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Abstract—Software change-prone class prediction can enhance 

software decision making activities during software maintenance 

(e.g., resource allocating). Many change-prone class prediction 

approaches have been proposed and most are effective in inter-

version prediction within a project. These approaches usually 

build a supervised prediction model by learning from historical 

labeled dataset. However, a major challenge which remains is 

that this typical change-prone prediction setting cannot be used 

for new projects or projects with limited historical data. To 

address this challenge, we propose to tackle this task by adopting 

a novel prediction method which has not been used in change-

prone prediction, namely self-learning method. The key idea of 

the self-learning method is to enable the change-prone prediction 

on new projects or projects with limited historical dataset by 

learning from itself. In this paper, we apply a state-of-art self-

learning method, CLAMI, to change-prone prediction. In 

addition, we propose a novel self-learning approach CLAMI+ by 

extending CLAMI. The experiments among 14 open source 

projects show that the self-learning methods achieve comparable 

results to four typical inter-version baselines and the proposed 

CLAMI+ slightly improves the CLAMI method on average.  

Keywords-software maintenance; change-prone prediction; 

self-learning; empirical software engineering 

I.  INTRODUCTION 

Software maintenance has been regarded as one of the most 
expensive and tough tasks in the whole software lifecycle [1]. 
Managing and controlling changes in software maintenance is 
one of the significant concerns of the software industry [2]. A 
change could be made because of existence of bugs, new 
features or refactoring [3, 4]. A change-prone class means that 
the class is likely to change with a high probability after a 
product release. It can represent the weak part of a software 
system [2]. Thus, software change-prone class prediction 
contributes to better allocation of software resources (e.g., time 
and staff) in the software maintenance process [5]. This 
technique aids to support maintenance related decision making 
by identifying change-prone classes in advance. As a result, the 
quality assurance teams or testers can determine the critical 
parts of the software where the quality assurance or testing 
activities should pay more attention and track rigorously. 

In order to predict change-prone classes in advance, various 
categories of software metrics have been proved to correspond 
to the change-proneness, such as OO metrics (e.g., cohesion, 
coupling, inheritance, etc.) [6], code smells [7], design patterns 
and [8] evolution metrics [9, 10]. In terms of the techniques, 

different machine learning approaches have been used, such as 
Bayesian networks [11], neural networks [12], multivariate 
regression [1] and ensemble methods [5]. A typical prediction 
model based on machine learning is designed by learning from 
a historical labeled dataset in a supervised way. However, this 
technique is difficult to apply on new projects or projects with 
limited historical data. 

A cross project change-prone class prediction method has 
been proposed to address the above-mentioned issue [13]. The 
cross project technique is motivated by the similar techniques 
in defect prediction [14, 15]. It enables change-prone class 
prediction on projects with limited labeled dataset by learning 
from other projects. Unfortunately, one issue which remains in 
cross-project prediction is that different datasets possess 
different distributions [16]. The success rate (ratio of 
combination whose performance is greater than a certain 
threshold) of cross-project reported in the work [13] is 
generally poor (30%) which cannot compare to the prediction 
performance (67%) of the methods using historical datasets 
(i.e., inter-version prediction within a project). This implies that 
the cross-project change-prone prediction may not be effective 
and it depends on the quality of the source project [13]. 

To address this issue, we propose to tackle this task by 
adopting self-learning method. In detail, we apply a state-of-art 
self-learning method (CLAMI: Clustering, LAbeling, Metric 
selection and Instance selection) to the change-prone class 
prediction which has been successfully used in defect 
prediction [16]. The key idea of this self-learning method is to 
enable the prediction on new projects or projects with limited 
labeled datasets by learning from itself. 

