
Self-learning Change-prone Class Prediction

Meng Yan, Mengning Yang, Chao Liu, Xiaohong Zhang

School of Software Engineering

Chongqing University

Chongqing 401331, China

{meng.yan, mnyang, liu.chao, xhongz} @cqu.edu.cn

Abstract—Software change-prone class prediction can enhance

software decision making activities during software maintenance

(e.g., resource allocating). Many change-prone class prediction

approaches have been proposed and most are effective in inter-

version prediction within a project. These approaches usually

build a supervised prediction model by learning from historical

labeled dataset. However, a major challenge which remains is

that this typical change-prone prediction setting cannot be used

for new projects or projects with limited historical data. To

address this challenge, we propose to tackle this task by adopting

a novel prediction method which has not been used in change-

prone prediction, namely self-learning method. The key idea of

the self-learning method is to enable the change-prone prediction

on new projects or projects with limited historical dataset by

learning from itself. In this paper, we apply a state-of-art self-

learning method, CLAMI, to change-prone prediction. In

addition, we propose a novel self-learning approach CLAMI+ by

extending CLAMI. The experiments among 14 open source

projects show that the self-learning methods achieve comparable

results to four typical inter-version baselines and the proposed

CLAMI+ slightly improves the CLAMI method on average.

Keywords-software maintenance; change-prone prediction;

self-learning; empirical software engineering

I. INTRODUCTION

Software maintenance has been regarded as one of the most
expensive and tough tasks in the whole software lifecycle [1].
Managing and controlling changes in software maintenance is
one of the significant concerns of the software industry [2]. A
change could be made because of existence of bugs, new
features or refactoring [3, 4]. A change-prone class means that
the class is likely to change with a high probability after a
product release. It can represent the weak part of a software
system [2]. Thus, software change-prone class prediction
contributes to better allocation of software resources (e.g., time
and staff) in the software maintenance process [5]. This
technique aids to support maintenance related decision making
by identifying change-prone classes in advance. As a result, the
quality assurance teams or testers can determine the critical
parts of the software where the quality assurance or testing
activities should pay more attention and track rigorously.

In order to predict change-prone classes in advance, various
categories of software metrics have been proved to correspond
to the change-proneness, such as OO metrics (e.g., cohesion,
coupling, inheritance, etc.) [6], code smells [7], design patterns
and [8] evolution metrics [9, 10]. In terms of the techniques,

different machine learning approaches have been used, such as
Bayesian networks [11], neural networks [12], multivariate
regression [1] and ensemble methods [5]. A typical prediction
model based on machine learning is designed by learning from
a historical labeled dataset in a supervised way. However, this
technique is difficult to apply on new projects or projects with
limited historical data.

A cross project change-prone class prediction method has
been proposed to address the above-mentioned issue [13]. The
cross project technique is motivated by the similar techniques
in defect prediction [14, 15]. It enables change-prone class
prediction on projects with limited labeled dataset by learning
from other projects. Unfortunately, one issue which remains in
cross-project prediction is that different datasets possess
different distributions [16]. The success rate (ratio of
combination whose performance is greater than a certain
threshold) of cross-project reported in the work [13] is
generally poor (30%) which cannot compare to the prediction
performance (67%) of the methods using historical datasets
(i.e., inter-version prediction within a project). This implies that
the cross-project change-prone prediction may not be effective
and it depends on the quality of the source project [13].

To address this issue, we propose to tackle this task by
adopting self-learning method. In detail, we apply a state-of-art
self-learning method (CLAMI: Clustering, LAbeling, Metric
selection and Instance selection) to the change-prone class
prediction which has been successfully used in defect
prediction [16]. The key idea of this self-learning method is to
enable the prediction on new projects or projects with limited
labeled datasets by learning from itself.

The process of this self-learning method can be interpreted
by dividing three phases as Figure 1 shows. The clue of the
process is to build the prediction model by learning on selected
informative metrics and instances of itself. In detail, the first
phase is clustering and initialized labeling. In this phase, an
unlabeled dataset is clustered and labeled according to the
magnitude of metric values [16]. The motivation of this phase
is to provide the initialized labels of all the instances. However,
the initialized labels of all the instances might not be correct
enough. In our self-learning method, some of them will be
automatically selected as final training set according to our
criteria in the following phase. The second phase is to conduct
the metric selection and instance selection from the labeled
instances in the first phase. As a result, an informative training
set of metrics and instances are generated. The third phase is

DOI reference number: 10.18293/SEKE2016-039

modeling and prediction. The prediction model is built by
learning from the selected instances in the second phase.

