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Abstract—This paper describes the design of an 
experimental multi-level slow intelligence system for health 
care, called the TDR system, consisting of interacting 
super-components each with different computation cycles 
specified by an abstract machine model.  The TDR system 
has three major super-components: Tian (Heaven), Di 
(Earth) and Ren (Human), which are the essential 
ingredients of a human-centric psycho-physical system 
following the Chinese philosophy. Each super-component 
further consists of interacting components supported by an 
SIS server.  This experimental TDR system provides a 
platform for exploring and integrating different 
applications in personal health care, emergency 
management and social networking. 

Keywords—slow intelligence system, distributed sensor 
networks, component-based software engineering. 

 

1. Introduction  
 
Recently there are growing interests in human-centric psycho-
physical systems, especially in health care applications. Such 
human-centric psycho-physical systems have two common 
characteristics.  From the decision-theoretic viewpoint these 
systems usually have multiple decision cycles such that the 
actions of slow decision cycle(s) may override the actions of 
quick decision cycle(s), resulting in poorer performance in the 
short run but better performance in the long run.  From the 
architectural viewpoint these systems usually have multiple 
levels to monitor, control and manage many sensors and 
actuators. 
 
The slow intelligence system is an approach to design such 
human-centric psycho-physical systems.  A slow intelligence 
system (SIS) is a system that (i) solves problems by trying 
different solutions, (ii) is context-aware to adapt to different 
situations and to propagate knowledge, and (iii) may not 
perform well in the short run but continuously learns to 
improve its performance over time.  The general 
characteristics of a slow intelligence system include 
enumeration, propagation, adaptation, elimination, 
concentration and multiple decision cycles [1]. In our previous 
work, an experimental test bed was implemented that allows 
designers to specify interacting components for slow 
intelligence systems [2].   
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To facilitate the design of complex slow intelligence systems 
such as human-centric psycho-physical systems, the concept 
of super-components is formulated [3].   A complex slow 
intelligence system basically consists of interacting super-
components, which further consists of many interacting 
components supported by an SIS server.  Communications in 
SIS are through the SIS server and the messages are layered, 
i.e., each message type has its hierarchical scope.   A super-
component can thus be viewed as a collection of components 
interacting by messages within the same scope. From an 
architectural viewpoint the result is a multi-level slow 
intelligence system as illustrated by Figure 1.1.  

 
Figure 1.1.  A multi-level slow intelligence system. 

 
This paper describes the design of an experimental multi-level 
slow intelligence system for health care, called the TDR 
system, which mainly consists of three super components: 
Tian, Di and Ren. According to the Chinese philosophy these 
three super-components are the essential ingredients of a 
human-centric psycho-physical system. They can be thought 
of as human beings (Ren) interacting with the environment 
consisting of heaven (Tian) and earth (Di).  Decision making 
in TDR system is through multiple computation cycles 
involving the super components to increase the chances of 
survival of human beings. Any action based on only one 
aspect of the environment without considering the other 
aspects could reduce the chances of survival, thus iterative, 
multiple computation cycles are crucial for the TDR system.  
 
The paper is organized as follows. Section 2 presents an 
abstract machine model for the computation cycles.  The TDR 
system architecture is described in Section 3. The Tian super-
component is described in detail in Section 4.  Since the Ren 
super-component has been described in the first author’s 



previous paper on slow intelligence system for health care [4], 
it will not be repeated here. A user-friendly GUI for the TDR 
system is described in Section 5. The TDR system was 
implemented in Java and GUI implemented in PHP.  This test 
bed for TDR system thus offers an experimental platform for 
exploring and integrating different applications in personal 
health care, emergency management and social networking, 
some of which will be discussed in Section 6. 
 
2. The Abstract Machine Model for Computation 
Cycles  
 
As mentioned in Section 1 an SIS typically possesses at least 
two decision cycles. The first one, the quick decision cycle, 
provides an instantaneous response to environmental changes. 
The second one, the slow decision cycle, tries to follow the 
gradual changes in the environment and analyze the 
information acquired from the environments or peers or past 
experiences. The slow/quick decision cycles enable the SIS to 
both cope with the environment and meet long-term goals. 
 
Complex SISs may possess multiple slow decision cycles and 
quick decision cycles. Most importantly, actions of slow 
decision cycle(s) may override actions of quick decision 
cycle(s), resulting in poorer performance in the short run but 
better performance in the long run. 
 
