
Clustering and Artificial Neural Network Ensembles

Based Effort Estimation

Hamdy Ibrahim
1,2

1
Department of Electrical and Computer Engineering,

University of Calgary, Calgary, AB, Canada
2
Department of Information Systems

Menoufia University, Shebin Elkom, Egypt

hibrahi@ucalgary.ca

Behrouz H. Far

Department of Electrical and Computer Engineering

University of Calgary

Calgary, AB, Canada

far@ucalgary.ca

Abstract—Accurate effort estimation of software development

projects plays a key role in project success. However, it is still a

challenge activity to researchers and practitioners because of the

nature of software products and dynamics in software industry

and development environment. Artificial neural network (ANN)

is as an effective method and has been widely used in various

areas of software engineering. This paper proposes a new effort

estimation method based on clustering and ANN ensembles. The

contribution of the paper is twofold. First, the impact of

clustering projects on the estimation accuracy is investigated.

Second, the impact of using ANN ensembles instead of a single

ANN is also investigated. The proposed method includes three

phases called pre-processing, k-means clustering, and ANN

ensembles effort estimation. The method starts with exploring the

historical projects dataset. Afterward, k-means is used to cluster

the projects. Finally, the proposed method as well as two other

estimation methods (i.e. a single ANN and expert-based) were

applied to the created clusters and results were compared using

MMRE and PRED measures. The simulation results show that

the proposed method significantly outperforms the two other

estimation methods.

Keywords-component; Artifical Neural Network Ensembles;

Clustering; K-means; Effort Estimation; Mean Magnitude Relative

Error; Percentage of/Predictions.

I. INTRODUCTION

The estimation of software development resources is the

process of predicting the amount of effort, schedule, and cost

needed to develop or maintain a software system [1]. It plays

an essential role in software project management. It can be

used to (1) set the budget and schedule, (2) support build versus

buy decision, (3) as a part of tradeoff analysis among cost,

schedule, and scope triangle, (4) provide the cost part of cost-

benefit analysis, and (5) support the risk analysis of software

cost and schedule [2]. Inaccurate estimation leads to software

project crisis in terms of delivery delays and cost over-runs

although releasing software systems on time and within the

budget is a critical need for organizations.

An analysis study of around 50,000 projects (i.e. 60% from

USA, 25% from Europe, and 15% from the rest of the world)

developed between 2003 and 2012 reports that around 39%

(i.e. 19,500) of projects were delivered on time, within the

planned budget, and meeting stakeholders’ needs; 43% (i.e.

21,500) of them were late, over budget, and/or partially

meeting stakeholders’ needs; and 18% (i.e. 9,000) of projects

totally failed (cancelled prior to completion or delivered and

never used) [3].

Underestimating software development effort can lead to

understaffing, schedule and cost overruns, and low quality of

software systems therefore can have severe impact on business

reputation, credibility with customers, competitiveness, and

performance. Furthermore, overestimating software

development effort can lead to poor allocation and ineffective

use of resources (i.e. wasted resources) [4, 5]. Resource

estimation in software development project is a challenge task

and more difficult than resource estimation in other industries

because (1) software requirements and development tasks are

ambiguous and not granularly specified, (2) there is

dependency between software requirements, (3) fast evolution

of technologies, and (4) the information used in the estimation

process is uncertain. Addressing these challenges requires the

use of a systematic estimation process.

The major role of software resource estimation in the

project success and the associated challenges motivates

researchers to (1) study software resource estimation problem,

(2) propose new estimation techniques or combine existing

techniques to better estimate effort, schedule, and cost, and (3)

conducting comparative studies of current software resource

estimation techniques to determine the most accurate

technique. There are a vast number of estimation techniques

which was proposed in the literature and can be classified into

two main categories [6]:

1) Expert based estimation techniques where experts with

relevant experiences in the application domain and in

similar projects are consulted to estimate effort, schedule,

and cost. This category has the following disadvantages:

(1) It lacks the use of analytical methods, (2) Estimates are

prone to errors and very subjective particularly when there

is a mismatch between expert experience and project

characteristics, (3) Sometimes, it is hard if not impossible

to find experts with the right experience and If they are

found, the cost will be high.

