
TDR System - A Multi-Level Slow Intelligence System
for Personal Health Care

Shi-Kuo Chang, JunHui Chen, Wei Gao and Qui Zhang
Department of Computer Science

University of Pittsburgh, Pittsburgh, PA 15238, USA
{schang, juc52, weg21}@pitt.edu, adora91@gmail.com

Abstract—This paper describes the design of an
experimental multi-level slow intelligence system for health
care, called the TDR system, consisting of interacting
super-components each with different computation cycles
specified by an abstract machine model. The TDR system
has three major super-components: Tian (Heaven), Di
(Earth) and Ren (Human), which are the essential
ingredients of a human-centric psycho-physical system
following the Chinese philosophy. Each super-component
further consists of interacting components supported by an
SIS server. This experimental TDR system provides a
platform for exploring and integrating different
applications in personal health care, emergency
management and social networking.

Keywords—slow intelligence system, distributed sensor
networks, component-based software engineering.

1. Introduction

Recently there are growing interests in human-centric psycho-
physical systems, especially in health care applications. Such
human-centric psycho-physical systems have two common
characteristics. From the decision-theoretic viewpoint these
systems usually have multiple decision cycles such that the
actions of slow decision cycle(s) may override the actions of
quick decision cycle(s), resulting in poorer performance in the
short run but better performance in the long run. From the
architectural viewpoint these systems usually have multiple
levels to monitor, control and manage many sensors and
actuators.

The slow intelligence system is an approach to design such
human-centric psycho-physical systems. A slow intelligence
system (SIS) is a system that (i) solves problems by trying
different solutions, (ii) is context-aware to adapt to different
situations and to propagate knowledge, and (iii) may not
perform well in the short run but continuously learns to
improve its performance over time. The general
characteristics of a slow intelligence system include
enumeration, propagation, adaptation, elimination,
concentration and multiple decision cycles [1]. In our previous
work, an experimental test bed was implemented that allows
designers to specify interacting components for slow
intelligence systems [2].

DOI reference number: 10.18293/SEKE2016-054

To facilitate the design of complex slow intelligence systems
such as human-centric psycho-physical systems, the concept
of super-components is formulated [3]. A complex slow
intelligence system basically consists of interacting super-
components, which further consists of many interacting
components supported by an SIS server. Communications in
SIS are through the SIS server and the messages are layered,
i.e., each message type has its hierarchical scope. A super-
component can thus be viewed as a collection of components
interacting by messages within the same scope. From an
architectural viewpoint the result is a multi-level slow
intelligence system as illustrated by Figure 1.1.

Figure 1.1. A multi-level slow intelligence system.

This paper describes the design of an experimental multi-level
slow intelligence system for health care, called the TDR
system, which mainly consists of three super components:
Tian, Di and Ren. According to the Chinese philosophy these
three super-components are the essential ingredients of a
human-centric psycho-physical system. They can be thought
of as human beings (Ren) interacting with the environment
consisting of heaven (Tian) and earth (Di). Decision making
in TDR system is through multiple computation cycles
involving the super components to increase the chances of
survival of human beings. Any action based on only one
aspect of the environment without considering the other
aspects could reduce the chances of survival, thus iterative,
multiple computation cycles are crucial for the TDR system.

The paper is organized as follows. Section 2 presents an
abstract machine model for the computation cycles. The TDR
system architecture is described in Section 3. The Tian super-
component is described in detail in Section 4. Since the Ren
super-component has been described in the first author’s

previous paper on slow intelligence system for health care [4],
it will not be repeated here. A user-friendly GUI for the TDR
system is described in Section 5. The TDR system was
implemented in Java and GUI implemented in PHP. This test
bed for TDR system thus offers an experimental platform for
exploring and integrating different applications in personal
health care, emergency management and social networking,
some of which will be discussed in Section 6.

2. The Abstract Machine Model for Computation
Cycles

As mentioned in Section 1 an SIS typically possesses at least
two decision cycles. The first one, the quick decision cycle,
provides an instantaneous response to environmental changes.
The second one, the slow decision cycle, tries to follow the
gradual changes in the environment and analyze the
information acquired from the environments or peers or past
experiences. The slow/quick decision cycles enable the SIS to
both cope with the environment and meet long-term goals.

