
A Ranking-Oriented Approach to Cross-Project
Software Defect Prediction: An Empirical Study

Guoan You and Yutao Ma*
State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China

School of Computer, Wuhan University, Wuhan 430072, China
*E-mail: ytma@whu.edu.cn

Abstract—In recent years, cross-project defect prediction (CPDP)
has become very popular in the field of software defect prediction.
It was treated as a binary classification or regression problem in
most of previous studies. However, the existing methods to solve
this problem may be not suitable for those projects with limited
manpower and time. In this paper, we revisit the issue and treat
it as a ranking problem. Inspired by the idea of the Point-wise
approach to Learning to Rank, we propose a ranking-oriented
CPDP approach called ROCPDP. The empirical results obtained
based on AEEEM show that the defect predictor built with our
method under a specific CPDP context, in general, outperforms
those predictors trained by using the benchmark methods in both
CPDP and WPDP (within-project defect prediction) scenarios in
terms of two common evaluation metrics for rank correlation. So,
our work could be an initial attempt to construct new ranking-
oriented CPDP models for newly created or inactive projects.

Keywords-cross-project defect prediction; ranking; single-
objective optimization; gradient descent; multiple linear regression

I. INTRODUCTION
Due to the importance of software defect prediction in

quality assurance and software maintenance, in recent years it
has gradually become one of the most active research fields in
software engineering [1]. To the best of our knowledge, there
are two mainstream techniques for software defect prediction,
namely, within-project defect prediction (WPDP) and cross-
project defect prediction (CPDP).

Generally speaking, WPDP has one major disadvantage
that the training of WPDP models needs sufficient historical
data from the same project [2]. Therefore, it is difficult to apply
WPDP models to those newly created or inactive projects.
With the increasing amount of labeled defect data available on
the Internet, till now, CPDP has already been the most popular
technique for software defect prediction, though it is still
getting criticized for relatively poor prediction performance
compared with WPDP [3, 4].

The vast majority of prior studies on CPDP treat software
defect prediction as a binary classification problem [1-8], and
their main objective is to improve the prediction accuracy of
CPDP models using various machine learning techniques [4, 6-
8], such as feature selection, dimensionality reduction, and data
sampling. However, estimating the defect-proneness of a given
set of classes or software modules has limited effect on actual
activities in software testing and software maintenance [7, 9,
10], especially when there is a lack of human resources. That is
to say, from a software developer’s point of view, a ranking list

of defect-prone software entities is definitely more useful than
the information about how many the software entities in
question are possibly buggy.

Motivation: Now take a typical application scenario as an
example. Two software developers develop a new software
project written in Java, and one of the developers (whose name
is Jack) is responsible for software testing. Due to the tight
deadline for a new release (composed of 1000+ Java classes), a
sound technical solution for Jack is to identify the classes of the
release that are most likely to be defect-prone before executing
unit tests. Therefore, Jack builds a CPDP model based on
commonly-used software metrics (such as lines of code and CK
suite metrics [11]) using the Naïve Bayes (NB) classification
algorithm. According to the prediction result of the CPDP
model trained by other similar mature projects, only a very
small percentage (about 7%) of the classes in question may be
buggy, but the efficiency of the entire testing process is still
relatively low because Jack has to perform random testing. In
such a situation, Jack actually prefers to obtain a class ranking
list that identifies the priority of each defect-prone class, so as
to work out a cost-effective testing plan.

Figure 1. An illustration of the difference between various CPDP methods

Research Objective: Unlike the studies of CPDP based on
binary classification, in this paper we focus on the prediction of
ranks of defect-prone software entities. An illustration of the
difference between them is shown in Figure 1. In short, the
main goal of this paper is to propose a ranking-oriented
approach to CPDP (abbreviated as ROCPDP), which can rank
buggy software entities according to priority. In addition, we
also want to validate the feasibility of ROCPDP using a case
study based on five open-source projects from the publicly-
available data set AEEEM [12].

Labeled
defect data CPDP model Available

repositories

test

data collection model training

(a) Construction process of a traditional CPDP model

Our approach

 I1

I2

In

…

Test set

 I1 I2 In predict

I3

I3 …
YES YES NO NO

 I8 I2 I1 I12 …
1 2 3 n

predict

Binary classification result

Ranking prediction result

(b) Comparison between traditional CPDP and our approach

CPDP model
test

DOI reference number: 10.18293/SEKE2016-047

The contributions of this paper are summarized below.