2) Model-based estimation techniques which use some

algorithms and models to analyze historical data of past

projects to estimate effort, schedule, and cost of the new

projects. This category includes statistical regression based

models, machine learning based models (e.g. artificial

neural networks (ANN), decision trees, case-based

reasoning, Bayesian networks, etc.). It has a number of

advantages over expert-based techniques. For example, the

estimates are more objective, the same technique

with/without adaptation can be used in different projects,

and historical data of enormous number of past projects

can be used to improve the accuracy of the estimation

technique.

For decades, many techniques have been used for

estimating software project effort, project duration, and

product size. These estimation techniques have been

developed using informal models (e.g. expert-judgement based

estimation techniques), or formal models such as statistical

and machine learning techniques [7-11]. Many researchers

used artificial neural networks (ANNs) to estimate the

software project effort because of its learning capability and

its ability to model complex problems which are characterized

by the existence of nonlinear relationship between problem

variables. Examples of ANN-based estimation techniques are

[12-19]. Feed-forward multilayer perceptron neural networks

with back-propagation have been widely used to estimate

project effort [12-14]. A number of estimation techniques

were developed using radial basis function (RBF) neural

networks [15]. Few research attempts [20] investigated the use

of clustering and ANN ensembles and their impact on

improving the estimation accuracy.

There are numerous software estimation techniques but the

accurate effort estimation is still a challenge for the

researchers and practitioners particularly project managers. In

this paper, clustering and ANN ensembles based estimation

method is proposed. The proposed method has three main

phases: (1) Pre-processing, (2) K-means clustering, and (3)

ANN ensembles-based estimation. The proposed method was

evaluated using three datasets [21] and its performance was

compared to the performance of a single ANN and expert-

judgement based estimation techniques. The simulation results

show that the proposed method outperforms other estimation

techniques. Specifically, clustering projects improves the

estimation accuracy. In addition, Applying ANN ensembles to

the clustered projects also significantly improve the estimation

accuracy.

The rest of the paper is organized as follows. Section 2

presents the proposed estimation method. Section 3 discusses

the two measures used to evaluate the proposed method. In

section 4, the proposed method is evaluated as well as the

simulation results are presented and discussed. Section 5

presents the conclusion and summarizes the future research

directions.

II. THE PROPOSED EFFORT ESTIMATION METHOD

The main idea of the proposed technique is using

1. Clustering to categorize the projects according to their

similarity. The created clusters will be used to train and

validate the neural network component. Clustering is used

to improve the reliability of effort estimation because only

relevant and homogenous projects are used to estimate

project effort.
2. Artificial Neural network (ANN) ensembles where

multiple neural network models are created, trained, and

validated to estimate the project effort. The estimated

efforts are then combined and averaged to represent the

predicted project effort. Neural network ensembles are

used to improve the accuracy of effort estimation.

The conceptual diagram of the proposed method is shown

in Figure 1. The following subsections discuss pre-processing,

K-means, and ANN-based Effort Estimation phases.

Figure 1. Conceptual Diagram of the Proposed Estimation Technique

A. Pre-Processing

In this phase, project datasets are explored to

determine (1) number of projects in each dataset, (2) the

key features (e.g., application domain) of the projects, (3)

effort multipliers that are common between the projects,

and (4) data types of the effort multipliers (e.g. numeric,

discrete, etc.). In this phase, datasets are also searched for

incomplete projects which have missing values for effort

multipliers. According to the relative impact of the effort

multipliers with missing values, a decision of including or

excluding these projects is made. Conversion of discrete

values to numeric values is also done to facilitate the

combination of the project datasets for the purpose of

validating the proposed method (see section IV-A).

B. K-means Clustering

K-means clustering technique is selected to cluster the

projects because it is relatively scalable and efficient in

processing large datasets. The projects are clustered as

follows.

Input: A set of K-software development projects with r-

features, C: number of clusters to be created where C<=K.

C=K means each cluster will have only one project this is

unrealistic.