The process of this self-learning method can be interpreted 
by dividing three phases as Figure 1 shows. The clue of the 
process is to build the prediction model by learning on selected 
informative metrics and instances of itself. In detail, the first 
phase is clustering and initialized labeling. In this phase, an 
unlabeled dataset is clustered and labeled according to the 
magnitude of metric values [16]. The motivation of this phase 
is to provide the initialized labels of all the instances. However, 
the initialized labels of all the instances might not be correct 
enough. In our self-learning method, some of them will be 
automatically selected as final training set according to our 
criteria in the following phase. The second phase is to conduct 
the metric selection and instance selection from the labeled 
instances in the first phase. As a result, an informative training 
set of metrics and instances are generated. The third phase is 
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modeling and prediction. The prediction model is built by 
learning from the selected instances in the second phase. 

In particular, the initialized labeling step in the first phase 
of CLAMI method is conducted by measuring the count of 
violation (i.e., a metric value is greater than a certain threshold) 
of an instance. However, we observe that information loss 
might result from mapping the violation to a 1 or 0 (i.e., 
violation or not) result in the first phase. The information that 
how much the instance violated on a metric is not considered. 
Based on this observation, we propose a novel self-learning 
method CLAMI+ by extending CLAMI. The difference lies in 
the first phase as Figure 1 shows. In detail, the CLAMI+ 
method uses the violation degree (i.e., transforming the 
difference between the metric value and the threshold to a 
probabilistic value) to replace the Boolean representation in 
CLAMI. As a result, the fine information that how much the 
instance violated on a metric is considered. Under this way, the 
selection of final training set of CLAMI+ is different from 
CLAMI. The training set generated by CLAMI+ is expected 
more informative that CLAMI which is beneficial for building 
prediction model.   

 

Figure 1. The overview of CLAMI/CLAMI+. It consists of three phases with 

two steps in each phase. The first phase is clustering and labeling (step 1.1 and 
1.2), the CLAMI and CLAMI+ are different in this phase. The second phase is 

metric selection and instance selection (step 2.1 and 2.2). The third phase is 

learning and prediction (step 3.1 and 3.2). 

The goal of our study is to conduct the change-prone class 
prediction in an automated way without the need of historical 
data. In our empirical experiments, we evaluate the self-
learning methods on 14 open source projects which come from 
the Qualitas Corpus [17]. As a result, the self-learning methods 
yields a reasonable performance which improves the typical 
inter-version prediction models by 5.2%-19.7% (average CCR) 
and 13.9%-27.2% (average AUC), respectively. In addition, 
considering the average performance of all datasets, the 
proposed CLAMI+ method improves the CLAMI method by 
2.9% (average CCR) and 3.2% (average AUC). In summary, 
the contributions of this study are as follows: 

 We apply self-learning approach to tackle change-prone 
class prediction on new projects or projects with limited 
historical data. To the best of our knowledge, this is the first 
study to adopt self-learning approach in change-prone 
prediction. In addition, we propose a novel self-learning 
method CLAMI+ by extending the method CLAMI. 

 We present an empirical study to evaluate the self-learning 
methods compared with typical inter-version change-prone 
class prediction methods on 14 public datasets. 

II. RELATED  WORK 

A variety of approaches have been proposed to predict 
change-prone classes. For example, Amoui et al [12] proposed 
an innovative Neural Network-based temporal change 
prediction model which can predict where and when the change 
will happen. They achieved a reasonable performance on 
Mozilla and Eclipse. Godara et al [18] proposed an ID3 
prediction model based on multi-factors. Koru et al. [19] first 
validated the Pareto’s law on change-prone classes on two open 
source projects, namely KOffice and Mozilla. They found the 
applicability of Pareto’s law and developed a tree based 
prediction model. Lu et al [20] proposed a statistical meta-
analysis approach to explore the ability of 62 OO metrics for 
predicting change-proneness on 102 Java systems. They found 
that size metrics were more discriminative that other OO 
metrics, such as cohesion, coupling and inheritance. Elish et al 
[5] proposed an empirical study which used ensemble methods 
on change prediction. They found that ensemble methods can 
achieve a better performance than individual models. However, 
one issue in the above-mentioned works is that the prediction 
model relies on learning from the historical data in a supervised 
way, such as learning from the labeled data from previous 
project version or learning from labeled data within a project 
version (i.e., cross validation). It is difficult to apply the 
technique on new projects or projects with limited historical 
data. 