(1) We consider CPDP as a ranking (prediction) problem
and propose a new, easy-to-use method called ROCPDP, which
utilizes a simple multiple linear regression model with single-
objective optimization. Besides, we optimize the model’s
parameters using the gradient descent method.

(2) We conduct an empirical study based on AEEEM, and
the result shows that in different CPDP scenarios our approach
outperforms other benchmark methods in terms of two
common evaluation metrics, i.e., Spearman’s rank correlation
coefficient and Kendall rank correlation coefficient.

The rest of this paper is organized as follows: Section II
introduces the related work of CPDP, and Section III presents
the details of our approach; in Section IV, a case study is given
to demonstrate that our approach is better than the benchmark
methods with regards to the given evaluation metrics; potential
threats to the validity of our study are presented in Section V;
in the end, Section VI summaries this paper and outlines future
work directions.

II. RELATED WORK
As mentioned before, CPDP is a popular defect prediction

technique used to predict defects in a given project with the
prediction models (also called predictors) trained based on
labeled defect data from other projects [13]. After Briand et al.
made an early attempt to validate the applicability of CPDP
[14], many researchers in this field have tried to improve the
performance of CPDP models using different techniques such
as data mining and machine learning. Fortunately, recent
studies have shown that it is indeed a feasible method for
defect prediction in software projects with different sizes [13,
15-20]. Due to space limitations of this paper, for more details
about CPDP approaches, please refer to the latest surveys [6, 7].

In these CPDP scenarios, the focus of the researches most
relevant to the topic of this paper is on predicting or estimating
the number of software defects/faults in a given software entity,
which could be deemed as a specific problem with predictive
analytics [10, 21]. In fact, this is not a new field of study.
Earlier studies often trained this type of predictors using linear
regression [22] or multiple regression analysis [23]. That is to
say, according to training examples, these predictors were used
to estimate the relationships among variables, including a
dependent variable, viz. the number of defects, and one or more
independent variables, viz. software metrics. More precisely,
such predictors help us predict the unknown value of dependent
variable from the known values of independent variables.

Subsequently, many other types of predictors have been
built with various regression methods such as decision trees
(DT), support vector regression (SVR), and Bayesian ridge
regression (BRR). Moreover, our prior empirical study [10]
shows that in WPDP and CPDP scenarios the DTR-based
predictor is the best estimator for the number of defects among
the six prediction models under discussion. To further improve
the accuracy of predictions, some optimization methods have
been applied to the construction of these types of predictors.
For example, Wang et al. [24] applied the Discrete Time
Markov Chain (DTMC) model to predict the number of defects

at each state in future based on a defect state transition model;
Rathore et al. [25] presented an approach to predicting the
number of faults using Genetic Programming.

On the other hand, in recent years a few researchers tried to
investigate software defect prediction from a new perspective.
That is, they formulated this problem as a ranking problem
rather than a binary classification problem or a regression
problem [9, 21]. Therefore, the approaches to Learning to Rank
(LTR) [26] in the field of information retrieval have been
recently introduced to investigate software defection prediction.
However, the above studies were conducted based on the
assumption that the rank of a defect-prone software entity is
proportional to the actual number of defects that it contains. In
addition, they were also performed in WPDP scenarios using
the conventional validation (e.g., partitioning the data set from
a project into two sets of 80% for training and 20% for test) or
10-fold cross-validation. Hence, it is still unknown whether
these methods proposed in prior studies [9, 21] can be used in
practical CPDP scenarios.

III. A RANKING-ORIENTED CPDP APPROACH
Considering the research objective of this paper, we focus

on the method for predicting buggy software entities’ ranks in
CPDP scenarios. Unlike previous similar studies [9, 21], we
assume that the rank of a buggy software entity is proportional
to the score determined by both the number of defects within
the entity and the severity of each defect. The higher the score
of a software entity receives, the higher its rank becomes.

