many legacy sys-
tems have not been designed to facilitate software integra-
tion. This characteristic is considered one of the main rea-
sons that motivates organizations to carry out a moderniza-
tion effort, particularly towards the integration of business
processes. In addition, there are several other benefits ob-
tained as a result of a system integration effort, such as a
reduction of duplicate implementation of business rules, the
re-use of already-developed software solutions, and the re-
duction of development costs.

3.3.2 Reducing the maintenance costs

Reducing the maintenance costs of legacy systems is one
of the major barriers to that organizations must overcome.
According to [1, 3], legacy systems are those that are usu-
ally critical for the business and that present unjustifiable
costs to be kept in operation. In [4], it is explained that the
work of maintenance often monopolizes the efforts made by
the organizations, as these activities, including error correc-
tion, adaptations, and general improvements consume from
50% to 70% of the budget related to a software effort. In
addition, it has been pointed out that the lack of documen-
tation and internal knowledge of the systems is one of the
reasons for increasing software development costs, as well
as the time spent in maintenance to correct failures in the
software [3]. Therefore, as stated by [1], the dilemma faced
is that, on one hand, the system is too valuable and a re-
placement can be too expensive to be considered. On the
other hand, keeping a legacy system up to date might be too
expensive, and thus it might be harder for an organization

to evolve the legacy systems so that they can fulfill the the
business needs.

3.3.3 Lack of knowledge

As mentioned earlier, the lack of knowledge and the lack
of legacy systems understanding is one of the reasons for a
modernization project. According to [1, 3], understanding
the design of a system is regarded as one of the require-
ments to implement the changes necessary by the organiza-
tions. It has been reported in the literature that a substantial
part of the time needed to understand a legacy system lies in
locating domain concepts in source code [1]. Thus, under-
standing the legacy systems is one of the central research
problems in the literature, as discussed in [1]. For this rea-
son, several research works have been proposed to identify
alternatives for gaining a better understanding of the sys-
tem, a vital component of any effort towards software evo-
lution [1, 10].

3.3.4 Error proneness

Bennet also arguments that, due to the lack of updated doc-
umentation, modernization efforts are often made consider-
ing the source code as a reliable documentation [1]. Along
with the issues in staff management, the systems can be af-
fected by a lack of system and domain knowledge.

3.4 Threats to Validity

This study is limited to research in the literature to char-
acterize the modernization of legacy systems in the context
of maintenance software. Thus, the main threats to validity
of this research is some possible bias in the procedures for
selecting the publications. The research protocol consisted
of manual searches in conferences and journals of Software
Engineering—instead of using a search string, which is of-
ten applied in a MS. We believe that this decision helped us
to obtain the most relevant articles for this study, in partic-
ular because the terms used to refer to software modern-
ization or evolution of legacy systems are very wide (as
discussed in Section 3.1). Our criteria led to 44 contri-
butions published between 1995 and 2015, with at least 4
pages long and 20 citations according to Google Scholar.
We also believe that this study can be reproduced by other
researchers without the problems of publication bias. Of
course, other studies might comprise different goals and re-
search questions, and might also be more comprehensive.
However, results or trends identified in this study should re-
main the same for the investigated period.

5



4 Final Remarks

Modernization of legacy systems has gained much atten-
tion in the last years, leading to a number of research con-
tributions presenting new methods, techniques, and tools.
Nevertheless, the lack of a suitable consolidation of these
results hinders both researchers and practitioners to conduct
their activities as well as to describe their findings and ex-
periences using a common knowledge. In this paper we
presented the results of a mapping study (MS) that consol-
idates the main contributions to the field. We found that
the majority of the publications relies on a kind white-box
modernization approach (often recovering the necessary in-
formation of legacy systems from the source code), which
reinforces the need for reverse engineering tools. In addi-
tion, we also find that the managerial aspects are most rele-
vant, which reinforces the idea of the importance of a good
strategy of modernization. However, we found just a few
studies reporting success experiences in modernizing legacy
systems. Actually, most of the publications detail solutions
that have been proposed without any practical evaluation.
Finally, we found that there are four recurrent reasons re-
ported in the literature to modernize a legacy system: the
need for legacy systems integration, the need for improving
software flexibility, the lack of knowledge about the system,
and the error proneness for maintaining an existing system.