To model such decision cycles we introduce an abstract 
machine model of multiple computation cycles in Section 2.1, 
and then specify the computation cycles for the TDR system in 
Section 2.2.  In Section 2.3 we describe the steps to compile 
the abstract machine model into working components of the 
TDR system. 

 
2.1. The Abstract Machine Model 
 
The Abstract Machine Model is specified by: (P, S, P0, 
Cycle1, ...,, Cyclen), where 

P is the non-empty problem set, 
S is the non-empty solution set, which is a subset of Po, 
P0 is the initial problem set, which is a subset of P, 
Cycle1, ...,, Cyclen  are the computatin cycles.  

 
Each computation cycle will start from an initial problem set 
and apply different operators such as +adapAij=,  -enum<, 
>elim-, =propAij + and >conc= successively to generate new 
problem sets from old problem sets until a non-empty solution 
set is found.  If a non-empty solution set is found, the cycle is 
completed and later the same computation cycle can be 
repeated.  If on the other hand no solution set is found, a 
different computation cycle is entered.  
 
As an example the problem set P consists of problem elements 
p1, p2, p3, ..., pn, and each problem element pj is specified by 
a vector consisting of attributes Aij.  A computation cycle x 
will attempt to find a solution set by first adapting based upon 
input from the environment: Px0 +adapAij=  Px1 is to adapt 

based on attribute Aij, for example, by appending Aij to each 
element in Px0 to form Px1.  Then it may try to find related 
problem elements: Px1 -enum< Px2 where Px2 = { y:  y is 
related to some x in Px1, e.g. d(x,y) < D} 
 
Next it may try to eliminate the non-solution elements:  
Px2 >elim-   Px3 where Px3 = {x: x is in Px2 and x is in S} 

 
Finally the solution elements (or alert messages if there are 
nosolutions) may be propagated to peers: Px3 =propAij+ Px4   is 
to export/propagate attribute Aij to peers. 
 
Therefore this computation cycle can be specified succinctly 
as follows: Cyclex [guard x,y]: Px0 +adapAij= Px1 -enum< Px2  
>elim- Px3 =propAij+ Px4 
 
The above expression is a specification of the computation 
cycle, not a mathematical equation.  This expression should be 
read and interpreted from left to right. 
 
If Px4 is non-empty, the Abstract Machine will complete this 
cycle of computation and terminate at the end of Cyclex, and it 
may later resume at the beginning of Cyclex. Otherwise Px4 is 
empty and the Abstract Machine will jump to a different 
Cycley. This is specified by [guard x,y] where x is the current 
computation cycle if a solution set is found (Px4 is non-empty), 
and y is the computation cycle to enter if no solution set is 
found (Px4 is empty). Before an Abstract Machine completes 
its current computation cycle, it will propagate the solution set 
(or alert messages) to its peers. 
 
In the above, the elimination operator can be replaced by the 
concentration operator, whenever the solution set is not known 
apriori.  The concentration operator applies a predefined 
threshold to filter out problem elements below the threshold: 
Px1 >conc= Px2  where Px2 = {x:  x is in Px1 and  th(x) above 
a predefined threshold t} 
 
2.2. Multiple Computation Cycles of TDR System 
 
For the TDR system, a problem element is a combination of 
Tian, Di and Ren attributes.  Those problem elements that are 
favorable for human survival are in the solution set S.  The 
problem set P consists of problem elements p1, p2, p3, ..., pn, 
and each problem element is specified by a vector consisting 
of the attributes from Tian (heaven), Di (earth) and Ren 
(human being), i.e., 

     pj = (t1j, t2j, ..., d1j, d2j, ..., r1j, r2j, ...) 
 
For example, the Tian attributes tij are atmospheric variables 
such as amount of sunlight and water level, the  Di attributes 
dij are residential variables such as ambient temperature and 
humidity, and the Ren attributes rij are personal health 
indicators such as blood pressure, spo2 value, heart rate, etc.  
 

pj = (sunlightj, waterlevelj, tempj, humidityj, 
bloodpressurej, spo2valuej, heartratej) 



Initially some attributes may not be assigned any value and 
some may already have pre-assigned values. After most 
attributes have been assigned values one can decide whether 
the problem element is in the solution set. (The simplest case 
is that each attribute Aij has a solution range Rj, and if every 
attribute Aij falls within the solution range Rj then the 
problem element pj is in the solution set S). 
 