Complex SISs may possess multiple slow decision cycles and
quick decision cycles. Most importantly, actions of slow
decision cycle(s) may override actions of quick decision
cycle(s), resulting in poorer performance in the short run but
better performance in the long run.

To model such decision cycles we introduce an abstract
machine model of multiple computation cycles in Section 2.1,
and then specify the computation cycles for the TDR system in
Section 2.2. In Section 2.3 we describe the steps to compile
the abstract machine model into working components of the
TDR system.

2.1. The Abstract Machine Model

The Abstract Machine Model is specified by: (P, S, P0,
Cycle1, ...,, Cyclen), where

P is the non-empty problem set,
S is the non-empty solution set, which is a subset of Po,
P0 is the initial problem set, which is a subset of P,
Cycle1, ...,, Cyclen are the computatin cycles.

Each computation cycle will start from an initial problem set
and apply different operators such as +adapAij=, -enum<,
>elim-, =propAij + and >conc= successively to generate new
problem sets from old problem sets until a non-empty solution
set is found. If a non-empty solution set is found, the cycle is
completed and later the same computation cycle can be
repeated. If on the other hand no solution set is found, a
different computation cycle is entered.

As an example the problem set P consists of problem elements
p1, p2, p3, ..., pn, and each problem element pj is specified by
a vector consisting of attributes Aij. A computation cycle x
will attempt to find a solution set by first adapting based upon
input from the environment: Px0 +adapAij= Px1 is to adapt

based on attribute Aij, for example, by appending Aij to each
element in Px0 to form Px1. Then it may try to find related
problem elements: Px1 -enum< Px2 where Px2 = { y: y is
related to some x in Px1, e.g. d(x,y) < D}

Next it may try to eliminate the non-solution elements:
Px2 >elim- Px3 where Px3 = {x: x is in Px2 and x is in S}

Finally the solution elements (or alert messages if there are
nosolutions) may be propagated to peers: Px3 =propAij+ Px4 is
to export/propagate attribute Aij to peers.

Therefore this computation cycle can be specified succinctly
as follows: Cyclex [guard x,y]: Px0 +adapAij= Px1 -enum< Px2
>elim- Px3 =propAij+ Px4

The above expression is a specification of the computation
cycle, not a mathematical equation. This expression should be
read and interpreted from left to right.

If Px4 is non-empty, the Abstract Machine will complete this
cycle of computation and terminate at the end of Cyclex, and it
may later resume at the beginning of Cyclex. Otherwise Px4 is
empty and the Abstract Machine will jump to a different
Cycley. This is specified by [guard x,y] where x is the current
computation cycle if a solution set is found (Px4 is non-empty),
and y is the computation cycle to enter if no solution set is
found (Px4 is empty). Before an Abstract Machine completes
its current computation cycle, it will propagate the solution set
(or alert messages) to its peers.

In the above, the elimination operator can be replaced by the
concentration operator, whenever the solution set is not known
apriori. The concentration operator applies a predefined
threshold to filter out problem elements below the threshold:
Px1 >conc= Px2 where Px2 = {x: x is in Px1 and th(x) above
a predefined threshold t}

2.2. Multiple Computation Cycles of TDR System

For the TDR system, a problem element is a combination of
Tian, Di and Ren attributes. Those problem elements that are
favorable for human survival are in the solution set S. The
problem set P consists of problem elements p1, p2, p3, ..., pn,
and each problem element is specified by a vector consisting
of the attributes from Tian (heaven), Di (earth) and Ren
(human being), i.e.,

 pj = (t1j, t2j, ..., d1j, d2j, ..., r1j, r2j, ...)

For example, the Tian attributes tij are atmospheric variables
such as amount of sunlight and water level, the Di attributes
dij are residential variables such as ambient temperature and
humidity, and the Ren attributes rij are personal health
indicators such as blood pressure, spo2 value, heart rate, etc.

pj = (sunlightj, waterlevelj, tempj, humidityj,
bloodpressurej, spo2valuej, heartratej)

Initially some attributes may not be assigned any value and
some may already have pre-assigned values. After most
attributes have been assigned values one can decide whether
the problem element is in the solution set. (The simplest case
is that each attribute Aij has a solution range Rj, and if every
attribute Aij falls within the solution range Rj then the
problem element pj is in the solution set S).

