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Abstract—Software clustering is the process of organizing 

software units into appropriate clusters so as to efficiently 

modularize complex program structure. In this paper, we 

investigate the use of hybrids of Black Hole algorithm (developed 

using weighted aggregation, auxiliary archive and Genetic 

Algorithm) to optimize multiple objectives for clustering of 

android mobile applications. It is empirically and statistically 

observed that multi-objective Black Hole algorithm when 

improved using Genetic Algorithm and auxiliary archive 

outperforms Two-Archive algorithm and its counterparts. 
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I.  INTRODUCTION 

Human beings are always inspired by nature. Over the past 
couple of decades, a large number of complex research 
problems have found their solutions in nature-inspired 
algorithms such as Black Hole (BH) algorithm, Genetic 
Algorithm (GA) etc. BH algorithm [1] is inspired by the black 
hole theory of the universe and GA is inspired by Darwin’s 
survival of the fittest. Literature has a many instances where 
nature-inspired algorithms are applied to various fields of 
software engineering such as software testing [2], software 
effort estimation [3], and software clustering [4-7] etc. 
Software clustering refers to the placement of software units in 
an appropriate cluster which is useful to identify the cluster 
responsible for a particular functionality. It not only improves 
the structure of the system but also enhances the system 
comprehension. It is hence useful in both the development and 
maintenance of a software system [8].  

Large numbers of companies are developing mobile 
applications for the users of their domain. The developers in 
these companies are in immense stress to produce high-quality 
applications within deadlines. So, need to develop automated 
techniques to improve their maintainability have been aroused. 
It is believed that well-clustered mobile applications are easy to 
maintain. In this paper, BH algorithm along with its hybrids is 
applied for modularization of five android applications 
(described in Table I). The prime contributions of this research 
work are listed below. 

 Formulation and investigation of the use of BH algorithm 

as multi-objective optimization technique for the process of 

software modularization of android mobile applications. 

 Investigation of the impact of hybridizing BH algorithm 

with GA and auxiliary archive. 

 Comparison of modularization results of proposed hybrid 

approaches to that of existing Two-Archive approach [7]. 

TABLE I.  DESCRIPTION OF THE TEST PROBLEMS 

Software 

System 

Modules 

in MDG 

Edges in 

MDG 

System Description 

Foursquare 54 6 Open source popular game 

Sudoku 74 5 Open source popular game 

Apps 

Organizer 
135 13 Open source Organizer 

Punjab 

Kesari 
1234 32 Proprietary famous Punjabi 

newspaper  (Developed by 
‘Converse New Media) 

Desi 

coupon 
244 4 Proprietary  advertisement 

management app (Developed by 
‘Iniz Solutions’& yet to be launched) 

II. LITERATURE REVIEW 

Various search based optimization techniques have been 
applied to software clustering in past. A remarkable work in 
this field includes the use of GA and Hill Climbing algorithm 
(Bunch tool) [6] for automatically clustering software. They 
used the representation of the given software as a Module 
Dependency Graph (MDG) and Modularization Quality (MQ) 
is optimized to get desired clustering efficiently. MQ is further 
defined as the ratio of cohesion and coupling [6]. Praditwong et 
al. [7] [9] used six objectives for automatic software clustering 
and this approach outperforms Bunch tool. The authors of [10] 
used multi-objective GA for software modularization. In 
another work [11], the sum of intra-edges, inter-edges and the 
number of changes between original and updated clustering are 
used as fitness objectives using NSGA-II. This technique has 
been found to be successful for re-clustering. In another work 
[12], the authors used cooperative clustering for software 
modularization on the basis of MQ. With increase in size of 
problem, performance of this approach degrades. Particle 
Swarm Optimization (PSO) [4] and BH [13] algorithm has also 
been used for software clustering using MQ as optimization 
objective. Mkaouer et al. [14] applied NSGA-III algorithm for 
modularization of software using seven objectives. The 
approach is applicable if evolutions of the software are 
carefully maintained. 

III. SOFTWARE MODULARZIATION USING BLACK HOLE 

ALGORITHM 

BH algorithm is an optimization algorithm that searches for 

optimal solution on the basis of a set of objectives (mentioned 



in Table II) often conflicting with each other. The general 

structure of BH algorithm is shown in Figure 1. To implement 

BH, the population of individuals is initialized using (1). 

