
A Model-Driven Approach to Generate Relevant and Realistic Datasets

Adel Ferdjoukh, Eric Bourreau, Annie Chateau, Clémentine Nebut
Lirmm, CNRS and University of Montpellier

{firstname.lastname}@lirmm.fr

Keywords: Relevant datasets generation, Meta-model instantiation, Probabilistic simulation

Abstract: Disposing of relevant and realistic datasets is a difficult challenge in many areas, for benchmarking or testing
purpose. Datasets may contain complexly structured data such as graphs or models, and obtaining such kind
of data is sometimes expensive and available benchmarks are not as relevant as they should be. In this paper
we propose a model-driven approach based on a probabilistic simulation using domain specific metrics for
automated generation of relevant and realistic datasets.

1 Introduction & Motivations
Developing software handling complex structured

data requires to dispose of datasets to validate the built
software. For example, when developing algorithms
to assist the reconstruction of genomic sequences, sets
of DNA sequences are required to experiment the al-
gorithms. Similarly, to validate a program handling
models (called a model transformation), a poll of rel-
evant models is required. Disposing of such datasets
of structured data is usually complex. Data is itself
complex, and the dataset must fulfil properties such as
relevancy and realism: it must contain data that look
like real data. Some approaches propose an ad hoc
generation of test cases, for instance in [10], the au-
thor presents an approach for generation of uniform
lambda terms for testing a compiler of Haskell lan-
guage. However, characterizing data is not fully intu-
itive in the proposed way.

In this paper, we propose an alternative approach
for automated generation of relevant datasets. Our
approach uses domain specific metrics and simulates
usual probability distributions in order to generate rel-
evant and realistic datasets. The approach is model-
based: the wished data is modelled in a metamodel,
and the data generation is achieved through the meta-
model instantiation. Though metamodels are a strong
tool to represent the abstraction underlying data, ex-
isting metamodel instantiation approaches encounter
difficulties to adapt to various concrete situations, and
suffer from a lack of realism in produced models. Our
contribution is to inject relevance and realism into the
model generation process approaching the character-
istics of the desired models by the mean of a priori
probability distributions concerning metrics about el-

ements in models.
The rest of the paper is organised as follows. Re-

lated work is presented in Section 2. Section 3 re-
lates the simulation of probability distribution and its
integration to our original approach G RIMM. Sec-
tion 4.1 presents our first case study, the generation
of real-close skeletons of Java projects. The second
case study, generation of relevant scaffold graphs, is
described in Section 4.2.

2 Related work
We give here an overview of contributions from

the literature that are close to our proposal, i.e. in the
fieds of model generation through automated meta-
model instantiation. Many underlying techniques
have been used. Cabot et al. [2] translate a meta-
model and its OCL constraints into constraint pro-
gramming. In [9], Mougenot et al. use random tree
generation to generate the tree structure of a model.
Wu et al. [12] translate a meta-model into SMT (Sat-
isfiability Modulo Theory) in order to automatically
generate conform models. In [3], Ehrig et al. trans-
form a meta-model into a graph grammar which is
used to produce instances. The advantages and draw-
backs of our original approach relatively to the other
generating methods have been discussed in [4].

Nevertheless, only two approaches have treated
the problem of relevance and realism of generated
models. In [9], authors use a uniform distribution dur-
ing the generation process and add weights in order
to influence the frequency of appearance of different
elements. In [12], authors describe two techniques
to obtain relevant instances. The first one is the use

DOI reference number: 10.18293/SEKE2016-029

of partition-based criteria which must be provided by
the users. The second one is the encoding of com-
mon graph-based properties. For example, they want
to generate acyclic graphs, i.e. models.

Our goal being the generation of relevant and re-
alistic data, we infer characteristics from real models,
in a way that allows us to generate models which are
close to reality.

3 Generation of relevant models
G RIMM (GeneRating Instances of Meta-Models)

method [4, 5] relies on translating meta-models into
constraint satisfaction problems (CSP) in order to pro-
duce conform instances (models). In a nutshell, we
encode the classes, references and OCL constraints of
a meta-model into a set of variables connected by con-
straint relationships. A CSP solver performs a smart
exhaustive search for values which satisfy the given
constraints. Generation is fast and provides mod-
els which are guaranteed to be conform to the meta-
model.