Cross project prediction is a solution to address the above-
mentioned limitation. The cross project concept is introduced 
by Briand et al [21]. It has been widely used in defect 
prediction [14, 22-25]. In change-prone class prediction, there 
are also a few studies which have investigated the cross-project 
change prediction recently. 

Malhotra et al [13] proposed to build the cross project 
change prediction model by using the logitboost method. In 
another work, Malhotra et al [26] validated the cross project 
change prediction by using machine learning and search-based 
techniques. However, they found that the cross project (or inter 
project) prediction cannot comparable to the inter-version 
prediction within a project (i.e., learning from previous version 
and testing on the current version) [13]. Besides, one main 
issue remains in cross-project prediction is that different 
projects possess different data distributions [16]. How to select 
an appropriate source as the training data is a difficult task [13]. 

To address the above-mentioned limitation, the self-
learning method can enable the prediction task which does not 
need a prior labeled source as the training dataset. In other 
words, the self-learning method leads to building the change 
prediction model through learning by itself. 

III. APPROACH 

This section describes the process of the self-learning 
approach. It consists of three phases and we describe the three 
phases in three subsections (subsection A, B and C). The first 



phase is Clustering and Labeling, the second phase is Metric 
selection and Instance selection, the third phase is Learning and 
Prediction. In particular, the idea of the first phase in CLAMI+ 
is different with CLAMI, and the idea of the second phase and 
the third phase in CLAMI+ is identical with CLAMI. 

A. Clustering and Labeling 

 

Figure 2. The process of the first phase in the self-learning approach. Higher 

values mean the metric value is greater than the median. 

1) Clustering: The key idea of the clustering process in the 
self-learning approach is shown in Figure 2. We use A-G to 

denote the instances of the dataset and X -X1 7  denote the 

adopted metrics. A specific cutoff threshold is set as the 
median value for each metric as Nam et al [16] described. The 
first step is to compare the metric value to the threshold value 
for each metric. As a result, a violation table is generated. 

In CLAMI, the violation table consists of 0 or 1 values. The 
value “1” represents a higher value which means it is greater 
than the threshold value as highlighted in Figure 2. After that, 
the clustering process groups the instances by the sum ( K  
value) of the count of the higher values. For example, the 
instances A and E belong to one cluster ( 3K ) which means 

there are three higher values in A and E. However, one issue 
remains is that the information that how much the instance 
violated on a metric is not considered. For example, 
considering instance B and E at the metric 6X , the metric 

value of B is 3 and the metric value of E is 10. Although both 
of them are violated values which is greater than threshold 1, 
the violation degree of instance E is greater thant instance B 
obviously. This information is ignored in CLAMI. 

In CLAMI+, we extend the CLAMI approach by 
transforming the 1 or 0 result (violation or not) to a continuous 
value from 0 to 1 which represents the violation degree. As a 
result, the violation table consists of continuous values ranging 
from 0 to 1 as Figure 2 shows. In detail, we adopt the sigmoid 
function which is often used as the activation function in neural 
networks to conduct the probabilistic transformation. Formally, 
suppose there are M instances and N  metrics, ijX  denotes the 

j-th metric value of the i-th instance, jN  denotes the threshold 

value of the j-th metric. The violation degree of the j-th metric 
of the i-th instance ( )ijP V  is computed as Formula (1). 

Different from the CLAMI, the K value in CLAMI+ represents 

the mean violation degree of an instance and we group the 
instances by 0.5K   and 0.5K  . 

( )

1
( )

1 ij j
ij X N

P V
e
 




                        (1) 

2) Labeling: In CLAMI, the labeling step is conducted by 
dividing the clusters into a top half and a bottom half by 
considering the K  value [16]. Next, the first half clusters are 
labeled as change-prone and the bottom half clusters are 
labeled as not change-prone. Similar to CLAMI, in CLAMI+, 
we label the instances by dividing the clusters into 0.5K   

and 0.5K  . Next, we label the first cluster as change-prone 

and the second cluster as not change-prone. As the Figure 2 
shows, in CLAMI, Instance C, A and E are labeled as change-
prone while in CLAMI+ Instance A, B, C, E and F are labeled 
as change-prone. This difference is resulted from our usage of 
the violation degree. 