    
 
                                                (1) 

where i=1,2,…,Pop (Pop is the population size as described in 
Table III); j=1,2,…,n (n is the number of modules to be 
clustered). The control parameters to be used for implementing 
Black Hole algorithms are shown in Tables III. Since the BH 
algorithm is random, so each experiment has been conducted 
repeatedly 30 times, and the results thus obtained are analyzed 
and compared to that of existing Two-Archive algorithm based 
approach [7, 9]. NP, NAE, NIE, NCP, NCD and NIP described 
in Table II have been used as metrics for comparison. The 
problem of software clustering is formulated as a minimization 
problem. NAE (Table II) is a maximization objective and is 
reformulated as minimization objectives by negating its value.   

 

Figure 1.  Black Hole Algorithm 

A. Multi-Objective Weighted Black Hole Algorithm 

(MOWBH) 

MOWBH algorithm is applied to the problem of software 
clustering. In order to calculate the fitness of an individual, 
weighted sum approach has been used. In this approach, all g 
objectives (fk) mentioned in Table II are combined to make a 
single objective (F) as shown in (2). Use of random weights 
leads to sufficient diversity to obtain good quality clusters. The 
sum of weights of all the g objectives should be 1. This 
approach is easy to implement and widely used for multi-
objective optimization. To overcome negative impact of 
randomness, the algorithm is executed 30 times with different 
random weights and the solution with least value of F is 
selected as the output [15].  
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These algorithms are highly dependent on the weights and in 

case of conflicting objectives; allocation of weights is 

sometimes difficult. To overcome these problems, we 

investigated the use of Pareto optimization approaches [13] for 

optimizing the modularization of mobile applications. 

TABLE II.  OBJECTIVES TO BE OPTIMIZED 

Objective  Optimization Description 

Number of Clusters 

(NP) 

Minimize Lesser the number of clusters more is 

the number of modules per cluster [7] 

Number of IntrA-

edges (NAE) 

Maximize Dependencies among modules in the 

same cluster [7]  

Number of IntEr-

edges (NIE) 

Minimize Dependencies among modules in 

different clusters [7] 

Number of 

Modules per 
Cluster (NCP) 

Minimize It is conflicting to objective NP. It 

tends to create equal sized clusters 
[7] 

Number of Cyclic 

Dependencies 
(NCD) 

Minimize Dependencies such that modules in 

cluster A depends on modules in 
cluster B and some other modules of 

cluster B depends on modules in 

cluster A [11] 

Number of Isolated 
Clusters (NIP) 

Minimize Clusters with a single module [9] 

TABLE III.  CONTROL PARAMETERS FOR SOFTWARE CLUSTERING 

Parameter Value  Comments 

Population size 
(Ns) 

200 Manually tested by repeated 
executions of the algorithms.  

Generations 10 * n or When 

output does not 
change for 300 

consecutive 

generations. 

Stopping criteria 

Number of 
variables to be 

optimized (n) 

Number of 
modules to be 

decomposed. 

Each individual is composed of n 
decision variables. 

Size of REP 1% of the size 

of population 

To keep track of best (non-

dominating) solutions 

Crossover 

function (for GA) 

Arithmetic Child=R1 * Parent1+ R2 * Parent2 

Where R1, R2 are independent 

random numbers between 0 and 1. 
Ideal value for software Clustering 

(found by manual testing): 0.6. 

Mutation function 
(for GA) 

Uniform Ideal value for software Clustering 
(found by manual testing): 0.02. 

B. Multi-Objective Hybrid Black Hole Algorithm (MOBH) 

In this work, an auxiliary archive has been used to store 
Pareto front. Hyper-cubes have been used to maintain the best 
solutions for each iteration of the algorithm [16]. Although, the 
algorithm is very efficient in identifying optimal solutions but 
as the size of the problem increases, these algorithms tend to 
get stuck at local optima and the outputs are hence not globally 
optimal. In order to recover these algorithms from local optima, 
GA is used [5]. It leads to develop hybrid for MOWBH and 
MOBH called MOWBHGA and MOBHGA respectively. The 
algorithms thus developed are shown in Figure 2 and 3 
respectively.  

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

In order to validate the clustering process, MoJoFM and 
EdgeSim have been used as assessment criteria. MOWBHGA 
and MOBHGA are used for clustering of sample mobile 
applications (Table I) and results are compared to existing 
Two-Archive approach [7]. 