In particular, the initialized labeling step in the first phase
of CLAMI method is conducted by measuring the count of
violation (i.e., a metric value is greater than a certain threshold)
of an instance. However, we observe that information loss
might result from mapping the violation to a 1 or 0 (i.e.,
violation or not) result in the first phase. The information that
how much the instance violated on a metric is not considered.
Based on this observation, we propose a novel self-learning
method CLAMI+ by extending CLAMI. The difference lies in
the first phase as Figure 1 shows. In detail, the CLAMI+
method uses the violation degree (i.e., transforming the
difference between the metric value and the threshold to a
probabilistic value) to replace the Boolean representation in
CLAMI. As a result, the fine information that how much the
instance violated on a metric is considered. Under this way, the
selection of final training set of CLAMI+ is different from
CLAMI. The training set generated by CLAMI+ is expected
more informative that CLAMI which is beneficial for building
prediction model.

Figure 1. The overview of CLAMI/CLAMI+. It consists of three phases with

two steps in each phase. The first phase is clustering and labeling (step 1.1 and
1.2), the CLAMI and CLAMI+ are different in this phase. The second phase is

metric selection and instance selection (step 2.1 and 2.2). The third phase is

learning and prediction (step 3.1 and 3.2).

The goal of our study is to conduct the change-prone class
prediction in an automated way without the need of historical
data. In our empirical experiments, we evaluate the self-
learning methods on 14 open source projects which come from
the Qualitas Corpus [17]. As a result, the self-learning methods
yields a reasonable performance which improves the typical
inter-version prediction models by 5.2%-19.7% (average CCR)
and 13.9%-27.2% (average AUC), respectively. In addition,
considering the average performance of all datasets, the
proposed CLAMI+ method improves the CLAMI method by
2.9% (average CCR) and 3.2% (average AUC). In summary,
the contributions of this study are as follows:

 We apply self-learning approach to tackle change-prone
class prediction on new projects or projects with limited
historical data. To the best of our knowledge, this is the first
study to adopt self-learning approach in change-prone
prediction. In addition, we propose a novel self-learning
method CLAMI+ by extending the method CLAMI.

 We present an empirical study to evaluate the self-learning
methods compared with typical inter-version change-prone
class prediction methods on 14 public datasets.

II. RELATED WORK

A variety of approaches have been proposed to predict
change-prone classes. For example, Amoui et al [12] proposed
an innovative Neural Network-based temporal change
prediction model which can predict where and when the change
will happen. They achieved a reasonable performance on
Mozilla and Eclipse. Godara et al [18] proposed an ID3
prediction model based on multi-factors. Koru et al. [19] first
validated the Pareto’s law on change-prone classes on two open
source projects, namely KOffice and Mozilla. They found the
applicability of Pareto’s law and developed a tree based
prediction model. Lu et al [20] proposed a statistical meta-
analysis approach to explore the ability of 62 OO metrics for
predicting change-proneness on 102 Java systems. They found
that size metrics were more discriminative that other OO
metrics, such as cohesion, coupling and inheritance. Elish et al
[5] proposed an empirical study which used ensemble methods
on change prediction. They found that ensemble methods can
achieve a better performance than individual models. However,
one issue in the above-mentioned works is that the prediction
model relies on learning from the historical data in a supervised
way, such as learning from the labeled data from previous
project version or learning from labeled data within a project
version (i.e., cross validation). It is difficult to apply the
technique on new projects or projects with limited historical
data.

Cross project prediction is a solution to address the above-
mentioned limitation. The cross project concept is introduced
by Briand et al [21]. It has been widely used in defect
prediction [14, 22-25]. In change-prone class prediction, there
are also a few studies which have investigated the cross-project
change prediction recently.

Malhotra et al [13] proposed to build the cross project
change prediction model by using the logitboost method. In
another work, Malhotra et al [26] validated the cross project
change prediction by using machine learning and search-based
techniques. However, they found that the cross project (or inter
project) prediction cannot comparable to the inter-version
prediction within a project (i.e., learning from previous version
and testing on the current version) [13]. Besides, one main
issue remains in cross-project prediction is that different
projects possess different data distributions [16]. How to select
an appropriate source as the training data is a difficult task [13].

To address the above-mentioned limitation, the self-
learning method can enable the prediction task which does not
need a prior labeled source as the training dataset. In other
words, the self-learning method leads to building the change
prediction model through learning by itself.