The main remaining issue is related to the useful-
ness of generated models. Indeed, we have to produce
models that are as realistic as possible, regarding to
the data it is supposed to simulate. We propose here a
method that intends to achieve this goal.

The declarative approach is intrinsically determin-
istic, since the solver follows a deterministic algo-
rithm to produce a unique solution. The CSP solver
can easily produce thousands of solutions, but they
are often far from the reality. Here we take into ac-
count the flexibility given by the CSP to encode var-
ious parameters before the solving process, and the
fact that some elements of the real models follow
usual probability distributions. These distributions
are simulated and, a priori, injected to the CSP, in or-
der to produce generated models closer to real ones.

3.1 Sampling probability distributions
Generating samples of well-known probability distri-
butions is a way to add randomness to the determin-
istic CSP solving process. The idea is to get mod-
els that have more diversity in their elements’ degrees
and their attributes’ values in order to cover a lot of
possible values. For example, when generating UML
models, we want to generate a package which has 5
classes, another one with 7 classes and so on.

Figure 1 shows the basic operation with which we
can sample all usual probability distributions what-
ever they are continuous or discrete. Thus, to generate
a sample of a random variable X we need its cumula-
tive function F(X) and a sample of uniform values

u. Result values x are obtained by an inversion of F :
u = F(x)⇒ x = F−1(u).

Previous method is then adapted to each probabil-
ity distribution we want to sample.

Discrete distribution on a finite set For all dis-
crete distribution, are given the probabilities of a fi-
nite set of values. The cumulative function is then
deduced from the accumulation of probabilities and a
sample can be easily generated.

Inverse cumulative function method This
method is used for continuous distribution if their in-
verse cumulative function is easily computable. This
method is used to simulate the exponential distribu-
tion (ε(λ)).

Normal distribution: Box Muller transform
Sometimes, inverting a cumulative function is diffi-
cult. In these cases, special algorithms are used. For
example, a normal distribution (N (µ,σ)) does not
have a known inverse function, so previous method is
useless. However, many other methods exist to simu-
late a normally distributed sample. Our implementa-
tion uses Box Muller algorithm.

For a more complete overview about probability
and simulation, please refer to [7]

X

F(X)

0

1

u

x

given

compute

Figure 1: Simulation of random values x given a cumulative
function F(X) of a random variable X and uniform u

3.2 Integration into G RIMM

Many methods coming from the area of random
graphs (see for example, [1]) use specific degree dis-
tributions to generate random graphs. Our idea is to
apply such a method to randomly generate relevant
models. Indeed, models are also graphs, in which
vertices and edges are typed (classes and relations).
There exist many domain-based metrics on the ele-
ments of models. We propose to use those metrics
(viewed as probability distributions) in order to im-
prove the relevance of randomly generated models.

The degree distribution of a link As well as in
graphs, choosing the number of elements to link with
a vertex (its degree) is a key to generate realistic mod-
els. The observation of real models shows us that the
degrees are diverse. So the greater is the diversity of

degrees, the more realistic will be the models. In our
method, the users provide probability distributions on
the degree of some associations or references. Then,
these distributions are simulated and integrated to the
G RIMM process.

Distribution on the value of an attribute The
values of an attribute are also very important for
the relevance of models. Indeed, generated models
should have attributes with values that are close to real
models. Distributions for attributes are given by the
user. A probability is defined for each possible value,
and simulation will choose adequate values and as-
sign them to class instances.

Improving the connectivity Molloy and Reed
show in [8] that the parametrisation of a random graph
generator can influence the connectivity of the gener-
ated graphs. Indeed, choosing the adequate number of
vertices and edges, and the right degree distribution
gives graphs that are more connected. Our method
takes into account this important aspect during the
simulation process in order to get the most connected
models.

Figure 2 shows the different inputs (white boxes)
and the different steps (grey boxes) of our new
tool G RRIMM (Generating Randomized and Relevant
Instances of Meta-Models).

Meta-model

OCL

Distribution
of links

Distribution
of attributes

values

Probability
sampler

CSP
generator

Model
builder

CSP
solver

G RRIMM
G RIMM

Relevant
models

Figure 2: Methodology process.