The labeling step is motivated by the tendency in defect 

prediction, namely, the defect-prone instances have higher 

metric values than clean-prone instances [16, 27]. Since the 

typical metrics which are adopted in both defect prediction 

and change prediction (e.g., OO metrics and general size 

metrics) represent the complexity of the instance, there is also 

the similar tendency in change-prone prediction [28, 29] 

(named as change-prone tendency). For example, Koru et al 

[28] found that that high-change modules had fairly high 

places in metric rankings, although not the highest places. 

Malhotra et al. [29] found that the classes whose metric values 

exceed a threshold value are change prone. Therefore, we 

label the top half or the first cluster instances as change-prone. 

B. Metric Selection and Instance Selection 

In order to generate a high-quality training set, we use 
metric and instance selection to select informative metrics and 
minimize the instances that may be incorrectly labeled in the 
first phase. 

1) Metric Selection: The quality of features plays a 
significant role in building a prediction model. Since there 
might be some metrics which do not follow the change-prone 
tendency well, the objective of metric selection step is to 
select the most informative metrics which can enhance the 
prediction ability. The selection criteria is the metric violation 
scores (MVS) for each metric. In terms of one metric, the 
MVS is equal to the count of instances which do not follow 
the change-prone  tendency on this metric. Take the metric X1  

in Figure 2 as the example, instance B is labeled as a change-
prone instance in the first phase of CLAMI+, however, the 
metric value of X1  is not a higher value, thereby B does not 

follow the tendency at metric X1 . Using this way, we compute 

the MVS for each metric and select the metrics which have the 
minimum MVS. 

2) Instance Selection: In order to generate a better training 
set, instance selection is a widely adopted technique in 
software prediction models [30, 31]. It is the final step for 
generating the training dataset in this self-learning method. In 
detail, we select the instances which follow the change-prone 
tendency at the selected metrics. In other words, we remove 



the instances which do not follow the change-prone tendency 
on the selected metrics. For example, suppose X1  is a selected 

metric in Figure 2 and B is labeled as a change-prone instance 
in the first phase of CLAMI+. However, the metric value of 
X1  does not follow the change-prone tendency (the metric 

value is expected to greater than threshold) in Instance B, 
thereby we will remove B from the final training set. After this 
step, in some cases which have too many tendency-violated 
instances, there might be no change-prone or not change-prone 
instances. In this sense, we will get back to the metric 
selection step and choose extra metrics which have the next 
minimum MVS until both change-prone and not change-prone 
instances exist in the training set. 

C. Learning and Prediction 

After generating a training set, we adopt a general machine 
learner (logistic regression) to build the prediction model which 
learns from the selected metrics and instances. By the 
following, we predict the change-prone classes of the testing 
set on the selected metrics. 

IV. EXPERIMENTAL DESIGN 

A. Research Questions 

We design two research questions to evaluate this study. 
One is to evaluate the performance of self-learning method. 
The other is to evaluate the effectiveness of this proposed novel 
self-learning method CLAMI+. 

 RQ1: Is the prediction performance of the self-learning 

methods comparable to typical prediction methods based 

on historical data? The advantage of the self-learning 

method over typical prediction methods is that it does not 

need historical labeled dataset. We will answer this 

question by comparing the self-learning method and the 

typical prediction methods on the same target dataset. The 

difference is that the typical prediction methods learn from 

historical labeled dataset while our self-learning method 

learn from itself. 

  RQ2: Does the prediction performance of CLAMI+ 

outperform CLAMI? The difference between CLAMI and 

CLAMI+ is the criteria of clustering and labeling. As a 

result, the training set is different which has an impact on 

the prediction performance. We will answer this question 

by comparing the two methods on the same datasets used in 

RQ1. 