III. APPROACH

This section describes the process of the self-learning
approach. It consists of three phases and we describe the three
phases in three subsections (subsection A, B and C). The first

phase is Clustering and Labeling, the second phase is Metric
selection and Instance selection, the third phase is Learning and
Prediction. In particular, the idea of the first phase in CLAMI+
is different with CLAMI, and the idea of the second phase and
the third phase in CLAMI+ is identical with CLAMI.

A. Clustering and Labeling

Figure 2. The process of the first phase in the self-learning approach. Higher

values mean the metric value is greater than the median.

1) Clustering: The key idea of the clustering process in the
self-learning approach is shown in Figure 2. We use A-G to

denote the instances of the dataset and X -X1 7 denote the

adopted metrics. A specific cutoff threshold is set as the
median value for each metric as Nam et al [16] described. The
first step is to compare the metric value to the threshold value
for each metric. As a result, a violation table is generated.

In CLAMI, the violation table consists of 0 or 1 values. The
value “1” represents a higher value which means it is greater
than the threshold value as highlighted in Figure 2. After that,
the clustering process groups the instances by the sum (K
value) of the count of the higher values. For example, the
instances A and E belong to one cluster (3K) which means

there are three higher values in A and E. However, one issue
remains is that the information that how much the instance
violated on a metric is not considered. For example,
considering instance B and E at the metric 6X , the metric

value of B is 3 and the metric value of E is 10. Although both
of them are violated values which is greater than threshold 1,
the violation degree of instance E is greater thant instance B
obviously. This information is ignored in CLAMI.

In CLAMI+, we extend the CLAMI approach by
transforming the 1 or 0 result (violation or not) to a continuous
value from 0 to 1 which represents the violation degree. As a
result, the violation table consists of continuous values ranging
from 0 to 1 as Figure 2 shows. In detail, we adopt the sigmoid
function which is often used as the activation function in neural
networks to conduct the probabilistic transformation. Formally,
suppose there are M instances and N metrics, ijX denotes the

j-th metric value of the i-th instance, jN denotes the threshold

value of the j-th metric. The violation degree of the j-th metric
of the i-th instance ()ijP V is computed as Formula (1).

Different from the CLAMI, the K value in CLAMI+ represents

the mean violation degree of an instance and we group the
instances by 0.5K  and 0.5K  .

()

1
()

1 ij j
ij X N

P V
e
 




 (1)

2) Labeling: In CLAMI, the labeling step is conducted by
dividing the clusters into a top half and a bottom half by
considering the K value [16]. Next, the first half clusters are
labeled as change-prone and the bottom half clusters are
labeled as not change-prone. Similar to CLAMI, in CLAMI+,
we label the instances by dividing the clusters into 0.5K 

and 0.5K  . Next, we label the first cluster as change-prone

and the second cluster as not change-prone. As the Figure 2
shows, in CLAMI, Instance C, A and E are labeled as change-
prone while in CLAMI+ Instance A, B, C, E and F are labeled
as change-prone. This difference is resulted from our usage of
the violation degree.

The labeling step is motivated by the tendency in defect

prediction, namely, the defect-prone instances have higher

metric values than clean-prone instances [16, 27]. Since the

typical metrics which are adopted in both defect prediction

and change prediction (e.g., OO metrics and general size

metrics) represent the complexity of the instance, there is also

the similar tendency in change-prone prediction [28, 29]

(named as change-prone tendency). For example, Koru et al

[28] found that that high-change modules had fairly high

places in metric rankings, although not the highest places.

Malhotra et al. [29] found that the classes whose metric values

exceed a threshold value are change prone. Therefore, we

label the top half or the first cluster instances as change-prone.

B. Metric Selection and Instance Selection

In order to generate a high-quality training set, we use
metric and instance selection to select informative metrics and
minimize the instances that may be incorrectly labeled in the
first phase.

1) Metric Selection: The quality of features plays a
significant role in building a prediction model. Since there
might be some metrics which do not follow the change-prone
tendency well, the objective of metric selection step is to
select the most informative metrics which can enhance the
prediction ability. The selection criteria is the metric violation
scores (MVS) for each metric. In terms of one metric, the
MVS is equal to the count of instances which do not follow
the change-prone tendency on this metric. Take the metric X1

in Figure 2 as the example, instance B is labeled as a change-
prone instance in the first phase of CLAMI+, however, the
metric value of X1 is not a higher value, thereby B does not

follow the tendency at metric X1 . Using this way, we compute

the MVS for each metric and select the metrics which have the
minimum MVS.