A. Problem Definition
First of all, we build a predictor based on training examples

from different software projects. Suppose that there are two
ranking lists Lr and Lp for a given test set. Lr and Lp denote the
actual and predicted results of defect-prone software entities,
respectively, and they are partially ordered sets sorted in
descending order according to the score of each software entity.
So, the problem of this paper is how to minimize the difference
between Lp and Lr. In other words, we want to make Lp
approximate Lr as closely as possible, formally defined as

max (,),p rsim L L (1)

where sim is a function used to calculate the similarity between
two given ranking lists.

B. Description of Our Approach
Inspired by the idea of the Point-wise approach to LTR [26],

in this paper the above problem can be approximated by a
regression problem: given the values of a set of software
metrics for a software entity, predict its score. This implies that
our approach is required to predict the scores of defect-prone
software entities as accurately as possible. We then present the
formal definition of actual/real scores as follows:

th

1

th

, if the software entity has bugs,

0, if the software entity is non-defective.
==






∑
k

jr
ji

w i k
s

i

 (2)

where w is the severity score of a bug and k is a positive integer.
Note that w can be rated on a five-point or ten-point scale to
score a bug’s severity.

Because multiple liner regression (MLR) models have
proven useful in software defect prediction [9, 27, 28], in this
paper we define a simple MLR model predicting the scores of a
given set of software entities, as described below.

0 1 1 2 2
0

,θ θ θ θ θ
=

= + + + + = ∑

d

d d i i
i

s m m m m (3)

where mi denotes the value of a given software metric, d
indicates the number of software metrics, and θi is an unknown
parameter of the model.

During the supervised learning process of a MLR model,
the main goal of our method is to minimize all possible
differences between values predicted by the model and the
corresponding actual/real values. According to the principle of
least squares, the estimation of model parameters in our method
can be formulated as the minimization of a loss function, which
is defined below.

()2 2

1

1
() + || || ,

2
λ

=

= − ⋅ 
  
∑

N
r

i i
i

L s sθ θ (4)

where θ is a vector written as (θ0, θ1, θ2, …, θd), N is the
number of training examples, and λ is a small regularization
parameter.

C. Estimation of Model Parameters
As far as we know, gradient descent is a widely used first-

order optimization algorithm. In this paper, we utilize it to find
a local minimum of the above loss function, so as to estimate
the unknown parameters of the model. For a given training set,
the derivative with respect to θ of L(θ) is denoted as follows:

0

()

() ,

()

θ

θ

θ

∂

∂

∇ =

∂

∂

 
 
 
 
 
 
  



d

L

L

L

θ

θ

θ

 (5)

where the derivative with respect to any parameter θj of L(θ) is

()

() ()

()

()

2 2

1 0

1

1 0

1

() 1
+

2 2

1
 =2 2

2 2

 =

 = + .

λ
θ

θ θ

λ
θ

θ

θ λθ
θ

λθ

= =

=

= =

=

∂ ∂
= − ⋅

∂ ∂

∂
⋅ − ⋅ − + ⋅ ⋅

∂

∂
− ⋅ − +

∂

⋅ −

 
  

 
 
 

  
    

∑ ∑

∑

∑ ∑

∑

N d
r

i i j
i jj j

N
r r

i i i i j
i j

N d
r r

i i t t i j
i tj

N
r

j i i j
i

L
s s

s s s s

s s m s

m s s

θ

 (6)

Because the gradient descent method often takes multiple
iterations to calculate a local minimum that meets the demand
of accuracy, we update the value of θj in the negative direction
of the gradient with a small learning rate (or known as step size)
on each iteration, as defined below.

()
1

()
: + ,θ θ α θ α λθ

θ =

∂
= − ⋅ = − ⋅ ⋅ −

∂
 
  

∑
N

r

j j j j i i j
ij

L
m s s

θ
 (7)

where α is the learning rate (α > 0) and the symbol “:=” denotes
a assignment operator.