B. Datasets 

We evaluate this study on 14 open source projects which 
come from the public dataset Qualitas Corpus [17] (Qualitas 
Corpus version is 20130901e). They are written in Java and 
have multiple evolution versions. For each project, we choose 
the recent version as the target dataset and label each instance 
by tracking the version control system. The target project 
version, previous version (used in baselines), percentage of 
changed instances and the total number of instances in the 
target version are listed in Table I. The percentage and the 

number of instances possess a substantial range which can 
validate the model ability among a wide range. 

TABLE I: SUMMARY OF THE EVALUATION DATASETS IN THIS STUDY 

Previous version Target version % changed # instances 

'ant-1.8.1.0' 'ant-1.8.2.0' 12.20% 844 

'antlr-3.3.0' 'antlr-3.4.0' 70.95% 241 

'argouml-0.32.1' 'argouml-0.32.2' 39.67% 1505 

'azureus-4.1.0.2' 'azureus-4.1.0.4' 7.71% 3150 

'freecol-0.10.4' 'freecol-0.10.5' 71.74% 598 

'freemind-0.6.5' 'freemind-0.6.7' 89.19% 74 

'hibernate-3.1.1.0' 'hibernate-3.1.2.0' 93.62% 925 

'jgraph-5.12.0.4' 'jgraph-5.12.1.0' 20.75% 53 

'jmeter-2.7.0.0' 'jmeter-2.8.0.0' 58.07% 830 

'jstock-1.0.7.1' 'jstock-1.0.7.2' 11.59% 276 

'jung-1.7.2' 'jung-1.7.4' 28.85% 468 

'junit-4.9.0' 'junit-4.10.0' 92.02% 163 

'lucene-3.6.2.0' 'lucene-4.0.0.0' 34.35% 620 

'weka-3.5.7' 'weka-3.5.8' 13.94% 1119 

 
Considering the code metrics, we adopt the typical metrics 

which are identical with the relevant studies of change 
prediction [1, 5, 11, 32] as the Table II shows. In detail, five 
Chidambar and Kemerer metrics [33]: WMC, DIT, NOC, RFC, 
and LCOM; four Li and Henry metrics [34]: MPC, DAC, 
NOM, SIZE2; and one traditional lines of code metric (SIZE1) 
are adopted. SIZE1 represents the number of lines of code 
excluding comments and SIZE2 represents the total count of 
the number of data attributes and the number of local methods 
in a class. 

TABLE II: SUMMARY OF THE ADOPTED METRICS IN THIS STUDY 

Metric Description 

WMC Count of methods implemented within a class 

DIT Level for a class within its class hierarchy 

NOC Number of immediate subclasses of a class 

RFC Count of methods implemented within a class plus the number of 

methods accessible to an object class due to inheritance 

LCOM The average percentage of methods in a class using each 
data field in the class subtracted from 100 % 

MPC The number of messages sent out from a class 

DAC The number of instances of another class declared within a 

class 

NOM The number of methods in a class 

SIZE1 The number of lines of code excluding comments 

SIZE2 The total count of the number of data attributes and the 

number of local methods in a class 

C. Experimental Baselines 

In RQ1, we set the typical inter-version prediction methods 
[13] within a project as baselines to compare with the self-
learning methods. In other words, in order to predict the 
change-prone classes of the target version, the prediction 
models of the baselines are built by learning from the labeled 
dataset of the previous release version. In our experiment, the 
target version is as Table I shows and we set the previous 
neighbor version of the target version as the training source in 
the baselines. The first baseline is the change-prone class 
prediction based on logitboost (LB) which is proposed by 
Malhotra et al [13]. In addition, to avoid the bias from only 
one method, we also adopt three typical machine learners as 
baselines which are used in all three empirical studies on 



TABLE III: PERFORMANCE COMPARISON BETWEEN SELF-LEARNING METHODS AND FOUR INTER-VERSION PREDICTION BASELINES. IF THE PERFORMANCE OF THE 

SELF-LEARNING METHODS CLAMI/CLAMI+ OUTPERFORMS ALL THE FOUR BASELINES, THE RESULTS ARE IN BOLD. THE BETTER RESULTS BETWEEN CLAMI 

AND CLAMI+ ARE UNDERLINED. 