Processing: K-means will organize the projects into C-clusters

so that the similarity is high within the clusters and low

between clusters. Assuming C=3 (i.e., 3 clusters will be

formed), 3 projects each of which initially represents a cluster

mean or center, will be randomly selected. Each of the

remaining projects (K-3) is assigned to a cluster based on the

distance between the project and the cluster mean. The project

is basically assigned to the nearest (i.e., the lowest distance)

cluster. Then, the mean value (i.e., center) for each cluster is

recalculated according to the current projects in the cluster.

The projects will be reassigned to the clusters according to the

updated cluster centers and based on which cluster center is

the closest. The process will be repeated till no reassignment

of projects in any cluster occurs.

Output: C clusters are created.

C. ANN Ensembles-based Effort Estimation

The ANN model used in the proposed method is shown in

Figure 2.

Figure 2. ANN Model

The input layer has 16 nodes each of which corresponds to

an effort multiplier. The hidden layer has 2 nodes and the

output layer has one node.

The ANN-based effort estimation algorithm shown in

Figure 3 was developed around neural network ensembles

concept. This is because the performance of neural networks

and the accuracy of effort estimation can be impacted by how

the data is split into training and validation datasets. Different

splits of training and validation datasets produce different effort

estimations. Therefore, 20 ANN models (i.e. ANN ensembles)

with different training (80%) and validation (20%) splits were

used to estimate the project effort. During the neural network

training, weights are continuously adjusted till reaching their

optimal values where the mean square error (MSE) is less than

or equal to a threshold value (Tv). Datasets may contain

numerous local minima. A widely used technique to overcome

the problem of local minima is training ANN more than once

starting with different random weights. The best ANN which

has with the lowest MRE is selected because it represents most

likely the global optimal values of ANN weights. In the

proposed method, Each ANN ensemble is trained several times

(e.g., up to 25 runs) using different random weights for the

same dataset. Training is repeated until achieving an acceptable

accuracy (e.g., MRE is less than or equal 10%) or reaching the

maximum number of runs (e.g., 25 runs). If 25 runs are

completed and MRE is still more than 10%, the project effort

estimated by the ANN having the lowest MRE will be

recorded. The 20 estimated efforts were combined using a

weighted average technique as follows:

1. A weight which ranges from 0 to 1 is assigned to each

ANN ensemble depending on its magnitude relative error

(MRE) which measures the difference between actual and

estimated effort for a given project relative to the actual

effort. The lower MRE is the higher weight is assigned to

the ANN ensemble. The MRE and weight of a ANN

ensemble is calculated as follows:

j

jij

ji
A

EA
MRE

,

,


 (1)

jii MREw
,

1 (2)

Figure 3. ANN Ensembles Estimation Process

Where:

MREi,j: Magnitude relative error of ANN ensemble i for

project j.

Aj: Actual effort for project j.

Ei,j: Effort for project j estimated by ensemble i.

wi: weight assigned to ANN ensemble i.

…

.

f1

f2

f16

f3

Effort

Multipliers

Input

Layer

Hidden

Layer

Output

Layer

Estimated

Effort

For example, a weight of 1 is assigned to the ANN

ensemble whose MRE is 0 (i.e., the estimated project effort

equals to the actual project effort).

2. The weighted median effort of a project j (jE) is

calculated as follows:

ji

N

i

ij Ew
N

E ,

1

1



 (3)

Where:

N: Number of ANN ensembles.

wi: weight assigned to ANN ensemble i.

Ei,j: Estimated effort for project j by ANN ensemble i.

III. PERFOMANCE EVALUATION MEASURES

Two measures are used to evaluate the performance of

the proposed estimation technique.

1. Mean Magnitude Relative Error (MMRE): It is the most

widely used criterion for evaluating the performance of

software estimation models. MMRE is calculated as

follows:





k

j

jk MRE
k

MMRE
1

1
 (4)

Where:

K: number of projects for which the effort is estimated

MREj: Magnitude relative error for project j

Suppose that there are 2 estimation models with MMRE1

and MMRE2 respectively. If MMRE2 is less than MMRE1 then

the performance of the second estimation model is higher than

the performance of the first estimation model. Therefore, the

lower the MMRE is the higher the performance of the

estimation model is.