2) Instance Selection: In order to generate a better training
set, instance selection is a widely adopted technique in
software prediction models [30, 31]. It is the final step for
generating the training dataset in this self-learning method. In
detail, we select the instances which follow the change-prone
tendency at the selected metrics. In other words, we remove

the instances which do not follow the change-prone tendency
on the selected metrics. For example, suppose X1 is a selected

metric in Figure 2 and B is labeled as a change-prone instance
in the first phase of CLAMI+. However, the metric value of
X1 does not follow the change-prone tendency (the metric

value is expected to greater than threshold) in Instance B,
thereby we will remove B from the final training set. After this
step, in some cases which have too many tendency-violated
instances, there might be no change-prone or not change-prone
instances. In this sense, we will get back to the metric
selection step and choose extra metrics which have the next
minimum MVS until both change-prone and not change-prone
instances exist in the training set.

C. Learning and Prediction

After generating a training set, we adopt a general machine
learner (logistic regression) to build the prediction model which
learns from the selected metrics and instances. By the
following, we predict the change-prone classes of the testing
set on the selected metrics.

IV. EXPERIMENTAL DESIGN

A. Research Questions

We design two research questions to evaluate this study.
One is to evaluate the performance of self-learning method.
The other is to evaluate the effectiveness of this proposed novel
self-learning method CLAMI+.

 RQ1: Is the prediction performance of the self-learning

methods comparable to typical prediction methods based

on historical data? The advantage of the self-learning

method over typical prediction methods is that it does not

need historical labeled dataset. We will answer this

question by comparing the self-learning method and the

typical prediction methods on the same target dataset. The

difference is that the typical prediction methods learn from

historical labeled dataset while our self-learning method

learn from itself.

 RQ2: Does the prediction performance of CLAMI+

outperform CLAMI? The difference between CLAMI and

CLAMI+ is the criteria of clustering and labeling. As a

result, the training set is different which has an impact on

the prediction performance. We will answer this question

by comparing the two methods on the same datasets used in

RQ1.

B. Datasets

We evaluate this study on 14 open source projects which
come from the public dataset Qualitas Corpus [17] (Qualitas
Corpus version is 20130901e). They are written in Java and
have multiple evolution versions. For each project, we choose
the recent version as the target dataset and label each instance
by tracking the version control system. The target project
version, previous version (used in baselines), percentage of
changed instances and the total number of instances in the
target version are listed in Table I. The percentage and the

number of instances possess a substantial range which can
validate the model ability among a wide range.

TABLE I: SUMMARY OF THE EVALUATION DATASETS IN THIS STUDY

Previous version Target version % changed # instances

'ant-1.8.1.0' 'ant-1.8.2.0' 12.20% 844

'antlr-3.3.0' 'antlr-3.4.0' 70.95% 241

'argouml-0.32.1' 'argouml-0.32.2' 39.67% 1505

'azureus-4.1.0.2' 'azureus-4.1.0.4' 7.71% 3150

'freecol-0.10.4' 'freecol-0.10.5' 71.74% 598

'freemind-0.6.5' 'freemind-0.6.7' 89.19% 74

'hibernate-3.1.1.0' 'hibernate-3.1.2.0' 93.62% 925

'jgraph-5.12.0.4' 'jgraph-5.12.1.0' 20.75% 53

'jmeter-2.7.0.0' 'jmeter-2.8.0.0' 58.07% 830

'jstock-1.0.7.1' 'jstock-1.0.7.2' 11.59% 276

'jung-1.7.2' 'jung-1.7.4' 28.85% 468

'junit-4.9.0' 'junit-4.10.0' 92.02% 163

'lucene-3.6.2.0' 'lucene-4.0.0.0' 34.35% 620

'weka-3.5.7' 'weka-3.5.8' 13.94% 1119

Considering the code metrics, we adopt the typical metrics

which are identical with the relevant studies of change
prediction [1, 5, 11, 32] as the Table II shows. In detail, five
Chidambar and Kemerer metrics [33]: WMC, DIT, NOC, RFC,
and LCOM; four Li and Henry metrics [34]: MPC, DAC,
NOM, SIZE2; and one traditional lines of code metric (SIZE1)
are adopted. SIZE1 represents the number of lines of code
excluding comments and SIZE2 represents the total count of
the number of data attributes and the number of local methods
in a class.