4 Case studies
We experimentally show in this section how tak-

ing probability distributions improves the quality of
generated datasets. We consider two case stud-
ies, one from Software Engineering area and the
other from Bioinformatics. All data concerning the
two case studies and the evaluation can be found
at: http://www.lirmm.fr/˜ferdjoukh/english/
experiments4Seke.html.

4.1 Java code generation
One of the main objectives of our approach is the
generation of benchmarks of test programs for dif-
ferent applications, such as compilers or virtual ma-
chines. In this experiment, we generate realistic and

Metric Theoretical distrib.
Class/Package ε(1

8.387)

Methods/Type ε(1
7.06)

Attributes/Type N (3.46,2.09)

Constructor/Type N (0.73,0.26)

Sub-Classes/Classe ε(1
0.22)

% Interface/Package ε(1
8.001)

Parameters/Methods N (0.87,0.25)

Table 1: Chosen code metrics with their theoretical proba-
bility distribution. ε: Exponential distribution, N : Normal
distribution.

relevant skeletons of Java programs using real code
measurements. We choose Java for facility to find real
programs to collect desired measurements. However,
our method can be applied to any programming lan-
guage. We collected 200 real Java projects coming
from two corpus (Github and Qualitas corpus1). For
more heterogeneity, we chose projects having differ-
ent sizes (big project for qualitas corpus and smaller
ones from github) and different origins (well-known
software such as Eclipse, Apache or ArgoUML and
also small software written by only one developer).
We measured metrics related to their structure, such
as the percentage of concrete classes/ abstract classes,
the average number of constructors for a class, the vis-
ibility of fields and methods, etc [6]. To measure these
metrics we used an open source tool called Metrics2.
After that, we use R software3 to compute histogram
of each metric in order to deduce its theoretical prob-
ability distribution. Table 1 gives the different metrics
and their theoretical probability distributions.

According to these metrics, we automatically gen-
erate Java programs having the same characteristics as
the real ones. To achieve this goal, we design a meta-
model representing skeletons of Java projects and we
adjoin some OCL constraints. 300 Java projects are
generated using three versions of our approach. Four
corpus are then compared: (1) projects generated by
G RIMM but without OCL (2) projects generated by
G RIMM (3) projects generated by G RRIMM (4) real
Java projects. Figure 3 gives the distributions of con-
structors per class for each corpus. We observe that
the two first versions without probability distributions
give results that are very far from the characteristics
of real models. On the other hand, introducing simu-
lated probability distributions leads to substantial im-
provement. We see that the distribution of the number

1Qualitas corpus: http://qualitascorpus.com/
docs/catalogue/20130901/index.html

2Metrics tool: http://metrics.sourceforge.net
3R softaware: https://www.r-project.org/

http://www.lirmm.fr/~ferdjoukh/english/experiments4Seke.html
http://www.lirmm.fr/~ferdjoukh/english/experiments4Seke.html
http://qualitascorpus.com/docs/catalogue/20130901/index.html
http://qualitascorpus.com/docs/catalogue/20130901/index.html
http://metrics.sourceforge.net
https://www.r-project.org/

G RIMM
(-OCL)

0.00 0.05 0.10 0.15 0.20

0
10

20
30

40
50

60 G RIMM

1.0 1.2 1.4 1.6 1.8 2.0

0
10

20
30

40
50

60

G RRIMM

0.4 0.8 1.2 1.6 2.0

0
10

20
30

40 Real
Corpus

0.0 0.5 1.0 1.5 2.0

0
5

10
15

20
25

Figure 3: Comparing the number of constructors per class
in Java projects. x: constructors per class, y: frequency.

of constructors of generated models are close to real
ones. Moreover, these results are always better when
adding probabilities for all other measurements pre-
sented in Table 1.