2. Percentage of Prediction (PRED): PRED(x) refers to the

percentage of the projects for which MRE is less than or

equal to x. PRED(x) is calculated as follows:

K

S
xPRED )((5)

Where:

S: Number of projects with MRE less than or equal x

K: Total number of projects

The ideal value of x which is used in software estimation

technique is 0.25. Therefore, PRED(0.25) is used to compare

between the proposed estimation method and other estimation

methods (i.e. single ANN and expert-based estimation).

IV. EVALUATION AND RESULTS DISCUSSION

In this section, the performance of the proposed estimation

technique is evaluated and compared with (1) ANN-based

technique and (2) Expert-based technique. The section is

divided into three subsections as follows:

1- Datasets where the characteristics of the three datasets

used in the method evaluation are summarized.

Furthermore, the process of combining the three datasets

into a large dataset is discussed.

2- Clustering where the combined datasets are clustered into 3

clusters using K-means clustering technique. Results of

clustering are presented.

3- Effort Estimation where the effort is estimated using ANN

ensembles, ANN, and expert methods for the three clusters

and the combined datasets. MMRE and PRED(0.25)

measures are used to compare between the three estimation

methods.

A. Datasets [21]

Three public datasets from PROMISE Software

Engineering Repository [21] are used to evaluate the

performance of the proposed method. Characteristics of the

datasets are summarized in Table 1.

TABLE I. CHARACTERISTICS OF THE 3 DATASETS

Dataset No. of Projects No. of Effort Multipliers

COCOMO81 63 16

COCOMO-NASA 60 16

COCOMO-NASA2 93 16 + 7 General Attributes

Effort

Multiplier
Description MIN MAX MEAN

STD

DEV
Variance

Rely Required software reliability 0.75 1.4 1.12 0.16 0.02

Data data base size 0.94 1.16 1.01 0.08 0.01

CPLX process complexity 0.7 1.65 1.16 0.16 0.02

Time time constraint for CPU 1 1.66 1.14 0.17 0.03

STOR main memory constraint 1 1.56 1.13 0.16 0.03

VIRT machine volatility 0.87 1.3 0.95 0.11 0.01

Turn turnaround time 0.87 1.15 0.96 0.09 0.01

ACAP analysts capability 0.71 1.46 1.08 0.18 0.03

AEXP Application Ex perience 0.82 1.29 1.06 0.12 0.02

PCAP Programmers Capability 0.7 1.42 1.06 0.16 0.03

VEXP virtual machine experience 0.75 1.21 1 0.08 0.01

LEXP language experience 0.7 1.14 1.03 0.07 0.004

MODP modern programing practices 0.82 1.24 1.03 0.11 0.01

TOOL use of software tools 0.83 1.24 1.02 0.1 0.01

SCHED schedule constraint 1 1.23 1.03 0.05 0.002

LOC Line of code 0.9 1150 83.72 135.69 18413.03

The three datasets have 16 common effort multipliers. In

COCOMO81 and COCOMO-NASA datasets, the 16 effort

multipliers are numeric. However, in COCOMO-NASA2,

the effort multipliers have discrete values ranging from very

low to extra high. In pre-processing step, the numeric-to-

discrete conversion table provided by [21] is used to convert

discrete values to numeric. The numeric-to-discrete

conversion is required to combine the three datasets. A total

of 216 projects form the combined dataset. There are two

types of correlation between the effort multipliers and the

effort.

 Positive correlation: when the effort multiplier increases,

the effort also increases and vice versa. For example by

increasing the software reliability (Rely) or the

complexity of the process (CPLX), the effort will

increase.

 Negative correlation: when the effort multiplier

increases, the effort decreases and vice versa. Increasing

analyst’s capability (ACAP), programmer’s capability

(PCAP), language experience (LEXP), or application

experience (AEXP) decrease the effort.