Figure 2. An algorithm to estimate model parameters

Figure 2 displays the algorithm used for estimating the
model’s parameters. Once all of the unknown parameters are
fixed based on training examples, the entire learning process
ends, and such a MLR model can be used for prediction. It is
worth noting that evaluating the sum of gradients (see Eq. (6))
becomes very expensive if training examples are enormous. In
this case, we can also utilize stochastic gradient descent to
optimize the model’s parameters when dealing with very large-
scale data sets. That is, the gradient of θj is approximated by a
gradient at a single example, thus leading to a low computation
cost. Therefore, Eq. (6) can be rewritten as

()()
+ .λθ

θ

∂
≈ ⋅ −

∂
r

j i i j

j

L
m s s

θ
 (8)

IV. CASE STUDY

A. Data Collection
The data set used in our case study is AEEEM [12], which

consists of five open-source software projects written in Java
and is available for free download on the Internet (website:
http://bug.inf.usi.ch). Data statistics of the projects in this data
set are presented in Table I. More details of the data set refer to
the literature [4, 12].

TABLE I. DATA STATISTICS OF AEEEM

Project Type # of Files % of Buggy Files # of Metrics
Equinox (EQ) OSGi framework 325 36.69% 71

Eclipse JDT Core
(JDT) IDE Development 997 20.66% 71

Eclipse PDE UI
(PDE) IDE Development 1492 14.01% 71

Mylyn (MYL) Task management 1862 13.16% 71
Apache Lucene

(AL)
Search engine

library 399 9.26% 71

--
Algorithm 1: Estimation of Model Parameters Using Gradient Descent
--
Input: θ, α, λ, and N training examples with d metrics and a score
Output: θ
 1: Initialize θ, α, and λ;
 2: Randomly shuffle the training examples;
 3: repeat
 4: Calculate the value of s according to Eq. (3);
5: Calculate the gradient of θ according to Eq. (6);
6: Update the value of θ according to Eq. (7);
7: until convergence
8: return θ;

--

B. Experiment Design
Data preprocessing. There are six types of software metrics

in AEEEM, including process metrics, entropy-of-source-code
metrics, entropy-of-change metrics, churn-of-source-code
metrics, previous-defect metrics, and source code metrics.
Because they are different in the scales of numerical values, we
have to normalize the raw data from AEEEM. Although there
exist many normalization methods for machine learning and
data mining, prior studies [10, 13, 16, 17, 18] have proven that
the normalization of training data using z-score can, to some
extent, improve prediction performance of defect classification
models. Hence, in this paper we apply z-score normalization to
every example in AEEEM.

Experiment Context Configuration. Unlike the prior studies
that focus on WPDP [9, 21], in CPDP scenarios we design two
types of experiment contexts, namely, one-to-one (O2O) and
many-to-one (M2O). For a target project treated as a test set,
the training set is a project chosen randomly from the rest of
the projects in AEEEM, which is referred to as O2O. On the
contrary, M2O indicates that the remaining AEEEM projects
(except the target project) are used as the training set. Because
some prior studies [2, 10, 13] have shown that defect prediction
performs well within projects and cross projects when there is a
sufficient amount of training data, in this paper we also want to
examine whether our method can achieve better performance
under the context of M2O.

Defect Predictor Training. According to training data, three
types of defect predictors are trained in the experiment contexts.
The first is simply built with a few typical regression methods
such as DT and SVR, the second is trained by using two classic

optimization algorithms (i.e., gradient descent and genetic
algorithm), and the third is obtained by using LTR approaches
like RankSVM [29]. The detailed introduction to the above
methods/algorithms refers to subsection IV.C.

Performance comparison. For each project in AEEEM, we
can obtain four (1

5 1−C) prediction results and one prediction
result under the contexts of O2O and M2O, respectively. Such
prediction results are evaluated in terms of the metrics defined
in subsection IV.D. To make a reasonable comparison between
our approach and the benchmark methods, we will make
twenty (5×4) O2O predictions and five (5×1) M2O predictions,
respectively, and then analyze their mean values of the
evaluation metrics for these predictions under different CPDP
contexts (see Table III).

C. Learning Methods
In general, regression analysis methods are a category of

quantitative methods which can predict the outcome of a given
dependent variable according to the relationships with other
related independent variables. In this paper, we build the first
type of defect predictors with five typical regression analysis
methods, namely, Linear Regression (LR), Random Forests
(RF), Gradient Boosting (GB), DT, and SVR, and they are
used to predict the score of each example in the test set. Due to
space limitations of this paper, if readers are interested in the
details of these methods, their descriptions refer to the
corresponding Wikipedia entries. Note that all of the five
methods are implemented with Weka [30]. Unless otherwise
specified, the default parameter settings for these regression
methods used in our experiments are specified by Weka.