4.2 Scaffold graphs generation

Scaffold graphs are used in Bioinformatics to assist
the reconstruction of genomic sequences. They are
introduced late in the process, when some DNA se-
quences of various lengths, called contigs, have al-
ready been produced by the assembly step. Scaf-
folding consists in ordering and orienting the con-
tigs, thanks to oriented relationships inferred from
the initial sequencing data. A scaffold graph is built
as follows: vertices represent extremities of the con-
tigs, and there are two kind of edges. Contig edges
link both extremities of a given contig (strong edges
in Figure 5), whereas scaffolding edges represent the
relationship between the extremities of distinct con-
tigs. Contig edges constitute a perfect matching in
the graph, and scaffolding edges are weighted by a
confidence measure. Those graphs are described and
used in the scaffolding process in [11] for instance.
The scaffold problem can be viewed as an optimisa-
tion problem in those graphs, and consists in exhibit-
ing a linear sub-graph from the original graph. There-
fore it can be considered as well as a model transfor-
mation, when models conform to the Scaffold graph
meta-model that we designed. Producing datasets to
test the algorithms is a long process, somehow biased
by the choices of the methods (DNA sequences gen-
eration, assembly, mapping), and there does not exist
a benchmark of scaffold graphs of various sizes and
densities. Moreover, real graphs are difficult and ex-
pensive to obtain. Thus, it is interesting to automati-
cally produce scaffold graphs of arbitrary sizes, with
characteristics close to the usual ones. In [11], the
authors present some of these characteristics, that are
used here to compare the G RIMM instances vs. the
”hand-made” graphs.

The probability distribution chosen to produce the
graph emerges from the observation that the degree
distribution in those graphs is not uniform, but fol-
lows an exponential distribution. We compare sev-
eral datasets, distributed in several classes according
to their sizes: (1) graphs generated by G RIMM, (2)

2 4 6 8

20
40

60
80 G RIMM

1 2 3 4 5 6

0
10

20
30

40
50

60
70 G RRIMM

1 2 3 4 5 6

0
20

40
60

80

Real Graph

Figure 4: Comparing the degree distribution between a real
scaffold graph and its equivalent generated ones (168 nodes
and 223 edges).x: degree, y: frequency.

1

2 5

38

6

38 7

38

8

38

9

38

10

38 11

38

12

38

3

4 13

38

14

38 15

38

16

38

17

38

18

38

23

24

25

26

27

28

19

20

21

22

G RIMM

1

29

44

6

26

10

16

9

13

3

45

4

41

5

26

42

8

5

7

12

34

2741

2

28

20

11

5

13

50

14

37

15

23

17

18 21

45

3

22

19

20 23

38

24

25

G RRIMM

0

1 9

60

12

22

21

32

24

38

2

320

17

25

71

11

85

4

5

6

59
1

8

71

7

14

78 13

26

10

1
16

10

18

19

2

15

23

19

26

25

17

19

7

22

27

Real graph

Figure 5: Three Scaffold graphs corresponding to the same
species (monarch butterfly). Strong edges represent contig
edges, other edges are scaffolding edges.

graphs produced by G RRIMM and (3) real graphs of
different species, described in [11].

For each real graph, 60 graphs of the same size are
automatically generated. 30 graphs are naively gener-
ated using the original G RIMM method [4, 5], and 30
others are generated after the simulating of probabil-
ity distribution. These models are then compared in
term of visual appearance (Figure 5), degree distribu-
tion (Figure 4) and according to some graph measure-
ments (Table 2).

We see in Figure 5 three models (scaffolds graphs)
corresponding to the same species (monarch butter-
fly4). The naive method generates a graph that does
not look like the real one. This graph is too weakly
connected, and the connected parts have a recurring
pattern. This is not suitable for a useful scaffold
graph. Whereas, introducing probabilities provides
graphs having shapes close to reality. Thus, both real
graphs and generated graphs (with probability distri-

4It refers to mitochondrial DNA of monarch butterfly.

Graph size Measurements
G RIMM generation G RRIMM generation Real graphs

Species nodes edges min/max h-index min/max h-index min/max h-indexdegree degree degree
monarch 28 33 1/9 3 1/ 4.6 4.06 1/ 4 4

ebola 34 43 1/9 3 1/ 4.83 4.60 1/ 5 4
rice 168 223 1/9 8 1/ 6.03 5.93 1/ 6 5

sacchr3 592 823 1/9 10 1/ 7 6.76 1/ 7 6
sacchr12 1778 2411 − − 1/ 7.53 7 1/10 7

lactobacillus 3796 5233 − − 1/ 8.06 7.8 1/12 8
pandora 4092 6722 − − 1/ 8.23 7.96 1/ 7 7
anthrax 8110 11013 − − 1/ 8.3 8.03 1/ 7 7

gloeobacter 9034 12402 − − 1/ 8.46 8 1/12 8
pseudomonas 10496 14334 − − 1/ 8.43 8 1/ 9 8

anopheles 84090 113497 − − 1/ 8.96 9 1/ 51 12

Table 2: Comparing graph metrics on real scaffold graphs and average for 60 generated ones for each species.

bution) are strongly connected, and more randomness
can be observed in the connections and the weights of
edges.

