
DOI reference number: 10.18293/SEKE2016-004

Software Clustering using Hybrid Multi-Objective

Black Hole Algorithm

Kawal Jeet

Department of Computer Science

D.A.V. College,

Jalandhar, India

kawaljeet80@gmail.com

Renu Dhir

Department of Computer Science and Engineering

Dr. B. R. Ambedkar N. I. T.,

Jalandhar, India

dhirr@nitj.acin

Abstract—Software clustering is the process of organizing

software units into appropriate clusters so as to efficiently

modularize complex program structure. In this paper, we

investigate the use of hybrids of Black Hole algorithm (developed

using weighted aggregation, auxiliary archive and Genetic

Algorithm) to optimize multiple objectives for clustering of

android mobile applications. It is empirically and statistically

observed that multi-objective Black Hole algorithm when

improved using Genetic Algorithm and auxiliary archive

outperforms Two-Archive algorithm and its counterparts.

Keywords- bio-inspired algorithm, edgesim, nature-inspired

algorithm, serach based software engineering, software clsutering

I. INTRODUCTION

Human beings are always inspired by nature. Over the past
couple of decades, a large number of complex research
problems have found their solutions in nature-inspired
algorithms such as Black Hole (BH) algorithm, Genetic
Algorithm (GA) etc. BH algorithm [1] is inspired by the black
hole theory of the universe and GA is inspired by Darwin’s
survival of the fittest. Literature has a many instances where
nature-inspired algorithms are applied to various fields of
software engineering such as software testing [2], software
effort estimation [3], and software clustering [4-7] etc.
Software clustering refers to the placement of software units in
an appropriate cluster which is useful to identify the cluster
responsible for a particular functionality. It not only improves
the structure of the system but also enhances the system
comprehension. It is hence useful in both the development and
maintenance of a software system [8].

Large numbers of companies are developing mobile
applications for the users of their domain. The developers in
these companies are in immense stress to produce high-quality
applications within deadlines. So, need to develop automated
techniques to improve their maintainability have been aroused.
It is believed that well-clustered mobile applications are easy to
maintain. In this paper, BH algorithm along with its hybrids is
applied for modularization of five android applications
(described in Table I). The prime contributions of this research
work are listed below.

 Formulation and investigation of the use of BH algorithm

as multi-objective optimization technique for the process of

software modularization of android mobile applications.

 Investigation of the impact of hybridizing BH algorithm

with GA and auxiliary archive.

 Comparison of modularization results of proposed hybrid

approaches to that of existing Two-Archive approach [7].

TABLE I. DESCRIPTION OF THE TEST PROBLEMS

Software

System

Modules

in MDG

Edges in

MDG

System Description

Foursquare 54 6 Open source popular game

Sudoku 74 5 Open source popular game

Apps

Organizer
135 13 Open source Organizer

Punjab

Kesari
1234 32 Proprietary famous Punjabi

newspaper (Developed by
‘Converse New Media)

Desi

coupon
244 4 Proprietary advertisement

management app (Developed by
‘Iniz Solutions’& yet to be launched)

II. LITERATURE REVIEW

Various search based optimization techniques have been
applied to software clustering in past. A remarkable work in
this field includes the use of GA and Hill Climbing algorithm
(Bunch tool) [6] for automatically clustering software. They
used the representation of the given software as a Module
Dependency Graph (MDG) and Modularization Quality (MQ)
is optimized to get desired clustering efficiently. MQ is further
defined as the ratio of cohesion and coupling [6]. Praditwong et
al. [7] [9] used six objectives for automatic software clustering
and this approach outperforms Bunch tool. The authors of [10]
used multi-objective GA for software modularization. In
another work [11], the sum of intra-edges, inter-edges and the
number of changes between original and updated clustering are
used as fitness objectives using NSGA-II. This technique has
been found to be successful for re-clustering. In another work
[12], the authors used cooperative clustering for software
modularization on the basis of MQ. With increase in size of
problem, performance of this approach degrades. Particle
Swarm Optimization (PSO) [4] and BH [13] algorithm has also
been used for software clustering using MQ as optimization
objective. Mkaouer et al. [14] applied NSGA-III algorithm for
modularization of software using seven objectives. The
approach is applicable if evolutions of the software are
carefully maintained.