TABLE II. BRIEF INTRODUCTION TO BENCHMARK APPROACHES

Approach Brief Description

LR
Linear Regression is a widely used statistical approach to modeling the relationship between a scalar dependent variable y and one or more
independent variables denoted as X, and it focuses on the conditional probability distribution of y given X. Moreover, the effectiveness of this
method for predicting the number of bugs has been validated by prior studies [22, 23, 27, 28].

RF
Random Forests, known as a notion of the general technique of random decision forests, are an ensemble learning method for regression and
other tasks. For regression analysis, random forests are used by building a number of decision trees according to training data and generating an
outcome that is the mean prediction of the individual decision trees, and they have been utilized as a benchmark method in [9, 10, 27].

GB
Gradient Boosting, which is a well-known machine learning technique for regression and classification problems, combines weak prediction
models into a single prediction model that has a greater capacity to deal with a given task, in a stage-wise fashion, and it often generalizes them
by optimizing an arbitrary differentiable loss function. Moreover, it has been utilized as a benchmark method in [10].

DT
Decision trees are one of the common predictive modeling approaches used in data mining and machine learning, and they are of two main
types: classification tree and regression tree. When predicted results are continuous values (typically real numbers), this type of decision trees is
called regression tree. Decision trees have been used as a benchmark method in [9, 10, 21, 27].

SVR
Support vector machines (SVMs) are supervised learning models that can be used for classification and regression analysis, and a version of
SVM for regression is called support vector regression (SVR). The models built based on SVR require only a small subset of training data and
maintain all the main features that characterize the maximum-margin algorithm. Moreover, SVR has been used as a benchmark method in [10].

GA
An approach to predicting the number of bugs in software systems using Genetic Programming is presented in [25], and its effectiveness has
been evaluated in terms of three evaluation metrics (namely, average relative error, Recall, and Completeness) for ten data sets collected from
PROMISE (http://promisedata.org).

RankSVM
RankSVM is an instance of SVM for efficiently training Ranking SVMs as defined in [29], which is used to solve certain ranking problems. In
general, it belongs to one of the Pair-wise ranking methods in information retrieval field. Moreover, RankSVM has been utilized as a benchmark
method in [21].

RankBoost
RankBoost [31] is a boosting method for ranking a given set of examples. It trains one weak learner that produces a weak ranking at each
iteration, and combines these weak rankings as the final ranking function. Like all boosting algorithms, RankBoost adjusts the weights assigned
to pairs of examples after each round of iteration. Moreover, RankBoost has been utilized as a benchmark method in [21].

Obviously, the above defect predictors are learned without
additional optimization. To improve the accuracy of CPDP
predictors while maintaining their generality, we train the
second type of defect predictors with typical single-objective

optimization algorithms. In addition to gradient descent used
in this paper, there are actually many optimization algorithms
for the single-objective optimization problem, such as Genetic
Algorithm (GA) and Evolutionary Programming (EP). Since

GA is the most popular type of evolutionary algorithms, we
optimize this problem with GA for the purpose of comparing
with the prior study [25] similar to our work.

In a word, the ranks of test examples are calculated based
on their scores which are predicted by the two types of defect
predictors described above. Note that if two or more examples
in test set get the same score, they will be sorted by example
number in ascending order by default. In contrast, LTR-based
defect predictors are obtained by optimizing the performance
of ranking directly. In this paper, we utilize two commonly
used Pair-wise approaches to LTR (i.e., RankSVM [29] and
RankBoost [31]) in the field of information retrieval to train
defect predictors.

The brief introduction to these benchmark approaches used
in our experiments is presented in Table II.

D. Evaluation Metrics
Here, we choose two widely used statistical indicators to

quantify the results of defect predictors. One is the Spearman’s
rank correlation coefficient (Spearman for short), which is
defined as the Pearson correlation coefficient between the
ranked variables; the other is the Kendall rank correlation
coefficient (Kendall for short), which measures the association
between two measured quantities [32]. The value of each
evaluation metric ranges between -1 and 1, and higher values
closer to 1 mean better prediction performance.