In the TDR system, there are continuous interactions among
the three super-components Tian, Di and Ren. Each super-
component has its own computation cycle, which is basically
the following: Starting from some problem set P0, the super-
component first adapts to the input from the environment as
well as from other peer super-components. It then tries to find
related problem elements by enumeration. After those
problem elements not in the solution set have been eliminated
either using the elimination operator or using the concentration
operator, the termination condition can be tested. The
termination condition is expressed by [guard x, y] where Cycle
x is the current cycle and Cycle y is the cycle to jump to.
Whenever one super-component completes its computation
cycle, if a solution is found the computation ends, otherwise
the control is transferred to the next super-component. Since
there are three super-components, we will have three
computation cycles.

The Tian super-component has computation Cycle1:

Cycle1 [guard1,2]: P10 +adapAij= P11 -enum< P12 >elim-
P13 =propAij+ P14

Likewise, the Di super-component has computation Cycle2:
Cycle2 [guard2,3]: P20 +adapAij= P21 -enum< P22 >elim-

P23 =propAij+ P24
Finally, the Ren super-component has computation Cycle3:

Cycle3 [guard3,1]: P30 +adapAij= P31 -enum< P32 >elim-
P33 =propAij+ P34

Notice the three computation cycles together form a higher-
level computation cycle. High-level computation cycles are
essential for a complex human-centric psycho-physical system
such as the TDR system. In Section 6 we will discuss
applications to personal health care.

2.3. A Compiler for the Abstract Machine Model

The Abstract Machine Model is a formal specification of the
computation cycles of a slow intelligence system. Once the
abstract machine model is provided, a compiler can be
constructed to generate the components. In what follows we
describe the major steps of the generic Abstract Machine
Compiler (AMC) and the components it generated in pseudo
codes.

Step 1: Adapt input from the environment
The AMC will first generate the basic components to gather
input from the environment (see box below).

AMC Controller maintains the state and makes decisions
based upon different states (see box below).

Controller:
//maintain the state within controller. Make decision based on different state.
create and run stateMachine;
while (true) {

 msg = getMsgFromSocket();
 do something that is not related to state machine
 stateMachine.perform(msg); //based on different states, perform
differently when given input

}

For each Controller, when given some input, the State
Machine will determine the action and the output. It may give
several tries. For example, two solutions can be applied to one
certain state when given certain input (see box below).
State Machine:
//define the states
enum Status {

State0,
State1,
…;}

Status currentStatus = State0;//initial state
void perform(Message msg) {
 //based on different states, perform differently when given input
 switch (currentStatus) {
 case ‘State0’:
 based on message type and purpose, perform action or

change state
break;

 case ‘State1’:
 based on message type and purpose, perform action or

change state
break;

….
}

}

Step 2: Enumerate and find related problem elements
For Step 2 and Step 3 the AMC is custom designed to handle
different patterns from a pattern knowledge-base. For example,
if the pattern is “picnic” the initial problem set may be as
follows: P0={([0,10], [0,10], [10,20], [60,120], [60,80],
[50,80])} where pj = (flower1j, flower2j, tempj, bpj, spoj,
ekgj).

To answer the question “Is today a good day for picnic?” the
temperature sensor is first used to measure temp. Depending
on the results of the measurement, either enumeration operator
or elimination operator can be applied.

Suppose the temp is 25. Since the temp is normal it cannot be
used to eliminate other problem elements and therefore after

Basic Component:
 //initialize
 threshold = user input();

while (true) {
//adapt input from environment
currentData = collectEnvironmentData();
if (currentData exceed threshold) {
 send alert message to Controller and/or Advertiser;
} else {
 send normal message to Controller on demand

 }
}

enumeration P1 = {([0,10], [0,10], 25, [60,120], [60,80],
[50,80])}. More computation is needed.

Step 3: Eliminate non-solution elements
Suppose the temp is 40. Since the temp is too hot, other
problem elements are eliminated and therefore after
elimination P1 is empty. Either the conclusion is “today is not
a good day for picnic” or another computation cycle may be
entered (to find an indoor location for picnic, for example).

Step 4: Propagate solution elements to peers
Once a solution is obtained, the abstract machine will
propagate the solution to its peers. For example, several super
components may do the work at the same time. Once one
super component gets the solution, the rest of them can stop
work. An Advertiser will then inform the other super
components (see box below).