III. SOFTWARE MODULARZIATION USING BLACK HOLE

ALGORITHM

BH algorithm is an optimization algorithm that searches for

optimal solution on the basis of a set of objectives (mentioned

in Table II) often conflicting with each other. The general

structure of BH algorithm is shown in Figure 1. To implement

BH, the population of individuals is initialized using (1).

 (1)

where i=1,2,…,Pop (Pop is the population size as described in
Table III); j=1,2,…,n (n is the number of modules to be
clustered). The control parameters to be used for implementing
Black Hole algorithms are shown in Tables III. Since the BH
algorithm is random, so each experiment has been conducted
repeatedly 30 times, and the results thus obtained are analyzed
and compared to that of existing Two-Archive algorithm based
approach [7, 9]. NP, NAE, NIE, NCP, NCD and NIP described
in Table II have been used as metrics for comparison. The
problem of software clustering is formulated as a minimization
problem. NAE (Table II) is a maximization objective and is
reformulated as minimization objectives by negating its value.

Figure 1. Black Hole Algorithm

A. Multi-Objective Weighted Black Hole Algorithm

(MOWBH)

MOWBH algorithm is applied to the problem of software
clustering. In order to calculate the fitness of an individual,
weighted sum approach has been used. In this approach, all g
objectives (fk) mentioned in Table II are combined to make a
single objective (F) as shown in (2). Use of random weights
leads to sufficient diversity to obtain good quality clusters. The
sum of weights of all the g objectives should be 1. This
approach is easy to implement and widely used for multi-
objective optimization. To overcome negative impact of
randomness, the algorithm is executed 30 times with different
random weights and the solution with least value of F is
selected as the output [15].

 (2)

These algorithms are highly dependent on the weights and in

case of conflicting objectives; allocation of weights is

sometimes difficult. To overcome these problems, we

investigated the use of Pareto optimization approaches [13] for

optimizing the modularization of mobile applications.

TABLE II. OBJECTIVES TO BE OPTIMIZED

Objective Optimization Description

Number of Clusters

(NP)

Minimize Lesser the number of clusters more is

the number of modules per cluster [7]

Number of IntrA-

edges (NAE)

Maximize Dependencies among modules in the

same cluster [7]

Number of IntEr-

edges (NIE)

Minimize Dependencies among modules in

different clusters [7]

Number of

Modules per
Cluster (NCP)

Minimize It is conflicting to objective NP. It

tends to create equal sized clusters
[7]

Number of Cyclic

Dependencies
(NCD)

Minimize Dependencies such that modules in

cluster A depends on modules in
cluster B and some other modules of

cluster B depends on modules in

cluster A [11]

Number of Isolated
Clusters (NIP)

Minimize Clusters with a single module [9]

TABLE III. CONTROL PARAMETERS FOR SOFTWARE CLUSTERING

Parameter Value Comments

Population size
(Ns)

200 Manually tested by repeated
executions of the algorithms.

Generations 10 * n or When

output does not
change for 300

consecutive

generations.

Stopping criteria

Number of
variables to be

optimized (n)

Number of
modules to be

decomposed.

Each individual is composed of n
decision variables.

Size of REP 1% of the size

of population

To keep track of best (non-

dominating) solutions

Crossover

function (for GA)

Arithmetic Child=R1 * Parent1+ R2 * Parent2

Where R1, R2 are independent

random numbers between 0 and 1.
Ideal value for software Clustering

(found by manual testing): 0.6.

Mutation function
(for GA)

Uniform Ideal value for software Clustering
(found by manual testing): 0.02.

B. Multi-Objective Hybrid Black Hole Algorithm (MOBH)

In this work, an auxiliary archive has been used to store
Pareto front. Hyper-cubes have been used to maintain the best
solutions for each iteration of the algorithm [16]. Although, the
algorithm is very efficient in identifying optimal solutions but
as the size of the problem increases, these algorithms tend to
get stuck at local optima and the outputs are hence not globally
optimal. In order to recover these algorithms from local optima,
GA is used [5]. It leads to develop hybrid for MOWBH and
MOBH called MOWBHGA and MOBHGA respectively. The
algorithms thus developed are shown in Figure 2 and 3
respectively.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In order to validate the clustering process, MoJoFM and
EdgeSim have been used as assessment criteria. MOWBHGA
and MOBHGA are used for clustering of sample mobile
applications (Table I) and results are compared to existing
Two-Archive approach [7].