1) MoJoFM as Assessment Criteria 
Let A be the automatic clustering and B be the reference 

cluster structure of an object-oriented system developed [17]. 

          
        

               
      

mno(A,B)=min(move and join operations to transform A to B), 
max(mno  A,B))=most distant decomposition from reference 
decomposition. 

2) EdgeSim as Assessment Criteria 

        
         

         
     

Where E is the set of all edges in a given MDG and   is the set 
of inter-edges (inter-edges in A are inter-edges in B) or intra-
edges (intra-edges in A are intra-edges in B).  

Higher the value of MoJoFM and EdgeSim, better is the 
clustering. 

 

Figure 2.  Multi-Objective Weighted Black Hole Genetic Algorithm (MOWBHGA) 

 

Figure 3.  Multi-Objective Hybrid Black Hole Algorithm (MOBHGA) 
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Step 1 [Initialize population]: 
Step 1.1: Encode and initialize the population of possible clustering solutions. Set parameters as shown in Table III. 

Step 1.2: Evaluate fitness of each candidate in the population using objective functions mentioned in Table II. 
Step 1.3: Store the clustering that represent non-dominated vectors in the temporary repository (REP) and generate hyper-cubes to maintain best solutions.  

Step 1.4: Select current best non-dominated clustering achieved so far and designates it as Black Hole (XBH). 

Repeat steps 2 to 6 until stopping criteria is met (as shown in Table III) 
Step 2 [Identify new possible solutions]:  For each iteration t, identify new location (xi(t+1)) for each job sequence (xi(t)) by using 

Step 3 [Search for a better solution]: Evaluate fitness of each new clustering xi(t+1). If new candidate solution is better than the current candidate solution 

taking into consideration multiple objectives and their non-dominance, then replace the current solution with this new solution else ignore it. This step is 
required to locally search for a better sequence. It moves the current candidate randomly in search for a better solution. 

Step 4 [Update the best solution]: 

Step 4.1: If the new clustering xi(t+1) is better than the current Black Hole (xBH), then designate this new clustering as new Black Hole (xBH).  
Step 4.2: Calculate the radius of event of horizon (R) of the Black hole clustering in non-dominated Pareto front by calculating components of radius on 

the basis of objectives mentioned in Table II. For each objective (h), the component of the radius is 

Where fBH is the fitness value of the Black Hole clustering and fi(h) is the fitness value of the hth objective of ith clustering. For the problem of software 

clustering under consideration, the number of objectives (h) is equal to 6, Pop is the size of the population under consideration (Table III).  

Step 4.3: For each individual in the population and BH, if difference in fitness value of every corresponding objective function (h) dominates 
corresponding component of R i.e. R (fi(h)- fBH dominates R(h)), the candidate clustering is discarded and a new star is generated randomly. 

Step 5 [Apply Genetic algorithm]: 

Step 5.1 [Input]: Take the population of candidate clustering from Step 4 as input population of chromosomes. Set parameters as shown in Table III. 
Calculate the fitness of each solution using the non-dominance approach on the basis of objectives mentioned in Table II.  

Step 5.2 [Selection]: Select two parent chromosomes (tournament selection of size 2) from the population on the basis of their fitness. 

Step 5.3 [Crossover]: Cross the parents selected in Step 5.2 to create new children and mutate new child at random positions in the chromosome. 
Step 5.4 [Replace]: If this new offspring is better than the parents (non-dominating), then accept it. 

Step 6 [Update best solutions]: Update hyper-cubes and REP to maintain current non-dominated clustering. 

Step 7 [Output]: Return REP which includes resulting non-dominated clustering. 

  
   

   
   
   

 

Step 1 [Initialize population]:   
Step 1.1: Encode and initialize the population of candidate clustering solutions. Each individual is called a star. Set parameters as shown in Tables III. 
Step 1.2: Evaluate the fitness of each candidate in the population on the basis of combined weighted objective F calculated by using (2).  

Step 1.3: Designate the solution with the least value of F as Black Hole (xBH). 

Repeat Steps 2-5 until stopping criteria is met (as indicated in Table III). 
Step 2 [Identify new possible solutions]: For each iteration t, identify new location of star (xi(t+1)) for each ith clustering (xi(t)) 

xi(t+1)=xi(t)) + rand*(xBH -xi(t)) 

Step 3 [Search for a better solution]:  Evaluate fitness of each new clustering xi(t+1). If new candidate is better than the current candidate, then replace the 
current solution with this new. This is required to locally search for a better sequence. It moves the current candidate randomly in search for a better solution. 