Advertiser pseudo code:
while (true) {

msg = getMsgFromSocket();
switch (msg.type) {

case ‘Alert’:{
uploadAlert(); //upload alert message to database
propagateAlert(); //propagate alert message to its peers }
…
};

if(solution_set != null)
propagateSolution(); //propagate solution to its peers
terminateCycle(); //terminate computation cycle}

 else switchCycle(); //switch to a new computation cycle }
}

3. The TDR System Architecture
As mentioned in Section 1, the TDR system is a multi-level
slow intelligence system consisting mainly of three super-
components: the Tian super-component, the Di super-
component and the Ren super-component. The TDR System
architecture is illustrated by Figure 3.1.

The TDR system has a common SIS server to support multi-
level messaging. There is an integrated database to store TDR
records, and a web GUI that supports the reception and
sending of messages. Each super-component has its own
sensor(s) to collect information from the environment. For
example as shown in Figure 3.1 the Tian super-component has
two plant sensors: Parrot Flower 1 and Parrot 2, the Di super-
component has an ambient temperature sensor, and the Ren
component has a blood pressure sensor. Each super-
component furthermore consists of the following components:
a monitor component to make sure the information collected
by the sensor(s) is within certain acceptable range, a GUI
component to interact with the user, an Uploader component
to upload the collected information to the next higher level and
last but not least a controller component to control the
activities of the various components to realize the computation
cycles described in the previous section.

When there are multiple controllers in a super-component such
as the Tian super-component, a coordinator component can be
introduced to coordinate the activities of the controllers and

collect the information provided by the controllers. Generally
speaking both the controller component and the coordinator
component are essentially controllers, which should possess
both the abilities to coordinate and to control the sub-
components.

 Figure 3.1. The TDR system architecture.

In the experimental test bed, the following functionalities are
provided:

3.1 Define a Component

A component should have predefined scope, predefined role
and unique name within its predefined scope, these can be
described in the component’s Register message, which is
stored as an XML document under xml/InitXML. All
parameters are defined as Key-Value pairs. The scope defines
where outgoing messages from this component can go and the
scope of incoming messages this component can receive. Role
defines the type of component that can only handle certain
types of incoming/outgoing messages. Among all components
with the same name within a certain scope, only one of them
can be active, i.e., the component name must be unique. There
are currently six predefined roles: Basic, Monitor, Advertiser,
Controller, Coordinator and Debugger.

3.2 Create a Component

Once the designer knows how a component should behave, he
can start to implement it under the Components folder.
Components with all kinds of roles have similar templates for
implementation. There are two places containing information
that the designer should pay attention to: (i) xml/initXML
where all predefined Register messages for all available
components are stored. (ii) For new components the designer
should use the same scope and name in both XML definition
and for constants in codes under Components /
NEW_COMPONENT_NAME_HERE folder (SCOPE,
NAME). The implementation of each role is far from being
different from each other. As long as the designer doesn’t add
extra message types to the collection of acceptable incoming
messages, he can simply replace all scopes and names (folder
name, SCOPE, NAME, class name, java source code
CreateXXX, XML under initXML folder) and create a new
working component almost immediately. The six different
roles of components are as follows:

3.2.1 Basic Component

For a Basic component such as Blood Pressure in Figure 3.1,
no changes are necessary for main method. Method
“initRecord” is provided as a place for putting initialization
code. Method “componentTask” is provided as a place for
putting periodically executed code, such as collecting data.
Method “ProcessMsg” is provided as a place for handling
different types of messages. Other variables can be added if
needed, but the framework should suit the general purpose for
implementing a Basic component that sends out Readings
which are collected from a data source.

3.2.2 Monitor Component

For a Monitor component such as any GUI in Figure 3.1, it
can be designed as a general monitor or a visual console to
display data. Other variables can be added if needed.

3.2.3 Advertiser Component

For an Advertiser component such as any Uploader in Figure
3.1, it can be designed as a tool to process the Readings and
send anything outside the system via emails, sockets, etc.

3.2.4 Controller Component

For a Controller component such as Ren in Figure 3.1 to
process combination of TempBloodPressure measurements, it
can be broken down into code segments similar to the
TempBloodPressure segment. Five types of code segments are
under the ControllerComponents/TempBloodPressure folder:
“initial.java” contains all initialization code of extra variables ,
“helper.java” contains all helper methods used and
“helperClass.java” contains all user defined classes. By default
Controller components only process Alert messages from
Basic components. Alert messages must have unique names.