In the TDR system, there are continuous interactions among 
the three super-components Tian, Di and Ren.  Each super-
component has its own computation cycle, which is basically 
the following:   Starting from some problem set P0, the super-
component first adapts to the input from the environment as 
well as from other peer super-components.  It then tries to find 
related problem elements by enumeration.  After those 
problem elements not in the solution set have been eliminated 
either using the elimination operator or using the concentration 
operator, the termination condition can be tested.  The 
termination condition is expressed by [guard x, y] where Cycle 
x is the current cycle and Cycle y is the cycle to jump to. 
Whenever one super-component completes its computation 
cycle, if a solution is found the computation ends, otherwise 
the control is transferred to the next super-component.  Since 
there are three super-components, we will have three 
computation cycles. 
 
The Tian super-component has computation Cycle1: 

Cycle1 [guard1,2]: P10 +adapAij= P11 -enum< P12  >elim- 
P13 =propAij+ P14 

Likewise, the Di super-component has computation Cycle2: 
Cycle2 [guard2,3]: P20 +adapAij= P21 -enum< P22  >elim- 

P23 =propAij+ P24 
Finally, the Ren super-component has computation Cycle3: 

Cycle3 [guard3,1]: P30 +adapAij= P31 -enum< P32  >elim- 
P33 =propAij+ P34 

Notice the three computation cycles together form a higher-
level computation cycle. High-level computation cycles are 
essential for a complex human-centric psycho-physical system 
such as the TDR system.  In Section 6 we will discuss 
applications to personal health care. 
 
2.3. A Compiler for the Abstract Machine Model 
 
The Abstract Machine Model is a formal specification of the 
computation cycles of a slow intelligence system. Once the 
abstract machine model is provided, a compiler can be 
constructed to generate the components.   In what follows we 
describe the major steps of the generic Abstract Machine 
Compiler (AMC) and the components it generated in pseudo 
codes. 
 
Step 1: Adapt input from the environment 
The AMC will first generate the basic components to gather 
input from the environment (see box below).  
 

 
AMC Controller maintains the state and makes decisions 
based upon different states (see box below). 

Controller: 
//maintain the state within controller. Make decision based on different state. 
create and run stateMachine; 
while (true) { 

 msg = getMsgFromSocket(); 
        do something that is not related to state machine 
        stateMachine.perform(msg); //based on different states, perform 
differently when given input 

} 

For each Controller, when given some input, the State 
Machine will determine the action and the output. It may give 
several tries. For example, two solutions can be applied to one 
certain state when given certain input (see box below). 
State Machine: 
//define the states 
enum Status {  

State0, 
State1, 
…;} 

Status currentStatus = State0;//initial state 
void perform(Message msg) { 
 //based on different states, perform differently when given input 
 switch (currentStatus) { 
  case ‘State0’: 
                                    based on message type and purpose, perform action or 

change state  
break; 

  case ‘State1’: 
                                    based on message type and purpose, perform action or 

change state  
break; 

…. 
} 

} 

Step 2: Enumerate and find related problem elements 
For Step 2 and Step 3 the AMC is custom designed to handle 
different patterns from a pattern knowledge-base. For example, 
if the pattern is “picnic” the initial problem set may be as 
follows: P0={([0,10], [0,10], [10,20], [60,120], [60,80], 
[50,80])} where pj = (flower1j, flower2j, tempj, bpj, spoj, 
ekgj). 
 
To answer the question “Is today a good day for picnic?” the 
temperature sensor is first used to measure temp.  Depending 
on the results of the measurement, either enumeration operator 
or elimination operator can be applied.  
 
Suppose the temp is 25. Since the temp is normal it cannot be 
used to eliminate other problem elements and therefore after 

Basic Component: 
 //initialize 
 threshold = user input(); 

while (true) { 
//adapt input from environment 
currentData = collectEnvironmentData(); 
if (currentData exceed threshold) { 
     send alert message to Controller and/or Advertiser;
} else { 
      send normal message to Controller on demand 

            } 
}



enumeration P1 = {([0,10], [0,10], 25, [60,120], [60,80], 
[50,80])}. More computation is needed.  