Step 4 [Update the best solution]: 

Step 4.1: If the new solution is better than the current Black Hole (xBH), then designate this new solution as new Black Hole (xBH).  
Step 4.2: Calculate the radius of the event of horizon (R) of the Black Hole clustering.  

Where FBH is the fitness for Black Hole clustering and Fi is the fitness of ith clustering calculated using weighted fitness function calculated using Eq. (2). 

Step 4.3: If a star enters this event horizon, it is absorbed by the Black Hole. It means, if (FBH - Fi < R), the clustering is discarded as it is regarded to be 
entered in event horizon of Black Hole and is thus vanished. Generate new clustering sing Eq. (1) to balance the size of the population. 

Step 5 [Genetic Algorithm]: 

Step 5.1 [Input]: Take the population of candidate clustering from the Step 4 as input population of chromosomes and set parameters as shown in Table 
III. Calculate the fitness of each solution using function F described in Eq. (2). 

Step 5.2 [Selection]: Select two parent chromosomes (tournament selection of size 2) from the population on the basis of their fitness. 

Step 5.3 [Crossover]: Cross the parents selected in Step 5.2 to create new children and mutate new child at random positions in the chromosome. 
Step 5.4 [Replace]: If this new offspring is better than the parents in terms of F calculated using Eq. (2), then accept it. 

Step 6 [Output]: Output the candidate clustering having least value of combined objective function F. 



TABLE IV.  MOJOFM AND EDGESIM TO COMPARE MOWBHGA AND MOBHGA  FOR SAMPLE ANDROID MOBILE APPLICATIONS  

Mobile App Approach MoJoFM EdgeSim 

NP NAE NIE NCP NCD NIP Value NP NAE NIE NCP NCD NIP Value 

FourSquare MOWBHGA 6 64 233 8 13 0 32.65306 6 57 240 10 13 0 61.27946 

MOBHGA 4 167 130 28 5 0 57.14286 4 167 130 28 5 0 65.29966 

Two-Archive 7 170 127 25 8 2 44.89796 7 262 35 23 0 1 64.53674 

Sudoku MOWBHGA 5 214 59 65 2 2 34.78261 5 214 59 65 2 2 59.34066 

MOBHGA 4 151 122 45 4 1 49.27536 2 220 53 56 1 0 67.39927 

Two-Archive 7 190 83 11 0 0 46.37681 7 165 108 12 0 0 62.27106 

Apps Organizer MOWBHGA 13 45 529 12 9 0 35.65892 13 45 529 12 9 0 57.49129 

MOBHGA 7 369 205 99 7 3 41.86047 13 100 474 16 0 1 63.67247 

Two-Archive 15 267 307 18 0 0 46.51163 15 400 174 17 0 0 62.71777 

Punjab Kesari MOWBHGA 45 160 5627 33 114 0 46.38429 45 138 5649 25 115 0 47.21347 

MOBHGA 32 1048 4739 400 102 6 49.09164 34 1513 4274 479 76 6 47.46846 

Two-Archive 15 400 174 17 0 0 48.72768 44 3233 2528 41 105 9 49.87098 

Desi Coupon MOWBHGA 4 845 32 238 0 2 59.3361 4 858 `19 240 0 3 88.25542 

MOBHGA 3 406 471 137 12 0 60.16598 4 660 217 212 7 0 87.68529 

Two-Archive 5 380 497 67 0 1 59.30361 6 778 99 47 0 1 86.20297 

 

Analyzing Table IV reveals that if MoJoFM is used as 
validation criteria, MOBHGA results in a highest value as 
compared to its counterparts in 4 out of 5 sample applications 
and if EdgeSim is used as validation criteria, MOBHGA results 
in a highest value in 3 out of 5 sample applications.  

V. CONCLUSION 

This work proposes the application of multi-objective BH 

algorithm and its hybrids with GA and auxiliary archive for 

clustering of mobile applications and the resulting 

modularizations are compared to Two-Archive algorithm. The 

results indicate that MOBHGA algorithm outperforms 

weighted objective based hybrid MOWBHGA and Two-

Archive algorithm for clustering mobile applications. In future, 

PSO could be investigated for hybridizing Black Hole 

algorithm for obtaining even better clustering results. 
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