TABLE II: SUMMARY OF THE ADOPTED METRICS IN THIS STUDY

Metric Description

WMC Count of methods implemented within a class

DIT Level for a class within its class hierarchy

NOC Number of immediate subclasses of a class

RFC Count of methods implemented within a class plus the number of

methods accessible to an object class due to inheritance

LCOM The average percentage of methods in a class using each
data field in the class subtracted from 100 %

MPC The number of messages sent out from a class

DAC The number of instances of another class declared within a

class

NOM The number of methods in a class

SIZE1 The number of lines of code excluding comments

SIZE2 The total count of the number of data attributes and the

number of local methods in a class

C. Experimental Baselines

In RQ1, we set the typical inter-version prediction methods
[13] within a project as baselines to compare with the self-
learning methods. In other words, in order to predict the
change-prone classes of the target version, the prediction
models of the baselines are built by learning from the labeled
dataset of the previous release version. In our experiment, the
target version is as Table I shows and we set the previous
neighbor version of the target version as the training source in
the baselines. The first baseline is the change-prone class
prediction based on logitboost (LB) which is proposed by
Malhotra et al [13]. In addition, to avoid the bias from only
one method, we also adopt three typical machine learners as
baselines which are used in all three empirical studies on

TABLE III: PERFORMANCE COMPARISON BETWEEN SELF-LEARNING METHODS AND FOUR INTER-VERSION PREDICTION BASELINES. IF THE PERFORMANCE OF THE

SELF-LEARNING METHODS CLAMI/CLAMI+ OUTPERFORMS ALL THE FOUR BASELINES, THE RESULTS ARE IN BOLD. THE BETTER RESULTS BETWEEN CLAMI

AND CLAMI+ ARE UNDERLINED.

Project

CCR AUC

LB MLP RBF SVM CLAMI CLAMI+ LB MLP RBF SVM CLAMI CLAMI+

'ant-1.8.2.0' 88.63 89.22 88.63 87.80 58.29 58.29 0.60 0.60 0.58 0.51 0.65 0.65

'antlr-3.4.0' 56.85 53.53 46.47 36.51 65.56 65.56 0.63 0.60 0.55 0.47 0.65 0.65

'argouml-0.32.2' 60.33 60.33 60.33 60.33 46.05 52.23 0.51 0.51 0.51 0.51 0.49 0.52

'azureus-4.1.0.4' 92.32 92.38 92.29 92.29 52.83 52.83 0.47 0.47 0.47 0.47 0.64 0.64

'freecol-0.10.5' 29.93 30.10 28.26 28.26 63.88 64.05 0.47 0.47 0.45 0.45 0.67 0.67

'freemind-0.6.7' 39.19 43.24 32.43 24.32 52.70 60.81 0.66 0.62 0.56 0.58 0.61 0.63

'hibernate-3.1.2.0' 6.92 8.22 6.38 6.38 50.70 57.62 0.54 0.55 0.54 0.54 0.61 0.62

'jgraph-5.12.1.0' 84.91 86.79 88.68 83.02 69.81 69.81 0.65 0.67 0.73 0.49 0.72 0.77

'jmeter-2.8.0.0' 52.89 57.59 51.08 50.84 63.98 66.63 0.56 0.60 0.56 0.58 0.65 0.67

'jstock-1.0.7.2' 89.49 89.49 89.13 88.41 55.07 55.07 0.61 0.61 0.60 0.57 0.62 0.66

'jung-1.7.4' 72.65 72.01 71.58 71.15 52.35 51.50 0.49 0.48 0.47 0.47 0.51 0.56

'junit-4.10.0' 12.88 14.72 9.20 7.98 52.76 52.76 0.57 0.59 0.55 0.55 0.76 0.76

'lucene-4.0.0.0' 34.35 34.35 34.35 34.35 65.97 65.97 0.47 0.47 0.47 0.47 0.65 0.65

'weka-3.5.8' 36.10 33.87 37.62 21.00 55.59 55.67 0.52 0.48 0.53 0.45 0.59 0.58

Average 54.10 54.70 52.60 49.47 57.54 59.20 0.55 0.55 0.54 0.51 0.63 0.65

change prediction proposed by Elish et al [5]. Therefore, the
second, third and the fourth baseline is Multilayer perceptron
(MLP), Radial basis function network (RBF) and Support
vector machine (SVM), respectively.