 
Step 3: Eliminate non-solution elements 
Suppose the temp is 40. Since the temp is too hot, other 
problem elements are eliminated and therefore after 
elimination P1 is empty.  Either the conclusion is “today is not 
a good day for picnic” or another computation cycle may be 
entered (to find an indoor location for picnic, for example).  
 
Step 4:  Propagate solution elements to peers 
Once a solution is obtained, the abstract machine will 
propagate the solution to its peers. For example, several super 
components may do the work at the same time. Once one 
super component gets the solution, the rest of them can stop 
work. An Advertiser will then inform the other super 
components (see box below).  

Advertiser pseudo code: 
while (true) { 

msg = getMsgFromSocket(); 
switch (msg.type) { 

case ‘Alert’:{  
uploadAlert(); //upload alert message to database 
propagateAlert(); //propagate alert message to its peers } 
… 
}; 

if( solution_set != null ) 
propagateSolution(); //propagate solution to its peers 
terminateCycle(); //terminate computation cycle} 

            else  switchCycle(); //switch to a new computation cycle } 
} 

 
3.  The TDR System Architecture 
As mentioned in Section 1, the TDR system is a multi-level 
slow intelligence system consisting mainly of three super-
components:  the Tian super-component, the Di super-
component and the Ren super-component. The TDR System 
architecture is illustrated by Figure 3.1. 
   
The TDR system has a common SIS server to support multi-
level messaging.  There is an integrated database to store TDR 
records, and a web GUI that supports the reception and 
sending of messages.  Each super-component has its own 
sensor(s) to collect information from the environment.  For 
example as shown in Figure 3.1 the Tian super-component has 
two plant sensors: Parrot Flower 1 and Parrot 2, the Di super-
component has an ambient temperature sensor, and the Ren 
component has a blood pressure sensor.  Each super-
component furthermore consists of the following components: 
a monitor component to make sure the information collected 
by the sensor(s) is within certain acceptable range, a GUI 
component to interact with the user, an Uploader component 
to upload the collected information to the next higher level and 
last but not least a controller component to control the 
activities of the various components to realize the computation 
cycles described in the previous section.  
 
When there are multiple controllers in a super-component such 
as the Tian super-component, a coordinator component can be 
introduced to coordinate the activities of the controllers and 

collect the information provided by the controllers.  Generally 
speaking both the controller component and the coordinator 
component are essentially controllers, which should possess 
both the abilities to coordinate and to control the sub-
components. 
 

 Figure 3.1. The TDR system architecture. 
 

In the experimental test bed, the following functionalities are 
provided: 
 
3.1 Define a Component 

A component should have predefined scope, predefined role 
and unique name within its predefined scope, these can be 
described in the component’s Register message, which is 
stored as an XML document under xml/InitXML. All 
parameters are defined as Key-Value pairs. The scope defines 
where outgoing messages from this component can go and the 
scope of incoming messages this component can receive. Role 
defines the type of component that can only handle certain 
types of incoming/outgoing messages. Among all components 
with the same name within a certain scope, only one of them 
can be active, i.e., the component name must be unique. There 
are currently six predefined roles: Basic, Monitor, Advertiser, 
Controller, Coordinator and Debugger. 



3.2 Create a Component 

Once the designer knows how a component should behave, he 
can start to implement it under the Components folder. 
Components with all kinds of roles have similar templates for 
implementation. There are two places containing information 
that the designer should pay attention to: (i) xml/initXML 
where all predefined Register messages for all available 
components are stored. (ii) For new components the designer 
should use the same scope and name in both XML definition 
and for constants in codes under Components / 
NEW_COMPONENT_NAME_HERE folder (SCOPE, 
NAME). The implementation of each role is far from being 
different from each other. As long as the designer doesn’t add 
extra message types to the collection of acceptable incoming 
messages, he can simply replace all scopes and names (folder 
name, SCOPE, NAME, class name, java source code 
CreateXXX, XML under initXML folder) and create a new 
working component almost immediately.  The six different 
roles of components are as follows: 
 
3.2.1 Basic Component 

For a Basic component such as Blood Pressure in Figure 3.1, 
no changes are necessary for main method. Method 
“initRecord” is provided as a place for putting initialization 
code. Method “componentTask” is provided as a place for 
putting periodically executed code, such as collecting data. 
Method “ProcessMsg” is provided as a place for handling 
different types of messages. Other variables can be added if 
needed, but the framework should suit the general purpose for 
implementing a Basic component that sends out Readings 
which are collected from a data source. 
 