 
Project 

CCR AUC 

LB MLP RBF SVM CLAMI CLAMI+ LB MLP RBF SVM CLAMI CLAMI+ 

'ant-1.8.2.0' 88.63 89.22 88.63 87.80 58.29 58.29 0.60 0.60 0.58 0.51 0.65 0.65 

'antlr-3.4.0' 56.85 53.53 46.47 36.51 65.56 65.56 0.63 0.60 0.55 0.47 0.65 0.65 

'argouml-0.32.2' 60.33 60.33 60.33 60.33 46.05 52.23 0.51 0.51 0.51 0.51 0.49 0.52 

'azureus-4.1.0.4' 92.32 92.38 92.29 92.29 52.83 52.83 0.47 0.47 0.47 0.47 0.64 0.64 

'freecol-0.10.5' 29.93 30.10 28.26 28.26 63.88 64.05 0.47 0.47 0.45 0.45 0.67 0.67 

'freemind-0.6.7' 39.19 43.24 32.43 24.32 52.70 60.81 0.66 0.62 0.56 0.58 0.61 0.63 

'hibernate-3.1.2.0' 6.92 8.22 6.38 6.38 50.70 57.62 0.54 0.55 0.54 0.54 0.61 0.62 

'jgraph-5.12.1.0' 84.91 86.79 88.68 83.02 69.81 69.81 0.65 0.67 0.73 0.49 0.72 0.77 

'jmeter-2.8.0.0' 52.89 57.59 51.08 50.84 63.98 66.63 0.56 0.60 0.56 0.58 0.65 0.67 

'jstock-1.0.7.2' 89.49 89.49 89.13 88.41 55.07 55.07 0.61 0.61 0.60 0.57 0.62 0.66 

'jung-1.7.4' 72.65 72.01 71.58 71.15 52.35 51.50 0.49 0.48 0.47 0.47 0.51 0.56 

'junit-4.10.0' 12.88 14.72 9.20 7.98 52.76 52.76 0.57 0.59 0.55 0.55 0.76 0.76 

'lucene-4.0.0.0' 34.35 34.35 34.35 34.35 65.97 65.97 0.47 0.47 0.47 0.47 0.65 0.65 

'weka-3.5.8' 36.10 33.87 37.62 21.00 55.59 55.67 0.52 0.48 0.53 0.45 0.59 0.58 

Average 54.10 54.70 52.60 49.47 57.54 59.20 0.55 0.55 0.54 0.51 0.63 0.65 

change prediction proposed by Elish et al [5]. Therefore, the 
second, third and the fourth baseline is Multilayer perceptron 
(MLP), Radial basis function network (RBF) and Support 
vector machine (SVM), respectively.  

In RQ2, we compare the extended CLAMI+ to the original 
CLAMI method proposed by Nam et al [16]. 

D. Performance Measures 

Same as in the work of Elish et al [5], two widely used 
prediction measures are adopted in our evaluation, namely 
correct classification rate (CCR) and the area under curve 
(AUC). CCR represents the ratio of cases which were 
correctly predicted to the total number of cases. AUC 
represents the area under the receiver operating characteristic 
(ROC) curve. 

V. RESULTS 

Table III shows the performance comparison between the 
self-learning methods and the baselines in CCR and AUC 
under 14 datasets. In terms of each dataset, if the performance 
of the self-learning methods CLAMI/CLAMI+ outperforms all 
four baselines, the results are bold. The better results between 
CLAMI and CLAMI+ are underlined. 