B. Clustering

NCSS data analysis tool [22] is used to cluster the

combined datasets into 3 clusters using K-means technique.

Figure 4 shows a screenshot for NCSS tool. The summary

of clusters created using K-means is shown in Table 2 and

Table 3 shows the means of effort multipliers in the three

clusters.

Figure 4. NCSS Data Analysis Tool

TABLE II. CLUSTERS SUMMARY

Cluster Number Number of Projects Percentage (%)

1 100 46%

2 80 37%

3 36 17%

Combined Dataset 216 100%

TABLE III. MEANS OF EFFORT MULTIPLIERS IN THE 3 CLUSTERS

Effort Multiplier Cluster 1 Cluster 2 Cluster 3

Rely 1.14 1.05 1.19

Data 0.98 1.01 1.10

CPLX 1.19 1.11 1.23

Time 1.11 1.07 1.36

STOR 1.11 1.07 1.28

VIRT 0.97 0.94 0.93

Turn 0.94 0.95 1.05

ACAP 0.94 1.15 1.28

AEXP 0.97 1.14 1.12

PCAP 0.95 1.18 1.09

VEXP 1.01 1.00 0.96

LEXP 1.03 1.02 1.04

MODP 1.02 1.00 1.13

TOOL 1.03 0.96 1.15

SCHED 1.04 1.02 1.04

LOC 39.49 135.88 90.67

Table 4 presents the distance between the first 20

projects and the center of the three clusters. Distance 1

represents the distance between a project and the center of

cluster 1. For example, (1) Project 1 is assigned to cluster 2

because the distance between project 1 and center of cluster

2, is the smallest distance, (2) Project 3 is assigned to cluster

1 because the distance between project 3 and center of

cluster 1 is the smallest distance, and (3) Project 18 is

assigned to cluster 3 because the distance between project

18 and center of cluster 3 is the smallest distance. Smallest

distances for all projects are highlighted in grey.

TABLE IV. DISTANCE TO CENTER OF THE 3 CLUSTERS

Project

No.
Cluster

Distance

1

Distance

2

Distance

3

1 2 5.92 5.14 5.64

2 2 4.91 4.56 5.55

3 1 4.63 4.89 6.63

4 2 6.28 5.26 6.39

5 1 3.90 4.31 5.53

6 2 6.10 5.05 5.65

7 2 4.12 3.73 6.41

8 1 6.47 7.81 6.94

9 1 3.12 4.56 5.25

10 1 4.30 5.88 5.53

11 1 4.30 5.88 5.53

12 1 2.56 4.51 5.60

13 1 3.71 5.29 6.63

14 1 6.80 8.41 7.10

15 1 6.10 7.11 7.60

16 1 3.85 5.26 5.04

17 1 4.02 5.75 5.50

18 3 4.42 4.92 3.70

19 2 8.74 8.36 9.55

20 1 4.90 6.04 5.77

Figure 5 shows a bivariate plot example which graphs

the relationship between reliability (RELY) and process

complexity (CPLX) effort multipliers. The bivariate plot

helps to identify the degree and pattern relation between the

two effort multipliers within different clusters. In cluster 1,

increasing the process complexity reduces the software

reliability and vice versa.

Figure 5. RELY vs. CPLX Bivariate Plot by Clusters

C. Comparison between ANN ensembles, ANN, and Expert

based method

Before presenting and discussing the comparison results

between the three estimation methods, we have noticed that

the most influential effort multipliers vary from cluster to

another (see Figures 6 and 7). For example In the combined

datasets, the most influential effort multipliers are SCHED,

ACAP, MODP, TOOL, LOC, VIRT, and TIME. However,

the most influential effort multipliers in cluster 1 are LOC,

VEXP, RELY, and AEXP. These multipliers have impact

on project effort estimation more than the rest of 16

multipliers. Figure 8 shows the estimated effort versus the

actual effort for 100 projects which belong to cluster 1.

Figure 6. Relative Impact of Effort Multipliers in the Combined Datasets

Figure 7. Relative Impact of Effort Multipliers in Cluster 1

The comparison between ANN ensembles, ANN, and

expert estimation techniques using MMRE and PRED(0.25)

measures is presented in Table 5.