E. Empirical Results
Because the data set AEEEM does not actually contain the

information about the severity of bugs, we have to make the
assumption that the bugs in AEEEM are all identical. That is

to say, the score of a class is equal to the number of bugs that
it contains. Hence, all the buggy classes in AEEEM are ranked
in terms of the number of bugs.

TABLE III. PREDICTION RESULTS UNDER CPDP CONTEXTS

 Spearman Kendall
O2O M2O O2O M2O

LR 0.261 0.287 (+9.96%) 0.217 0.220 (+1.38%)
RF 0.288 0.313 (+8.68%) 0.231 0.253 (+9.52%)
GB 0.225 0.239 (+6.22%) 0.180 0.181 (+0.56%)
DT 0.280 0.319 (+13.93%) 0.223 0.261 (+17.04%)

SVR 0.242 0.259 (+7.02%) 0.194 0.205 (+5.67%)
ROCPDP 0.416 0.449(+7.93%) 0.357 0.392 (+9.80%)

GA 0.299 0.323 (+8.03%) 0.240 0.258 (+7.50%)
RankSVM 0.281 0.308 (+9.61%) 0.229 0.256 (+11.79%)
RankBoost 0.289 0.312 (+7.96%) 0.233 0.269 (+15.45%)

There are two interesting findings that deserve attention, as
presented in Table III.

(1) For each of the nine approaches under discussion, the
defect predictor trained under the context of M2O performs
better than that trained under the context of O2O in terms of the
two evaluation metrics. In particular, the defect predictor built
based on DT achieves the most significant improvement of
prediction performance under different CPDP contexts (as
indicated by the numbers in bold in brackets). The finding, in
agreement with previous studies on defect classification and
regression [2, 10, 13], suggests that the prediction performance
can be improved as long as there is sufficient training data
collected from other projects.

(2) According to the two evaluation metrics, our approach,
by and large, outperforms the other eight approaches under the
two experiment contexts, as shown by the numbers in bold.

TABLE IV. PERFORMANCE COMPARISON AMONG DIFFERENT METHODS

 LR RF GB DT SVR ROCPDP GA RankSVM RankBoost
S K S K S K S K S K S K S K S K S K

JDT 0.437 0.385 0.424 0.363 0.321 0.277 0.451 0.412 0.304 0.245 0.455 0.395 0.429 0.366 0.434 0.380 0.447 0.408
EQ 0.513 0.441 0.490 0.422 0.393 0.323 0.464 0.401 0.343 0.295 0.562 0.503 0.444 0.399 0.548 0.491 0.536 0.474
AL 0.222 0.167 0.267 0.223 0.198 0.134 0.246 0.193 0.257 0.218 0.391 0.355 0.356 0.304 0.211 0.162 0.232 0.173

MYL 0.252 0.198 0.196 0.137 0.189 0.132 0.278 0.212 0.230 0.183 0.486 0.413 0.304 0.247 0.237 0.185 0.249 0.198
PDE 0.291 0.226 0.275 0.211 0.231 0.182 0.319 0.231 0.238 0.179 0.351 0.294 0.364 0.295 0.321 0.271 0.308 0.269
Avg. 0.342 0.283 0.330 0.271 0.266 0.210 0.352 0.290 0.274 0.224 0.449 0.392 0.379 0.322 0.350 0.298 0.354 0.304

S: Spearman, K: Kendall, and the best result determined by both the two evaluation metrics is highlighted in bold type.

Because our prior study [10] has shown that CPDP models
for bug numbers are comparable to (or sometimes better than)
those WPDP models with respect to prediction performance.
That is, there are actually no significantly statistical differences
between the two types of defect predictors. To further validate
the effectiveness of our method, we compared our method
performed under the context of M2O with the benchmark
approaches conducted in WPDP scenarios.

We trained eight new defect predictors in a specific WPDP
scenario that has been used in [21]. For each target project in
Table IV (see the first column), we randomly selected 80% of
class files of the project as training data, and the remainder of
the files was used as test data. We repeated this step 20 times
and used the average of prediction results for the 20 executions
as the final result. As shown in Table IV, because our method
obtains the best result three times under the context of M2O, it

is, on average, better than the other eight approaches performed
in the WPDP scenario in terms of both the two evaluation
metrics. Compared with these benchmark methods, the
performance improvements with respect to Spearman range
from 18.47% (on GA) to 68.80% (on GB), and they span from
21.74% (on GA) to 86.67% (on GB) in terms of Kendall.
Generally speaking, according to the results of Tables III and
IV, under the context of M2O our method outstrips the
benchmark methods conducted in both CPDP and WPDP
scenarios, which suggests that it can be applied to those
projects with very little historical defect data.