Figure 4 compares the degree distributions for
three scaffold graphs of the same species. We see that
generating with probabilities gives a distribution very
similar to the distribution in the real graph.

Table 2 compares the three benchmarks of scaf-
fold graphs (naive generation, generation with proba-
bilities and real graphs) according to some graph mea-
surements. We can observe again, that the graphs gen-
erated with probabilities are closer to real graphs than
the naively generated graphs in all cases. The mea-
surements on the naive graph suffer from a lack of di-
versity and randomness. Indeed, the minimal and the
maximal degree are the same for all generated mod-
els. This, of course, does not reflects the reality. No-
tice also that it was not possible with the naive genera-
tion method to generate largest graphs corresponding
to largest genomes.

5 Conclusion & Discussion
In this work, we presented a model driven ap-

proach to generate realistic and useful datasets. Our
approach exploits domain-based metrics and the sim-
ulation of probability distributions to tackle the issue
of relevance for generated instances. We evaluated
our work by applying the method to two different
fields: generation of source code skeletons in Soft-
ware Engineering and generation of scaffold graphs in
Bioinformatics. The method follows four main steps:
(1) Design a meta-model to represent the domain, (2)
Collect metrics on real models (The metrics can also
be related to a specific use, so given by an expert),
(3) Sample probability distributions with respecting
previous metrics and (4) Generate realistic and rel-
evant instances using G RRIMM tool. We observed a
substantial improvement of relevance when simulated

probabilities samples are added to the model genera-
tor. New generated instances have characteristics very
close to real models, improving their usefulness for
testing programs. This is especially interesting when
data is rare, difficult or expensive to obtain, like in the
case of scaffold graphs.

REFERENCES

[1] B. Bollobás. Random Graphs. Cambridge University
Press, 2nd edition, 2001.

[2] J. Cabot, R. Clarisó, and D. Riera. Verification
of UML/OCL Class Diagrams using Constraint Pro-
gramming. In IEEE ICSTW, pages 73–80, 2008.

[3] K. Ehrig, J. M. Kister, G. Taentzer, and J. Winkel-
mann. Generating Instance Models from Meta Mod-
els. In FMOODS, pages 156–170, 2006.

[4] A. Ferdjoukh, A.-E. Baert, E. Bourreau, A. Chateau,
R. Coletta, and C. Nebut. Instantiation of Meta-
models Constrained with OCL: a CSP Approach. In
MODELSWARD, pages 213–222, 2015.

[5] A. Ferdjoukh, A.-E. Baert, A. Chateau, R. Coletta, and
C. Nebut. A CSP Approach for Metamodel Instantia-
tion. In IEEE ICTAI, pages 1044–1051, 2013.

[6] B. Henderson-Sellers. Object-Oriented Metrics:
Measures of Complexity. Prentice Hall, 1996.

[7] M. Mitzenmacher and E. Upfal. Probability and
Computing: Randomized Algorithms and Probabilis-
tic Analysis. Cambridge University Press, 2005.

[8] M. Molloy and B. Reed. A Critical Point for Ran-
dom Graphs with a Given Degree Sequence. Random
Structures & Algorithms, 6(2-3):161–180, 1995.

[9] A. Mougenot, A. Darrasse, X. Blanc, and M. Soria.
Uniform Random Generation of Huge Metamodel In-
stances. In ECMDA, pages 130–145, 2009.

[10] M. Pałka. Random Structured Test Data Genera-
tion for Black-Box Testing. PhD thesis, University of
Gøteborg, 2014.

[11] M. Weller, A. Chateau, and R. Giroudeau. Exact
approaches for scaffolding. BMC Bioinformatics,
16(14):1471–2105, 2015.

[12] H. Wu, R. Monahan, and J. F. Power. Exploiting
Attributed Type Graphs to Generate Metamodel In-
stances Using an SMT Solver. In TASE, pages 175–
182, 2013.