In RQ2, we compare the extended CLAMI+ to the original
CLAMI method proposed by Nam et al [16].

D. Performance Measures

Same as in the work of Elish et al [5], two widely used
prediction measures are adopted in our evaluation, namely
correct classification rate (CCR) and the area under curve
(AUC). CCR represents the ratio of cases which were
correctly predicted to the total number of cases. AUC
represents the area under the receiver operating characteristic
(ROC) curve.

V. RESULTS

Table III shows the performance comparison between the
self-learning methods and the baselines in CCR and AUC
under 14 datasets. In terms of each dataset, if the performance
of the self-learning methods CLAMI/CLAMI+ outperforms all
four baselines, the results are bold. The better results between
CLAMI and CLAMI+ are underlined.

Overall, in terms of RQ1, the self-learning methods CLAMI
and CLAMI+ show comparable performance to the four inter-
version prediction methods. In particular, considering the CCR
measure, the self-learning methods outperform the four
baselines among 8 datasets. In the dataset like ant-1.8.2.0, the
self-learning methods perform worse. However, considering
the average of all datasets, self-learning methods
CLAMI/CLAMI+ improve them by 5.2%-19.7%. Considering
the AUC measure, self-learning methods CLAMI/CLAMI+
outperform four baselines among 11 datasets and improve
them by 13.9%-27.2% in average of all datasets. Note that the
self-learning methods do not need prior labeled data but
achieve comparable performance than inter-version prediction
methods. In terms of RQ2, the performance of CLAMI+
achieves comparable or better result than CLAMI method.
Only one out of the 14 datasets in which the CLAMI+ shows

the worse result than CLAMI considering AUC or CCR. In
other cases, the CLAMI+ performs better or at least the same
with CLAMI. Also, considering the average of all datasets, the
CLAMI+ method improves the CLAMI method by 2.9% in
CCR and 3.2% in AUC.

In addition, we conduct the Friedman test on the
performance comparison when comparing multiple methods as
suggested by Demša [35]. The Friedman test compares
whether the difference of the average ranks of the performance
of the methods are statistically significant or not. We translate
the question into the null hypothesis Hnull: There is no
significant difference between the average ranks of the
performance of all the methods. And the alternative hypothesis
Halt is that there is a significant difference between the average
ranks of all the methods. Table IV shows the Friedman test
results. We provided the average ranks (the approach with the
best performance is ranked in “6”) and the significant level p-
value. In terms of CCR, the CLAMI and CLAMI+ show a
comparable ranks although not the best. In terms of AUC, the
CLAMI and CLAMI+ show the higher ranks than other four
methods and the CLAMI+ is the best. Note that the p-values in
both of the two measures are less than 0.05 which enable us to
reject the null hypothesis and accept the alternative hypothesis.
This indicates that there is a statistical significant difference
between the average ranks of all the methods in the two
performance measures.

TABLE IV: FRIEDMAN TEST FOR THE PERFORMANCE COMPARISON

Measure

Average rank p-value

LB MLP RBF SVM CLAMI CLAMI+

CCR 3.86 4.25 3.14 2.18 3.61 3.96 0.0356

AUC 3.18 3.29 2.32 1.79 4.79 5.64 0.0000

VI. THREATS TO VALIDITY

Impact of the threshold. Threshold decides the results of
the clustering and initialized labeling phase. There are various
methods to decide a metric threshold. However, we did not
provide the analysis on the impact of different thresholds. This
might be a threat to our work. In this work, we adopt a typical
threshold (i.e., the median) to mitigate this issue. A more

refined work is to take into account the effects of different
thresholds.

Impact of sigmoid function. The difference of our
proposed CLAMI+ method is that we transform the 1 or 0
result (violation or not) to a continuous value ranging from 0
to 1 which represents the violation degree by using the
sigmoid function. There are several parameters in a sigmoid
function, such as dynamic range, and slope. However, we
adopt the regular sigmoid function on all the metrics. This
might be a limitation to the performance of CLAMI+, since
different metrics possess different distribution and they may
suitable for different parameter settings. Also, we have a plan
to conduct additional experiment on the impact of the
parameters.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed to adopt self-learning approach
to tackle change-prone class prediction on new projects or
projects with limited historical data. Concretely, we applied a
state-of-art self-learning method CLAMI and proposed a novel
approach CLAMI+ by extending CLAMI on change-prone
class prediction. This enables prediction for new projects or
projects with limited historical data. The empirical study
among 14 open source projects showed that the self-learning
methods yield better or comparable results to four typical
inter-version prediction methods in terms of CCR and AUC.
In addition, the proposed CLAMI+ method slightly improves
the CLAMI method on average.