V. THREATS TO VALIDITY
The most interesting result of this paper is that the defect

predictor built with our method under the context of M2O is,
on average, better than those trained by using different types

of typical learning methods in both CPDP and WPDP
scenarios. Even so, there are still some potential threats to the
validity of our work, one of which concerns the generalization
of the finding. The reasons mainly lie in the following aspects:
1) only the 5 projects in AEEEM is used in our experiments,
implying that we need to validate the general effectiveness of
our method on larger data sets from real-world software
projects; 2) because the information about the severity of bugs
is missing in AEEEM, we have to rank all the examples in
question in terms of the number of bugs instead of its actual
score; 3) in the WPDP and CPDP scenarios, we select training
data in a simple way, though there are many time-consuming
but effective methods for feature selection and dimension
reduction [21]; and 4) we only utilize eight typical methods
that belong to three different categories, namely, regression
analysis, single-objective optimization, and learning to rank,
without additional optimization for a given data set.

VI. CONCLUSION AND FUTURE WORK
In recent years CPDP has become very popular in software

engineering, but it is often treated as a binary classification or
regression problem in most of prior studies. To facilitate actual
development activities in projects with limited manpower and
time, in this paper we consider it as a ranking problem and
propose a ranking-oriented CPDP method. Interestingly, the
empirical results obtained based on AEEEM show that the
defect predictor built with our method under the context of
M2O is, on average, better than those trained by using the
benchmark methods in both CPDP and WPDP scenarios. This
suggests that our method is a sound choice to train defect
predictors for those newly created or inactive software projects.

As an initial attempt to construct ranking-oriented defect
predictors in different CPDP scenarios, the proposed approach
in this paper needs to be improved. So, our future work is to
accurately predict the Top-k ranking for buggy software entities.

ACKNOWLEDGEMENT
This work is supported by the 973 Program of China (No.

2014CB340404) and the National Natural Science Foundation
of China (Nos. 61272111 and 61273216).

REFERENCES
[1] C. Catal, “Software fault prediction: a literature review and current

trends,” Expert Systems with Applications, 2011, 38 (4): 4626–4636.
[2] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,

“Cross-project defect prediction: a large scale experiment on data vs.
domain vs. process,” in: ACM Proc. of ESEC/FSE 2009, pp. 91–100.

[3] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A systematic
review of fault prediction performance in software engineering,” IEEE
Transactions on Software Engineering, 2012, 38 (6): 1276–1304.

[4] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect prediction
approaches: a benchmark and an extensive comparison,” Empirical
Software Engineering, 2012, 17(4-5): 531–577.

[5] D. Radjenović, M. Heričko, R. Torkar, and A. Živkovič, “Software fault
prediction metrics: A systematic literature review,” Information and
Software Technology, 2013, 55(8): 1397-1418.

[6] G. Abaei and A. Selamat, “A survey on software fault detection based
on different prediction approaches,” Vietnam Journal of Computer
Science, 2014, 1(2): 79-95.

[7] R. Malhotra, “A systematic review of machine learning techniques for
software fault prediction,” Applied Soft Computing, 2015, 27: 504–518.

[8] H.J. Wang, T.M. Khoshgoftaar, and Q.A. Liang, “A study of software
metric selection techniques: stability analysis and defect prediction
model performance,” International Journal on Artificial Intelligence
Tools, 2013, 22(5): 1360010.

[9] X. Yang, K. Tang, and X. Yao, “A Learning-to-Rank Approach to
Software Defect Prediction,” IEEE Transactions on Reliability, 2015,
64(1): 234-246.

[10] M.M. Chen and Y.T. Ma, “An empirical study on predicting defect
numbers,” in: Proc. of SEKE 2015, USA, 2015, pp. 397-402.

[11] S.R. Chidamber and C.F. Kemerer, “A metrics suite for object oriented
design,” IEEE Trans. on Software Engineering, 1994, 20(6): 476-493.