The same names are used to create code snippets under the
TempBloodPressure folder.

3.2.5 Coordinator Component

The Coordinator component such as Tian Coordinator in
Figure 3.1 processes the messages from controller components
and other components and coordinates the activities of
controller components and other components.

3.2.6 Debugger Component

The default Debugger is the PrjRemote.exe tool. It can be
replaced by a customized Debugger. However, when a
component is assigned the Debugger role, it will get a copy of
all messages within the scope that it is in.

3.3 How to Run a Component

Scripts for the Controller component will be automatically
generated. For all other roles customized scripts must be
provided under the Scripts folder. For Basic or Monitor or
Advertiser component, one can simply copy the BloodPressue
or the GUI or the Uploader component, respectively, and do
some name replacement.

3.4 Scoping

There can be multilevel scopes, each of which contains
components that collaborate with each other or are related to
each other. Scoping provides a way to further divide the
components. By default messages will only be sent within
current scope, but one can add (“Broadcast”, “True”) and
(“Direction”, “[Up/Down]”) to enable broadcast of messages.

3.5 Trouble-Shooting

If a component cannot be connected to the SISServer, one
should check SCOPE and NAME in both code and xml
definition. If a message is not delivered, check if the message
is sent to a target that does not process this type of message. It
is also possible that one forgets to add certain parameters to
the message such as valid Scope, Sender, Purpose, etc.

4. The Tian Super-component

4.1 System Structure

A plant is heavily dependent on the environment. According
to Chinese philosophy, we may consider the plants’ status as
Tian (heaven), which will indicate environmental status to
some degree. The plant sensors made by Parrot are used in our
experiment, which can gather such data as amount of sunshine,
moisture, temperature and amount of fertilizer in a plant’s
environment (see Figure 4.1).

In Tian super-component, we include two different parrot-
flower-sensors for plants in different locations. Since they are
located in different places, they can gather data from two

different environments. Figure 4.2 illustrates the interactive
Tian super-component. Notice there are two Tian controllers
coordinated by the Tian coordinator.

Fig 4.1. The plant sensor Parrot Flower Power.

Figure 4.2. The Tian Super-component.

Thus the Tian Super-component has three layers:

 Top Layer: Tian coordinator

 Middle Layer: Tian1/Tian2 controllers

 Bottom Layer: Flower1/Flower2, GUI1/GUI2,
Uploader1/Uploader2

Bottom layer is in charge of getting data from the sensor,
displaying data to user, and uploading the data to database.
Middle layer is in charge of logically activating/deactivating
bottom layer components based on instructions from higher
level. Top layer is in charge of aggregating data from lower
layers. Top layer coordinator will also communicate with
other super-components’ top-layer.

4.2 Data Path

There are two paths for the data. One is for data going
upwards, which is done through Uploader1 and Uploader2.
The other is for data going downwards, which is handled by
Tian1 and Tian2. Tian1 and Tian2 are both controllers and can
make their own decisions such as activate or deactivate the
corresponding Flower1 and Flower2 components.

4.3 Control Message Definition

1. Activate all components
Sender: Web GUI
Receiver: Tian1/Tian2
Purpose: activate all components under Tian1/Tian2
sub-system

2. Deactivate all components
Sender: Web GUI
Receiver: Tian1/Tian2
Purpose: deactivate all components under
Tian1/Tian2 sub-system

3. Active Flower1/Flower2 component
Sender: Tian1/Tian2
Receiver: Flower1/Flower2 component
Purpose: activate Flower1/Flower2 component

4. Deactivate Flower1/Flower2 component
Sender: Tian1/Tian2
Receiver: Flower1/Flower2 component
Purpose: deactivate Flower1/Flower2 component

4.4 AMC Compiler Steps for Tian

Compared to the generic Abstract Machine Compiler AMC
described into Section 2.3, the Tian Compiler has these
following steps: Step 1 and Step 4. The other two steps do not
exist. In what follows we describe how the Compiler generates
the various components in pseudo codes.

In Tian compiler, there are two alert states and four inputs:
Alert Flower1, Alert Flower2, Activate all components and
Deactivate all components. Since the problem vector will have
one and only one state element to be 1 and one and only one
input element to be 1, so there are a total of C(1, 2)*C(1, 4) =
8 different problem vectors.