1) MoJoFM as Assessment Criteria
Let A be the automatic clustering and B be the reference

cluster structure of an object-oriented system developed [17].

mno(A,B)=min(move and join operations to transform A to B),
max(mno A,B))=most distant decomposition from reference
decomposition.

2) EdgeSim as Assessment Criteria

Where E is the set of all edges in a given MDG and is the set
of inter-edges (inter-edges in A are inter-edges in B) or intra-
edges (intra-edges in A are intra-edges in B).

Higher the value of MoJoFM and EdgeSim, better is the
clustering.

Figure 2. Multi-Objective Weighted Black Hole Genetic Algorithm (MOWBHGA)

Figure 3. Multi-Objective Hybrid Black Hole Algorithm (MOBHGA)

 =

Step 1 [Initialize population]:
Step 1.1: Encode and initialize the population of possible clustering solutions. Set parameters as shown in Table III.

Step 1.2: Evaluate fitness of each candidate in the population using objective functions mentioned in Table II.
Step 1.3: Store the clustering that represent non-dominated vectors in the temporary repository (REP) and generate hyper-cubes to maintain best solutions.

Step 1.4: Select current best non-dominated clustering achieved so far and designates it as Black Hole (XBH).

Repeat steps 2 to 6 until stopping criteria is met (as shown in Table III)
Step 2 [Identify new possible solutions]: For each iteration t, identify new location (xi(t+1)) for each job sequence (xi(t)) by using

Step 3 [Search for a better solution]: Evaluate fitness of each new clustering xi(t+1). If new candidate solution is better than the current candidate solution

taking into consideration multiple objectives and their non-dominance, then replace the current solution with this new solution else ignore it. This step is
required to locally search for a better sequence. It moves the current candidate randomly in search for a better solution.

Step 4 [Update the best solution]:

Step 4.1: If the new clustering xi(t+1) is better than the current Black Hole (xBH), then designate this new clustering as new Black Hole (xBH).
Step 4.2: Calculate the radius of event of horizon (R) of the Black hole clustering in non-dominated Pareto front by calculating components of radius on

the basis of objectives mentioned in Table II. For each objective (h), the component of the radius is

Where fBH is the fitness value of the Black Hole clustering and fi(h) is the fitness value of the hth objective of ith clustering. For the problem of software

clustering under consideration, the number of objectives (h) is equal to 6, Pop is the size of the population under consideration (Table III).

Step 4.3: For each individual in the population and BH, if difference in fitness value of every corresponding objective function (h) dominates
corresponding component of R i.e. R (fi(h)- fBH dominates R(h)), the candidate clustering is discarded and a new star is generated randomly.

Step 5 [Apply Genetic algorithm]:

Step 5.1 [Input]: Take the population of candidate clustering from Step 4 as input population of chromosomes. Set parameters as shown in Table III.
Calculate the fitness of each solution using the non-dominance approach on the basis of objectives mentioned in Table II.

Step 5.2 [Selection]: Select two parent chromosomes (tournament selection of size 2) from the population on the basis of their fitness.

Step 5.3 [Crossover]: Cross the parents selected in Step 5.2 to create new children and mutate new child at random positions in the chromosome.
Step 5.4 [Replace]: If this new offspring is better than the parents (non-dominating), then accept it.

Step 6 [Update best solutions]: Update hyper-cubes and REP to maintain current non-dominated clustering.

Step 7 [Output]: Return REP which includes resulting non-dominated clustering.

Step 1 [Initialize population]:
Step 1.1: Encode and initialize the population of candidate clustering solutions. Each individual is called a star. Set parameters as shown in Tables III.
Step 1.2: Evaluate the fitness of each candidate in the population on the basis of combined weighted objective F calculated by using (2).