In the future, we plan to enhance the effectiveness of our
approach further. Concretely, we plan to investigate the impact
of various thresholds, such as mean, standard deviation and
different percentiles. In addition, we plan to improve the
performance by proposing an adaptive method to determine
the optimized parameters of the sigmoid function for different
metrics.

ACKNOWLEDGMENTS

The work described in this paper was partially supported by
the National Natural Science Foundation of China (Grant no.
91118005, 61173131, 11202249), Chongqing Graduate
Student Research Innovation Project (grant no. CYS14008 and
CYS15022), Program for Changjiang Scholars and Innovative
Research Team in University (Grant No. IRT1196) and the
Fundamental Research Funds for the Central Universities of
China (Grant No. 106112014CDJZR098801).

REFERENCES

[1] Y. Zhou and H. Leung, "Predicting object-oriented software
maintainability using multivariate adaptive regression splines," Journal
of Systems and Software, vol. 80, pp. 1349-1361, 2007.

[2] R. Malhotra and M. Khanna, "Examining the effectiveness of machine
learning algorithms for prediction of change prone classes," in
Proceedings of the nternational Conference on High Performance
Computing & Simulation, 2014, pp. 635-642.

[3] M. Yan, Y. Fu, X. Zhang, D. Yang, L. Xu, and J. D. Kymer,
"Automatically classifying software changes via discriminative topic
model: Supporting multi-category and cross-project," Journal of Systems
and Software, vol. 113, pp. 296-308, 2016.

[4] Y. Fu, M. Yan, X. Zhang, L. Xu, D. Yang, and J. D. Kymer, "Automated
classification of software change messages by semi-supervised Latent
Dirichlet Allocation," Information and Software Technology, vol. 57, pp.
369-377, 2015.

[5] M. Elish, H. Aljamaan, and I. Ahmad, "Three empirical studies on
predicting software maintainability using ensemble methods," Soft
Computing, vol. 19, pp. 2511-2524, 2015/09/01 2015.

[6] Z. Yuming, H. Leung, and X. Baowen, "Examining the Potentially
Confounding Effect of Class Size on the Associations between Object-
Oriented Metrics and Change-Proneness," IEEE Transactions on
Software Engineering vol. 35, pp. 607-623, 2009.

[7] F. Khomh, M. Di Penta, Gue, x, he, x, et al., "An Exploratory Study of
the Impact of Code Smells on Software Change-proneness," in
Proceedings of the 16th Working Conference on Reverse Engineering
(WCRE 2009) 2009, pp. 75-84.

[8] D. Posnett, C. Bird, and P. Dévanbu, "An empirical study on the
influence of pattern roles on change-proneness," Empirical Software
Engineering, vol. 16, pp. 396-423, 2011/06/01 2011.

[9] M. O. Elish and M. Al-Rahman Al-Khiaty, "A suite of metrics for
quantifying historical changes to predict future change-prone classes in
object-oriented software," Journal of Software: Evolution and Process,
vol. 25, pp. 407-437, 2013.

[10] S. Eski and F. Buzluca, "An Empirical Study on Object-Oriented
Metrics and Software Evolution in Order to Reduce Testing Costs by
Predicting Change-Prone Classes," in Proceedings of the IEEE Fourth
International Conference on Software Testing, Verification and
Validation Workshops, 2011, pp. 566-571.

[11] C. van Koten and A. R. Gray, "An application of Bayesian network for
predicting object-oriented software maintainability," Information and
Software Technology, vol. 48, pp. 59-67, 2006.

[12] M. Amoui, M. Salehie, and L. Tahvildari, "Teporal software change
prediction using neural networks," International Journal of Software
Engineering and Knowledge Engineering, vol. 19, pp. 995-1014, 2009.

[13] R. Malhotra and A. J. Bansal, "Cross project change prediction using
open source projects," in Proceedings of the International Conference
on Advances in Computing, Communications and Informatics, 2014, pp.
201-207.

[14] J. Nam, S. J. Pan, and S. Kim, "Transfer defect learning," presented at
the Proceedings of the International Conference on Software
Engineering, San Francisco, CA, USA, 2013.

[15] A. Panichella, R. Oliveto, and A. De Lucia, "Cross-project defect
prediction models: L'Union fait la force," in Proceedings of the IEEE
Conference on Software Maintenance, Reengineering and Reverse
Engineering, 2014, pp. 164-173.