For example,

 p0 = (1, 0, 0, 1, 0, 0).
This specifies when in normal state, given input Alert Flower1,
how the abstract machine should perform.

Step 1: Create flower component to adapt input from the
environment
The Flower1 and Flower2 monitors will gather environmental
data (Sunlight, Moisturizer, Temperature, and Fertilizer)
stored in parrot cloud which is updated by parrot sensors. The
Flower1 and Flower2 monitors will generate alert message

when new environmental data come in. Only Flower1
component and Tian1 component will be described below.

Flower1 Component:
 //initialize
while (true) {

//adapt input from environment
currentData1 = collectDataFromSensor1();

//send alert message if exceed threshold
if (currentData1!=nulls) {
 sendAlertMsgTo(Controller);//inform

Controller that new data comes in
sendAlertMsgTo(Advertiser);//inform
Advertisser to propagate new data
} else {
 //no new data comes in }

}

Coordinator:
 switch (msg.type) {
 case ‘Emergency:
 if(msg.sender == “Tian1”){Tian1Array.add(msg);
 }
 if(msg.sender == “Tian2”){Tian2Array.add(msg);
 }
 break;
}

Step 2: (does not exist)
Step 3: (does not exist)
Step 4: Create upload component to propagate solution
elements to peers.
The Advertiser component can upload necessary messages to
the database and propagate to its peers. If a solution is found

an Advertiser will color-code its banner in a tranquil color
such as “blue” and inform the other components. If no
solution is found, its banner is color-coded “red” and control is
switched to a new computation cycle (see box below).

Advertiser pseudo code:
while (true) {

msg = getMsgFromSocket();
switch (msg.type) {

case ‘NewFlower’:{
uploadAlert(); //upload alert message to database
propagateAlert(); //propagate alert message to its peers }
…
};

if(solution_set != null) {color-code(“blue”);
 //this component is color-coded “blue”

propagateSolution(); //propagate solution to its peers
terminateCycle(); //terminate computation cycle}

 else {color-code(“red”); //this component is color-coded “red”
switchCycle(); //switch to a new computation cycle }

}

5. The Web GUI

The dashboard is the main GUI interface of the TDR system.
As illustrated by Figure 5.1 it provides a high-level overview
of the data in the system.

On the left side, it has a menu panel that contains all the
actions the user can perform, including activating and
deactivating components. For the super user, this menu will
also include addition, deletion and modification of regular
users. The activation and deactivation messages are sent
utilizing a message database (MDB) and the TDR components
will actively fetch the incoming messages from the MDB (see
Figure 3.1).

Figure 5.1. The dashboard for super user.

There is a carousel that displays all components in rotation,
four at a time for the PC screen and only one for the smart
phone screen. This vividly demonstrates the idea of
computation cycles in the TDR system. A component’s banner
is in tranquil state (blue color) until an alert is received and
then it changes to red color. Below the carousel panel, a table
will be displaying all records that belong to the current user.
For each entry, it contains the date and time of a record, the
sensor type, the data type, the actual reading of the data, and

Tian1:
//maintain the status within controller. Make decision based on different status.

//create and run stateMachine;
msg = getMsgFromSocket();

 switch (msg.type) {
 case ‘Alert:
 if(msg.sender == “Flower1”){
 Tian1DataArray.add(msg);
 sendEmergencyMessageTo(“Tian Coordinator”);
 }
 break;
 case ‘Setting’:
 stateMachine.perform(msg);
 break;

}

StateMachine:
Status currentState = ALERT;//initial state
void perform(Message msg) { //There are two kinds of messages:
//a). environment data message from Tian Components, including alert flower
//b). control message from WebGUI, including activate and deactivate all

components
 switch (currentState) {
 case ALERT:
switch (msg.type) {
 case ‘Setting’://control message from webGUI
switch (purpose) {
case ‘Activate’:
 activate Tian components.s
case ‘Deactivate’:
 deactivate Tian components } break;] break;

} }

the originator. This scheme allows flexibility and scalability,
as in the future there might be more and more sensors added to
the TDR system.

By clicking the “find similar” button at the lower right part of
the dashboard, messages such as M3 will be sent to the MDB
to be fetched by the similarity retrieval component to find
other user’s records similar to the current user’s record. The
messages sent are exactly the same as the ones used in the
TDR system, hence the web interface can be viewed as one
remote component of the TDR system.