3.2.2 Monitor Component 

For a Monitor component such as any GUI in Figure 3.1, it 
can be designed as a general monitor or a visual console to 
display data. Other variables can be added if needed. 
 
3.2.3 Advertiser Component 

For an Advertiser component such as any Uploader in Figure 
3.1, it can be designed as a tool to process the Readings and 
send anything outside the system via emails, sockets, etc. 
 
3.2.4 Controller Component 

For a Controller component such as Ren in Figure 3.1 to 
process combination of TempBloodPressure measurements, it 
can be broken down into code segments similar to the 
TempBloodPressure segment. Five types of code segments are 
under the ControllerComponents/TempBloodPressure folder: 
“initial.java” contains all initialization code of extra variables , 
“helper.java” contains all helper methods used and 
“helperClass.java” contains all user defined classes. By default 
Controller components only process Alert messages from 
Basic components. Alert messages must have unique names. 

The same names are used to create code snippets under the 
TempBloodPressure folder. 
 
3.2.5 Coordinator Component 

The Coordinator component  such as Tian Coordinator in 
Figure 3.1 processes the messages from controller components 
and other components and coordinates the activities of 
controller components and other components. 
 
3.2.6 Debugger Component 

The default Debugger is the PrjRemote.exe tool. It can be 
replaced by a customized Debugger. However, when a 
component is assigned the Debugger role, it will get a copy of 
all messages within the scope that it is in.   
 
3.3 How to Run a Component 

Scripts for the Controller component will be automatically 
generated. For all other roles customized scripts must be 
provided under the Scripts folder. For Basic or Monitor or 
Advertiser component, one can simply copy the BloodPressue 
or the GUI or the Uploader component, respectively, and do 
some name replacement. 
 
3.4 Scoping 

There can be multilevel scopes, each of which contains 
components that collaborate with each other or are related to 
each other. Scoping provides a way to further divide the 
components. By default messages will only be sent within 
current scope, but one can add (“Broadcast”, “True”) and 
(“Direction”, “[Up/Down]”) to enable broadcast of messages. 
 
3.5 Trouble-Shooting 

If a component cannot be connected to the SISServer, one 
should check SCOPE and NAME in both code and xml 
definition.  If  a message is not delivered, check if the message 
is sent to a target that does not process this type of message. It 
is also possible that one forgets to add certain parameters to 
the message such as valid Scope, Sender, Purpose, etc. 
 
4.  The Tian Super-component 
 
4.1 System Structure 

A plant is heavily dependent on the environment.  According 
to Chinese philosophy, we may consider the plants’ status as 
Tian (heaven), which will indicate environmental status to 
some degree. The plant sensors made by Parrot are used in our 
experiment, which can gather such data as amount of sunshine, 
moisture, temperature and amount of fertilizer in a plant’s 
environment (see Figure 4.1).  
 
In Tian super-component, we include two different parrot-
flower-sensors for plants in different locations. Since they are 
located in different places, they can gather data from two 



different environments. Figure 4.2 illustrates the interactive 
Tian super-component. Notice there are two Tian controllers 
coordinated by the Tian coordinator. 
 

 

Fig 4.1. The plant sensor Parrot Flower Power. 
 

 

Figure 4.2. The Tian Super-component. 
 
Thus the Tian Super-component has three layers: 

 Top Layer: Tian coordinator 

 Middle Layer: Tian1/Tian2 controllers  

 Bottom Layer: Flower1/Flower2, GUI1/GUI2, 
Uploader1/Uploader2 

Bottom layer is in charge of getting data from the sensor, 
displaying data to user, and uploading the data to database. 
Middle layer is in charge of logically activating/deactivating 
bottom layer components based on instructions from higher 
level. Top layer is in charge of aggregating data from lower 
layers. Top layer coordinator will also communicate with 
other super-components’ top-layer.  

 
4.2 Data Path 

There are two paths for the data. One is for data going 
upwards, which is done through Uploader1 and Uploader2. 
The other is for data going downwards, which is handled by 
Tian1 and Tian2. Tian1 and Tian2 are both controllers and can 
make their own decisions such as activate or deactivate  the 
corresponding Flower1 and Flower2 components. 
 