[16] J. Nam and S. Kim, "CLAMI: Defect Prediction on Unlabeled Datasets,"
in Proceedings of the 30th IEEE/ACM International Conference on
Automated Software Engineering, 2015, pp. 452-463.

[17] E. Tempero, C. Anslow, J. Dietrich, T. Han, L. Jing, M. Lumpe, et al.,
"The Qualitas Corpus: A Curated Collection of Java Code for Empirical
Studies," in Proceedings of the 17th Asia Pacific Software Engineering
Conference, 2010, pp. 336-345.

[18] D. Godara and R. Singh, "A New Hybrid Model for Predicting Change
Prone Class in Object Oriented Software," International Journal of
Computer Science and Telecommunications, vol. 5, pp. 1-6, 2014.

[19] A. Güneş Koru and H. Liu, "Identifying and characterizing change-prone
classes in two large-scale open-source products," Journal of Systems and
Software, vol. 80, pp. 63-73, 2007.

[20] H. Lu, Y. Zhou, B. Xu, H. Leung, and L. Chen, "The ability of object-
oriented metrics to predict change-proneness: a meta-analysis,"
Empirical Software Engineering, vol. 17, pp. 200-242, 2012/06/01 2012.

[21] L. C. Briand, W. L. Melo, and J. Wust, "Assessing the applicability of
fault-proneness models across object-oriented software projects," IEEE
Transactions on Software Engineering, vol. 28, pp. 706-720, 2002.

[22] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, "An investigation on the
feasibility of cross-project defect prediction," Automated Software
Engineering, vol. 19, pp. 167-199, 2012/06/01 2012.

[23] F. Peters, T. Menzies, and A. Marcus, "Better cross company defect
prediction," in Proceedings of the 10th IEEE Working Conference on
Mining Software Repositories, 2013, pp. 409-418.

[24] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
"Cross-project defect prediction: a large scale experiment on data vs.
domain vs. process," presented at the Proceedings of the 7th joint
meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering,
Amsterdam, The Netherlands, 2009.

[25] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, "On the relative
value of cross-company and within-company data for defect prediction"
Empirical Software Engineering, vol. 14, pp. 540-578, 2009.

[26] R. Malhotra and M. Khanna, "Mining the impact of object oriented
metrics for change prediction using Machine Learning and Search-based
techniques," in Proceedings of the International Conference on
Advances in Computing, Communications and Informatics, 2015, pp.
228-234.

[27] T. Menzies, J. Greenwald, and A. Frank, "Data Mining Static Code
Attributes to Learn Defect Predictors," IEEE Transactions on Software
Engineering, vol. 33, pp. 2-13, 2007.

[28] A. G. Koru and J. Tian, "Comparing high-change modules and modules
with the highest measurement values in two large-scale open-source
products," IEEE Transactions on Software Engineering vol. 31, pp. 625-
642, 2005.

[29] R. Malhotra and A. Bansal, "Prediction of Change Prone Classes using
Threshold Methodology," Advances in Computer Science and
Information Technology, vol. 2, pp. 30-35, 2015.

[30] E. Kocaguneli, T. Menzies, J. Keung, D. Cok, and R. Madachy, "Active
learning and effort estimation: Finding the essential content of software
effort estimation data," IEEE Transactions on Software Engineering, vol.
39, pp. 1040-1053, 2013.

[31] Y. F. Li, M. Xie, and T. N. Goh, "A study of project selection and
feature weighting for analogy based software cost estimation," Journal of
Systems and Software, vol. 82, pp. 241-252, 2009.

[32] M. O. Elish and K. O. Elish, "Application of TreeNet in Predicting
Object-Oriented Software Maintainability: A Comparative Study," in
Proceedings of the 13th European Conference on Software Maintenance
and Reengineering (CSMR 2009), 2009, pp. 69-78.

[33] S. R. Chidamber and C. F. Kemerer, "A metrics suite for object oriented
design," IEEE Transactions on Software Engineering, vol. 20, pp. 476-
493, 1994.

[34] W. Li and S. Henry, "Object-Oriented metrics that predict
maintainability," Journal of Systems and Software, vol. 23, pp. 111-122,
1993.

[35] J. Demsar, "Statistical Comparisons of Classifiers over Multiple Data
Sets," J. Mach. Learn. Res., vol. 7, pp. 1-30, 2006.