[12] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison of
bug prediction approaches,” in: IEEE Proc. of MSR 2010, pp. 31-41.

[13] P. He, B. Li, X. Liu, J. Chen, and Y.T. Ma, “An empirical study on
software defect prediction with a simplified metric set,” Information and
Software Technology, 2015, 59: 170–190.

[14] L.C. Briand, W.L. Melo, and J. Wüst, “Assessing the applicability of
fault-proneness models across object-oriented software projects,” IEEE
Transactions on Software Engineering, 2002, 28(7): 706–720.

[15] J. Nam, S.J. Pany, and S. Kim, “Transfer Defect Learning,” in:
IEEE/ACM Proc. of ICSE 2013, USA, 2013, pp. 382–391.

[16] B. Turhan, A.T. Misirli, and A. Bener, “Empirical evaluation of the
effects of mixed project data on learning defect predictors,” Information
and Software Technology, 2013, 55(6): 1101–1118.

[17] Z. He, F. Shu, Y. Yang, M.S. Li, and Q. Wang, “An investigation on the
feasibility of cross-project defect prediction,” Automated Software
Engineering, 2012, 19(2): 167–199.

[18] F. Peters, T. Menzies, and A. Marcus, “Better cross company defect
prediction,” in: IEEE Proc. of MSR 2013, USA, 2013, pp. 409-418.

[19] S. Herbold, “Training data selection for cross-project defect prediction,”
in: ACM Proc. of PROMISE 2013, USA, 2013, p. 6.

[20] F. Rahman, D. Posnett, and P. Devanbu, “Recalling the imprecision of
cross-project defect prediction,” in: ACM Proc. of FSE 2012, p. 61.

[21] T.T. Nguyen, T.Q. An, V.T. Hai, and T.M. Phuong, “Similarity-based
and rank-based defect prediction,” in: IEEE Proc. of ATC 2014, pp.
321-325.

[22] J.E. Gaffney Jr., “Estimating the Number of Faults in Code,” IEEE
Transactions on Software Engineering, 1984, 10(4): 459-465.

[23] N.E. Fenton and M. Neil, “A Critique of Software Defect Prediction
Models,” IEEE Trans. on Software Engineering, 1999, 25(5): 675-689.

[24] J. Wang and H. Zhang, “Predicting defect numbers based on defect state
transition models,” in: ACM Proc. of ESEM 2012, pp. 191-200.

[25] S.S. Rathore and S. Kumar, “Predicting Number of Faults in Software
System using Genetic Programming,” Procedia Computer Science, 2015,
62: 303–311.

[26] T.-Y. Liu, “Learning to Rank for Information Retrieval,” Foundations
and Trends in Information Retrieval, 2009, 3(3): 225–331.

[27] E.J. Weyuker, T.J. Ostrand, and R.M. Bell, “Comparing the
effectiveness of several modeling methods for fault prediction,”
Empirical Software Engineering, 2010, 15(3): 277–295.

[28] K. Gao and T. M. Khoshgoftaar, “A comprehensive empirical study of
count models for software defect prediction,” IEEE Transactions on
Reliability, 2007, 56(2): 223–236.

[29] T. Joachims, “Optimizing search engines using clickthrough data,” in:
ACM Proc. of KDD 2002, Canada, 2012, pp. 133–142.

[30] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H.
Witten, “The WEKA Data Mining Software: An Update,” SIGKDD
Explorations, 2009, 11(1): 10–18.

[31] Y. Freund, R. Iyer, R. Schapire, and Y. Singer, “An efficient boosting
algorithm for combining preferences,” Journal of Machine Learning
Research, 2003, 4: 933–969.

[32] M. Kendall, “A New Measure of Rank Correlation,” Biometrika, 1938,
30(1–2): 81–89.

	I. Introduction
	II. Related Work
	III. A Ranking-Oriented CPDP Approach
	A. Problem Definition
	B. Description of Our Approach
	C. Estimation of Model Parameters

	IV. Case Study
	A. Data Collection
	B. Experiment Design
	C. Learning Methods
	D. Evaluation Metrics
	E. Empirical Results

	V. Threats to Validity
	VI. Conclusion and Future Work
	Acknowledgement
	References