4.3 Control Message Definition 

1.  Activate all components 
Sender: Web GUI 
Receiver: Tian1/Tian2 
Purpose: activate all components under Tian1/Tian2 
sub-system 
 

2.  Deactivate all components 
Sender: Web GUI 
Receiver: Tian1/Tian2 
Purpose: deactivate all components under 
Tian1/Tian2 sub-system 
 

3. Active Flower1/Flower2 component 
Sender: Tian1/Tian2 
Receiver: Flower1/Flower2 component 
Purpose: activate Flower1/Flower2 component 
 

4. Deactivate Flower1/Flower2 component 
Sender: Tian1/Tian2 
Receiver: Flower1/Flower2 component 
Purpose: deactivate Flower1/Flower2 component 

 
4.4 AMC Compiler Steps for Tian 

Compared to the generic Abstract Machine Compiler AMC 
described into Section 2.3, the Tian Compiler has these 
following steps: Step 1 and Step 4.  The other two steps do not 
exist. In what follows we describe how the Compiler generates 
the various components in pseudo codes. 
 
In Tian compiler, there are two alert states and four inputs: 
Alert Flower1, Alert Flower2, Activate all components and 
Deactivate all components. Since the problem vector will have 
one and only one state element to be 1 and one and only one 
input element to be 1, so there are a total of C(1, 2)*C(1, 4) = 
8 different problem vectors. 
 
For example,  

 p0 = (1, 0, 0, 1, 0, 0). 
This specifies when in normal state, given input Alert Flower1, 
how the abstract machine should perform. 
 
Step 1:  Create flower component to adapt input from the 
environment 
The Flower1 and Flower2 monitors will gather environmental 
data (Sunlight, Moisturizer, Temperature, and Fertilizer) 
stored in parrot cloud which is updated by parrot sensors. The 
Flower1 and Flower2 monitors will generate alert message 



when new environmental data come in. Only Flower1 
component and Tian1 component will be described below. 
 

Flower1 Component: 
 //initialize 
while (true) { 

//adapt input from environment 
currentData1 = collectDataFromSensor1(); 
 
//send alert message if exceed threshold 
if (currentData1!=nulls) { 
 sendAlertMsgTo(Controller);//inform  

Controller that new data comes in 
sendAlertMsgTo(Advertiser);//inform  
Advertisser to propagate new data 
} else { 
 //no new data comes in } 

} 

 
Coordinator: 
      switch (msg.type) { 
               case ‘Emergency: 
                    if(msg.sender == “Tian1”){Tian1Array.add(msg); 
                    } 
                    if(msg.sender == “Tian2”){Tian2Array.add(msg); 
                    } 
                    break; 
} 

 

Step 2: (does not exist) 
Step 3: (does not exist) 
Step 4:  Create upload component to propagate solution 
elements to peers. 
The Advertiser component can upload necessary messages to 
the database and propagate to its peers. If a solution is found 

an Advertiser will color-code its banner in a tranquil color 
such as “blue” and inform the other components.  If no 
solution is found, its banner is color-coded “red” and control is 
switched to a new computation cycle (see box below). 
 

Advertiser pseudo code: 
while (true) { 

msg = getMsgFromSocket(); 
switch (msg.type) { 

case ‘NewFlower’:{ 
uploadAlert(); //upload alert message to database 
propagateAlert(); //propagate alert message to its peers }
… 
}; 

if( solution_set != null ) {color-code(“blue”);  
 //this component  is color-coded “blue” 

propagateSolution(); //propagate solution to its peers 
terminateCycle(); //terminate computation cycle} 

            else  {color-code(“red”); //this component is color-coded “red” 
switchCycle(); //switch to a new computation cycle } 

} 

 
5.  The Web GUI 
 
The dashboard is the main GUI interface of the TDR system. 
As illustrated by Figure 5.1 it provides a high-level overview 
of the data in the system. 
 
On the left side, it has a menu panel that contains all the 
actions the user can perform, including activating and 
deactivating components. For the super user, this menu will 
also include addition, deletion and modification of regular 
users. The activation and deactivation messages are sent 
utilizing a message database (MDB) and the TDR components 
will actively fetch the incoming messages from the MDB (see 
Figure 3.1). 
 

 
Figure 5.1. The dashboard for super user. 