Step 1.3: Designate the solution with the least value of F as Black Hole (xBH).

Repeat Steps 2-5 until stopping criteria is met (as indicated in Table III).
Step 2 [Identify new possible solutions]: For each iteration t, identify new location of star (xi(t+1)) for each ith clustering (xi(t))

xi(t+1)=xi(t)) + rand*(xBH -xi(t))

Step 3 [Search for a better solution]: Evaluate fitness of each new clustering xi(t+1). If new candidate is better than the current candidate, then replace the
current solution with this new. This is required to locally search for a better sequence. It moves the current candidate randomly in search for a better solution.

Step 4 [Update the best solution]:

Step 4.1: If the new solution is better than the current Black Hole (xBH), then designate this new solution as new Black Hole (xBH).
Step 4.2: Calculate the radius of the event of horizon (R) of the Black Hole clustering.

Where FBH is the fitness for Black Hole clustering and Fi is the fitness of ith clustering calculated using weighted fitness function calculated using Eq. (2).

Step 4.3: If a star enters this event horizon, it is absorbed by the Black Hole. It means, if (FBH - Fi < R), the clustering is discarded as it is regarded to be
entered in event horizon of Black Hole and is thus vanished. Generate new clustering sing Eq. (1) to balance the size of the population.

Step 5 [Genetic Algorithm]:

Step 5.1 [Input]: Take the population of candidate clustering from the Step 4 as input population of chromosomes and set parameters as shown in Table
III. Calculate the fitness of each solution using function F described in Eq. (2).

Step 5.2 [Selection]: Select two parent chromosomes (tournament selection of size 2) from the population on the basis of their fitness.

Step 5.3 [Crossover]: Cross the parents selected in Step 5.2 to create new children and mutate new child at random positions in the chromosome.
Step 5.4 [Replace]: If this new offspring is better than the parents in terms of F calculated using Eq. (2), then accept it.

Step 6 [Output]: Output the candidate clustering having least value of combined objective function F.

TABLE IV. MOJOFM AND EDGESIM TO COMPARE MOWBHGA AND MOBHGA FOR SAMPLE ANDROID MOBILE APPLICATIONS

Mobile App Approach MoJoFM EdgeSim

NP NAE NIE NCP NCD NIP Value NP NAE NIE NCP NCD NIP Value

FourSquare MOWBHGA 6 64 233 8 13 0 32.65306 6 57 240 10 13 0 61.27946

MOBHGA 4 167 130 28 5 0 57.14286 4 167 130 28 5 0 65.29966

Two-Archive 7 170 127 25 8 2 44.89796 7 262 35 23 0 1 64.53674

Sudoku MOWBHGA 5 214 59 65 2 2 34.78261 5 214 59 65 2 2 59.34066

MOBHGA 4 151 122 45 4 1 49.27536 2 220 53 56 1 0 67.39927

Two-Archive 7 190 83 11 0 0 46.37681 7 165 108 12 0 0 62.27106

Apps Organizer MOWBHGA 13 45 529 12 9 0 35.65892 13 45 529 12 9 0 57.49129

MOBHGA 7 369 205 99 7 3 41.86047 13 100 474 16 0 1 63.67247

Two-Archive 15 267 307 18 0 0 46.51163 15 400 174 17 0 0 62.71777

Punjab Kesari MOWBHGA 45 160 5627 33 114 0 46.38429 45 138 5649 25 115 0 47.21347

MOBHGA 32 1048 4739 400 102 6 49.09164 34 1513 4274 479 76 6 47.46846

Two-Archive 15 400 174 17 0 0 48.72768 44 3233 2528 41 105 9 49.87098

Desi Coupon MOWBHGA 4 845 32 238 0 2 59.3361 4 858 `19 240 0 3 88.25542

MOBHGA 3 406 471 137 12 0 60.16598 4 660 217 212 7 0 87.68529

Two-Archive 5 380 497 67 0 1 59.30361 6 778 99 47 0 1 86.20297

Analyzing Table IV reveals that if MoJoFM is used as
validation criteria, MOBHGA results in a highest value as
compared to its counterparts in 4 out of 5 sample applications
and if EdgeSim is used as validation criteria, MOBHGA results
in a highest value in 3 out of 5 sample applications.