After clicking one specific component on the carousel panel, it
will show a detailed list of records that are from the
component. If the user is communicating remotely with his/her
doctor, a user might want to specify the record ID so that the
doctor knows exactly what entry he/she is referring to. A
graph showing the data-to-day changes of a selected data
iitem can also be displayed by the GUI for visualization
purpose.

6. Discussion

In the formulation of the computation cycles for the TDR
system, one can start with the computation cycle of any one of
the three super-components. For example the TDR system
may start with Ren, i.e., the human conditions are first taken
into consideration. Then the atmospheric environmental
attributes from Tian and surrounding residential attributes
from Di are considered so that an overall solution can be
found to enhance the chances of survival of the human being.
The TDR system then tries to find appropriate Tian attributes
tij representing atmospheric environmental variables such as
sunlight and water level, etc. and Di attributes dij representing
surrounding residential variables such as ambient temperature
and humidity, etc.

Alternately the TDR system may also start with the Tian or the
Di computation cycles. Different constrained optimization
algorithms can be formulated depending on the structure of
multi-level computation cycles for Tian, Di and Ren to obtain
the “best” solution, i.e., the solution that increase the
probability of human survival the most. Finally instead of (or
in addition to) constrained optimization algorithms we can
also manually set certain variables by human-centric
interactions or through social interactions.

One of our main goals is to expand the TDR system for the
computation of Chi (also spelled as Qi in Chinese
transliteration system HanYu PinYin). The Chi super-
component is regarded as at a higher level. It has attributes
including both objective measurements and subjective
evaluations. Some researchers propose to employ electrical
measurements to estimate Chi [5]. Other researchers propose
to combine objective measurements with subjective evaluation
into an evaluation matrix to estimate Chi [6]. This makes the

Chi super-component both pro-active and adaptive at multiple
levels.

The dashboard for TDR system can be further refined. When
one clicks on “view details” for the Chi super-component, a
list of attributes for Chi is shown. The objective
measurements in this list is filled by the multi-level
computation cycles based upon actual measurements. The
subjective evaluations are entered by the principal user
himself/herself based upon his/her subjective feelings.

The experimental TDR system provides a versatile platform
for exploring and integrating applications such as personal
health care, emergency management and social networking,
etc. These applications are currently being investigated at our
research laboratory, with major emphasis on an experimental
TDR system to estimate Chi. We will also further investigate
the theoretical issue to define and characterize the resonance
state of a system with multiple, multi-level computation cycles.

References
[1] Shi-Kuo Chang, "A General Framework for Slow
Intelligence Systems", International Journal of Software
Engineering and Knowledge Engineering, Volume 20,
Number 1, February 2010, 1-16.

[2] Shi-Kuo Chang, Yingze Wang and Yao Sun, "Visual
Specification of Component-based Slow Intelligence Systems",
Proceedings of 2011 International Conference on Software
Engineering and Knowledge Engineering, Miami, USA, July
7-9, 2011, 1-8.

[3] Shi-Kuo Chang, Yao Sun, Yingze Wang, Chia-Chun Shih
and Ting-Chun Peng, "Design of Component-based Slow
Intelligence Systems and Application to Social Influence
Analysis", Proceedings of 2011 International Conference on
Software Engineering and Knowledge Engineering, Miami,
USA, July 7-9, 2011, 9-16.

[4] Shi-Kuo Chang, Sen-Hua Chang, Jun-Hui Chen, Xiao-Yu
Ge, Nikolaos Katsipoulakis, Daniel Petrov and Anatoli Shein,
"A Slow Intelligence System Test Bed Enhanced with Super-
Components", Proceedings of 2015 International Conference
on Software Engineering and Knowledge Engineering,
Pittsburgh, USA, July 6-8, 2015, 51-63.

[5] Ming-Feng Chen, Hsi-Ming Yu, Shu-Fang Li and Ta-Jung
You, “A Complementary Method for Detecting Qi Vacuity”,
BMC complementary and alternative medicine, Vol. 9, No. 12,
2009.

[6] Ke-Feng Huang, Effects of Energy Absorption on
Meridian System (能量攝取對經絡系統影響之效應),
Doctoral Dissertation (in Chinese), Institute of Biomedical
Engineering, National Yang-Ming University, Taiwan, June
2011.