Overall, in terms of RQ1, the self-learning methods CLAMI 
and CLAMI+ show comparable performance to the four inter-
version prediction methods. In particular, considering the CCR 
measure, the self-learning methods outperform the four 
baselines among 8 datasets. In the dataset like ant-1.8.2.0, the 
self-learning methods perform worse. However, considering 
the average of all datasets, self-learning methods 
CLAMI/CLAMI+ improve them by 5.2%-19.7%. Considering 
the AUC measure, self-learning methods CLAMI/CLAMI+ 
outperform four baselines among 11 datasets and improve 
them by 13.9%-27.2% in average of all datasets. Note that the 
self-learning methods do not need prior labeled data but 
achieve comparable performance than inter-version prediction 
methods. In terms of RQ2, the performance of CLAMI+ 
achieves comparable or better result than CLAMI method. 
Only one out of the 14 datasets in which the CLAMI+ shows 

the worse result than CLAMI considering AUC or CCR. In 
other cases, the CLAMI+ performs better or at least the same 
with CLAMI. Also, considering the average of all datasets, the 
CLAMI+ method improves the CLAMI method by 2.9% in 
CCR and 3.2% in AUC. 

In addition, we conduct the Friedman test on the 
performance comparison when comparing multiple methods as 
suggested by Demša [35]. The Friedman test compares 
whether the difference of the average ranks of the performance 
of the methods are statistically significant or not. We translate 
the question into the null hypothesis Hnull: There is no 
significant difference between the average ranks of the 
performance of all the methods. And the alternative hypothesis 
Halt is that there is a significant difference between the average 
ranks of all the methods. Table IV shows the Friedman test 
results. We provided the average ranks (the approach with the 
best performance is ranked in “6”) and the significant level p-
value. In terms of CCR, the CLAMI and CLAMI+ show a 
comparable ranks although not the best. In terms of AUC, the 
CLAMI and CLAMI+ show the higher ranks than other four 
methods and the CLAMI+ is the best. Note that the p-values in 
both of the two measures are less than 0.05 which enable us to 
reject the null hypothesis and accept the alternative hypothesis. 
This indicates that there is a statistical significant difference 
between the average ranks of all the methods in the two 
performance measures.  

TABLE IV: FRIEDMAN TEST FOR THE PERFORMANCE COMPARISON 

Measure 

 

Average rank p-value 

LB MLP RBF SVM CLAMI CLAMI+ 

CCR 3.86 4.25 3.14 2.18 3.61 3.96 0.0356 

AUC 3.18 3.29 2.32 1.79 4.79 5.64 0.0000 

VI. THREATS TO VALIDITY 

Impact of the threshold. Threshold decides the results of 
the clustering and initialized labeling phase. There are various 
methods to decide a metric threshold. However, we did not 
provide the analysis on the impact of different thresholds. This 
might be a threat to our work. In this work, we adopt a typical 
threshold (i.e., the median) to mitigate this issue. A more 



refined work is to take into account the effects of different 
thresholds. 

Impact of sigmoid function. The difference of our 
proposed CLAMI+ method is that we transform the 1 or 0 
result (violation or not) to a continuous value ranging from 0 
to 1 which represents the violation degree by using the 
sigmoid function. There are several parameters in a sigmoid 
function, such as dynamic range, and slope. However, we 
adopt the regular sigmoid function on all the metrics. This 
might be a limitation to the performance of CLAMI+, since 
different metrics possess different distribution and they may 
suitable for different parameter settings. Also, we have a plan 
to conduct additional experiment on the impact of the 
parameters. 

VII. CONCLUSION AND FUTURE WORK 

In this paper, we proposed to adopt self-learning approach 
to tackle change-prone class prediction on new projects or 
projects with limited historical data. Concretely, we applied a 
state-of-art self-learning method CLAMI and proposed a novel 
approach CLAMI+ by extending CLAMI on change-prone 
class prediction. This enables prediction for new projects or 
projects with limited historical data. The empirical study 
among 14 open source projects showed that the self-learning 
methods yield better or comparable results to four typical 
inter-version prediction methods in terms of CCR and AUC. 
In addition, the proposed CLAMI+ method slightly improves 
the CLAMI method on average. 

In the future, we plan to enhance the effectiveness of our 
approach further. Concretely, we plan to investigate the impact 
of various thresholds, such as mean, standard deviation and 
different percentiles. In addition, we plan to improve the 
performance by proposing an adaptive method to determine 
the optimized parameters of the sigmoid function for different 
metrics. 
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