V. CONCLUSION

This work proposes the application of multi-objective BH

algorithm and its hybrids with GA and auxiliary archive for

clustering of mobile applications and the resulting

modularizations are compared to Two-Archive algorithm. The

results indicate that MOBHGA algorithm outperforms

weighted objective based hybrid MOWBHGA and Two-

Archive algorithm for clustering mobile applications. In future,

PSO could be investigated for hybridizing Black Hole

algorithm for obtaining even better clustering results.

REFERENCES

[1] A. Hatamlou, "Black hole: A new heuristic optimization approach for

data clustering," Information Sciences, vol. 222, pp. 175-184, 2013.

[2] P. R. Srivastava, M. Chis, S. Deb, and X.-S. Yang, "An efficient

optimization algorithm for structural software testing," International

Journal of Artificial Intelligence™, vol. 8, pp. 68-77, 2012.

[3] K. Srinivasan and D. Fisher, "Machine Learning Approaches to

Estimating Software Development Effort," Series on Software

Engineering and Knowledge Engineering, vol. 16, p. 52, 2005.

[4] I. Hussain, A. Khanum, A. Q. Abbasi, and M. Y. Javed, "A Novel

Approach for Software Architecture Recovery using Particle Swarm

Optimization," International Arab Journal of Information Technology

(IAJIT), vol. 12, 2015.

[5] A. S. Mamaghani and M. R. Meybodi, "Clustering of software systems

using new hybrid algorithms," in Computer and Information

Technology, 2009. CIT'09. Ninth IEEE International Conference on,

2009, pp. 20-25.

[6] B. S. Mitchell and S. Mancoridis, "On the evaluation of the Bunch

search-based software modularization algorithm," Soft Computing, vol.

12, pp. 77-93, 2008.

[7] K. Praditwong, M. Harman, and X. Yao, "Software module clustering as

a multi-objective search problem," Software Engineering, IEEE

Transactions on, vol. 37, pp. 264-282, 2011.

[8] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen, "The structure

and value of modularity in software design," in ACM SIGSOFT Software

Engineering Notes, 2001, pp. 99-108.

[9] K. Praditwong, "Solving software module clustering problem by

evolutionary algorithms," in Computer Science and Software

Engineering (JCSSE), 2011 Eighth International Joint Conference on,

2011, pp. 154-159.

[10] C. Kishore and A. Srinivasulu, "Multi-objective approach for software

module clustering," International Journal of Advanced Research in

Computer Engineering & Technology (IJARCET), vol. 2, 2012.

[11] H. Abdeen, H. Sahraoui, O. Shata, N. Anquetil, and S. Ducasse,

"Towards automatically improving package structure while respecting

original design decisions," in Reverse Engineering (WCRE), 2013 20th

Working Conference on, 2013, pp. 212-221.

[12] A. Ibrahim, D. Rayside, and R. Kashef, "Cooperative based software

clustering on dependency graphs," in Electrical and Computer

Engineering (CCECE), 2014 IEEE 27th Canadian Conference on, 2014,

pp. 1-6.

[13] K. Jeet and R. Dhir, "Software Architecture Recovery using Genetic

Black Hole Algorithm," ACM SIGSOFT Software Engineering Notes,

vol. 40, pp. 1-5, 2015.

[14] W. Mkaouer, et al., "Many-Objective Software Remodularization Using

NSGA-III," ACM Transactions on Software Engineering and

Methodology (TOSEM), vol. 24, p. 17, 2015.

[15] R. T. Marler and J. S. Arora, "The weighted sum method for multi-

objective optimization: new insights," Structural and multidisciplinary

optimization, vol. 41, pp. 853-862, 2010.

[16] C. A. C. Coello, G. T. Pulido, and M. S. Lechuga, "Handling multiple

objectives with particle swarm optimization," Evolutionary

Computation, IEEE Transactions on, vol. 8, pp. 256-279, 2004.

[17] F. Beck and S. Diehl, "On the impact of software evolution on software

clustering," Empirical Software Engineering, vol. 18, pp. 970-1004,

2013.