 
There is a carousel that displays all components in rotation, 
four at a time for the PC screen and only one for the smart 
phone screen. This vividly demonstrates the idea of 
computation cycles in the TDR system. A component’s banner 
is in tranquil state (blue color) until an alert is received and 
then it changes to red color. Below the carousel panel, a table 
will be displaying all records that belong to the current user. 
For each entry, it contains the date and time of a record, the 
sensor type, the data type, the actual reading of the data, and 

Tian1: 
//maintain the status within controller. Make decision based on different status. 

//create and run stateMachine; 
msg = getMsgFromSocket(); 

    switch (msg.type) { 
               case ‘Alert: 
                    if(msg.sender == “Flower1”){ 
                                 Tian1DataArray.add(msg); 
                                  sendEmergencyMessageTo(“Tian Coordinator”); 
                    }          
                    break; 
               case ‘Setting’: 
                    stateMachine.perform(msg); 
                    break; 

} 
 

StateMachine: 
Status currentState = ALERT;//initial state 
void perform(Message msg) { //There are two kinds of messages: 
//a). environment data message from Tian Components, including alert flower 
//b). control message from WebGUI, including activate and deactivate all 

components 
 switch (currentState) { 
  case ALERT: 
switch (msg.type) { 
  case ‘Setting’://control message from webGUI 
switch (purpose) { 
case ‘Activate’: 
 activate Tian components.s 
case ‘Deactivate’: 
 deactivate Tian components  } break;  ] break; 

}  } 



the originator. This scheme allows flexibility and scalability, 
as in the future there might be more and more sensors added to 
the TDR system. 
 
By clicking the “find similar” button at the lower right part of 
the dashboard, messages such as M3 will be sent to the MDB 
to be fetched by the similarity retrieval component to find 
other user’s records similar to the current user’s record. The 
messages sent are exactly the same as the ones used in the 
TDR system, hence the web interface can be viewed as one 
remote component of the TDR system. 
 
After clicking one specific component on the carousel panel, it 
will show a detailed list of records that are from the 
component. If the user is communicating remotely with his/her 
doctor, a user might want to specify the record ID so that the 
doctor knows exactly what entry he/she is referring to. A 
graph showing the data-to-day changes of a selected  data 
iitem can also be displayed by the GUI for visualization 
purpose. 
 
6. Discussion 
 
In the formulation of the computation cycles for the TDR 
system, one can start with the computation cycle of any one of 
the three super-components.  For example the TDR system 
may start with Ren, i.e., the human conditions are first taken 
into consideration.  Then the atmospheric environmental 
attributes from Tian and surrounding residential attributes 
from Di are considered so that an overall solution can be 
found to enhance the chances of survival of the human being.  
The TDR system then tries to find appropriate Tian attributes 
tij representing atmospheric environmental variables such as 
sunlight and water level, etc. and Di attributes dij representing 
surrounding residential variables such as ambient temperature 
and humidity, etc.  
 
Alternately the TDR system may also start with the Tian or the 
Di computation cycles. Different constrained optimization 
algorithms can be formulated depending on the structure of 
multi-level computation cycles for Tian, Di and Ren to obtain 
the “best” solution, i.e., the solution that increase the 
probability of human survival the most. Finally instead of  (or 
in addition to) constrained optimization algorithms we can 
also manually set certain variables by human-centric 
interactions or through social interactions. 
 
One of our main goals is to expand the TDR system for the 
computation of Chi (also spelled as Qi in Chinese 
transliteration system HanYu PinYin). The Chi super-
component is regarded as at a higher level. It has attributes 
including both objective measurements and subjective 
evaluations. Some researchers propose to employ electrical 
measurements to estimate Chi [5]. Other researchers propose 
to combine objective measurements with subjective evaluation 
into an evaluation matrix to estimate Chi [6]. This makes the 

Chi super-component both pro-active and adaptive at multiple 
levels. 
 
The dashboard for TDR system can be further refined.  When 
one clicks on “view details” for the Chi super-component, a 
list of attributes for Chi is shown.  The objective 
measurements in this list is filled by the multi-level 
computation cycles based upon actual measurements.  The 
subjective evaluations are entered by the principal user 
himself/herself based upon his/her subjective feelings. 
 
The experimental TDR system provides a versatile platform 
for exploring and integrating applications such as personal 
health care, emergency management and social networking, 
etc. These applications are currently being investigated at our 
research laboratory, with major emphasis on an experimental 
TDR system to estimate Chi.  We will also further investigate 
the theoretical issue to define and characterize the resonance 
state of a system with multiple, multi-level computation cycles. 
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