5 Acknowledgments

We would like to thank FAPDF Brazilian research fund-
ing agency for partially supporting this work.

References
[1] BENNETT, K. Legacy systems: coping with success.

Software, IEEE 12, 1 (1995), 19–23.
[2] BIANCHI, A., CAIVANO, D., MARENGO, V., AND

VISAGGIO, G. Iterative reengineering of legacy sys-
tems. Software Engineering, IEEE Transactions on
29, 3 (2003), 225–241.

[3] BISBAL, J., LAWLESS, D., WU, B., AND GRIMSON,
J. Legacy information systems: issues and directions.
IEEE Software 16, 5 (Sep 1999), 103–111.

[4] CANFORA, G., CIMITILE, A., DE LUCIA, A., AND
DI LUCCA, G. A. Decomposing legacy programs: A
first step towards migrating to client–server platforms.
Journal of Systems and Software 54, 2 (2000), 99–110.

[5] CHUNG, S., AN, J., AND DAVALOS, S. Service-
oriented software reengineering: Sosr. In System Sci-
ences, 2007. HICSS 2007. 40th Annual Hawaii Inter-
national Conference on (Jan 2007), pp. 172c–172c.

[6] FLEUREY, F., BRETON, E., BAUDRY, B., NICOLAS,
A., AND JÉZÉQUEL, J.-M. Model-driven engineering
for software migration in a large industrial context. In
Model Driven Engineering Languages and Systems.
Springer, 2007, pp. 482–497.

[7] KITCHENHAM, B. Procedures for performing sys-
tematic reviews. Keele, UK, Keele University 33, 2004
(2004), 1–26.

[8] LEWIS, G., MORRIS, E., AND SMITH, D. Service-
oriented migration and reuse technique (smart).
In Software Technology and Engineering Practice,
2005. 13th IEEE International Workshop on (2005),
pp. 222–229.

[9] PETERSEN, K., FELDT, R., MUJTABA, S., AND
MATTSSON, M. Systematic mapping studies in soft-
ware engineering. In Proceedings of the 12th Inter-
national Conference on Evaluation and Assessment
in Software Engineering (Swinton, UK, UK, 2008),
EASE’08, British Computer Society, pp. 68–77.

[10] RANSOM, J., SOMERVILLE, I., AND WARREN, I.
A method for assessing legacy systems for evolution.
In Software Maintenance and Reengineering, 1998.
Proceedings of the Second Euromicro Conference on
(1998), IEEE, pp. 128–134.

[11] SEACORD, R. C., PLAKOSH, D., AND LEWIS,
G. A. Modernizing Legacy Systems: Software Tech-
nologies, Engineering Process and Business Prac-
tices. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2003.

[12] WEIDERMAN, N., SMITH, D., AND TILLEY, S. Ap-
proaches to legacy system evolution. Tech. Rep.
CMU/SEI-97-TR-014, Software Engineering Insti-
tute, Carnegie Mellon University, Pittsburgh, PA,
1997.

[13] WIERINGA, R., MAIDEN, N., MEAD, N., AND ROL-
LAND, C. Requirements engineering paper classifica-
tion and evaluation criteria: a proposal and a discus-
sion. Requirements Engineering 11, 1 (2006), 102–
107.

6


	Introduction
	Research Method
	Research Questions
	Search Strategy
	Inclusion and Exclusion Criteria
	Screening of Publications

	Results
	Analysis of the First Research Question
	Analysis of the Second Research Question
	Analysis of the Third Research Question
	Lack of integration between systems
	Reducing the maintenance costs
	Lack of knowledge
	Error proneness

	Threats to Validity 

	Final Remarks
	Acknowledgments