The simulation results show that the proposed method

performs better than using a single ANN and expert-based

model.

Figure 8. Estimated Effort versus Actual Effort in Cluster 1

TABLE V. MMRE AND PRED(0.25) SUMMARY

Dataset/ Estimation
ANN

Ensembles
ANN Expert

Combined

Dataset

MMRE 0.451 0.71 1.86

PRED(0.25) 36.31% 27.2% 19.51%

Cluster 1
MMRE 0.115 0.322 1.05

PRED(0.25) 82% 70.65% 21.32%

Cluster 2
MMRE 0.164 0.34 0.73

PRED(0.25) 71.45% 69.1% 29.3%

Cluster 3
MMRE 0.35 0.403 0.30

PRED(0.25) 55.25% 51.5% 67.22%

The best results of the MMRE and PRED (0.25)

measures are achieved by applying the ANN ensembles to

projects in cluster 1. The values of MMRE and PRED(0.25)

are 0.115 and 82% (82 projects out of 100 have MRE which

is less than or equal 0.25) respectively. Overall, ANN

ensembles perform better when it is applied to cluster 1. The

worst results of the ANN ensembles and ANN was achieved

when it is used to estimate the effort of projects belonging to

the combined datasets. The estimation accuracy using ANN

ensembles and ANN methods is decreased when it is trained

and validated using heterogeneous projects or small number

of projects. Expert-based model performs well when it is

applied to a cluster with a small number of projects. Overall,

clustering significantly improves the estimation accuracy and

the performance of the three estimation methods. In addition,

clustering the projects then using ANN ensembles to

estimate the effort also enhances the estimation accuracy.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed an effort estimation

method. The proposed method has been developed using

clustering and artifical neural network (ANN) ensembles. It

consists of three phases: pre-processing, k-means clustering,

and ANN ensembles based effort estimation. The paper

briefly discussed the three phases and the used estimation

algorithm . NCSS data analysis tool was used to cluster the

combined datasets into 3 clusters using k-means clustering

method. The proposed ANN ensembles estimation

algorithm, a single ANN and expert-based methods were

applied to the combined datasets and the created three

clusters. Two measures (i.e. MMRE and PRED(0.25) were

used to evaluate performance of the proposed estimation

method and compare it to the performance of ANN and

expert based estimation methods. Overall, the simulation

results show that:

1- The proposed estimation method outperforms the ANN

and expert based estimation methods.

2- The best results for the proposed method was achieved

when it is applied to cluster 1 because cluster 1 has

homogenous and/or similar projects and the number of

projects is fair enough to train and validate the ANN

enesmbles.

3- The performance of the proposed method was low

when it is applied to the combined datasets and cluster

3 because the combined datasets has a large number of

hetrogenous projects and cluster 3 does not have

enough projects to train and validate the ANN

ensembles.

4- Clustering projects then using ANN ensembles, ANN,

or expert-based estimation significantly improves the

estimation accuracy.

Our future research will focus on:

5- Investigating the impact of using a subset of relevant

effort multipliers on the accuracy and performance of

the proposed estimation method.

6- Studying the impact of number of nodes in the hidden

layer as well as number of hidden layers on the

perfoamnce and accuracy of the proposed estimation

method.

7- More experimentation using different datasets and

comparing the results of the proposed estimation

method with other estimation techniques proposed in

the literature.

ACKNOWLEDGMENT

The authors would like to thank Electrical and Computer
Engineering department at the University of Calgary,
Alberta, Canada, for their logistics and financial support. The
authors would like to thank Faculty of Computers and
Information, Menoufia University, Egypt for their support.

REFERENCES

[1] Magne Jorgensen , "What We Do and Don't Know about Software
Development Effort Estimation," IEEE Software, Vol. 31 (2), March-
April 2014, pp. 37-40.

[2] Barry W. Boehm and Richard E. Fairley, "Software Estimation
Perspectives," IEEE software, November-December 2000, pp. 22-26

[3] J. S. Chou and C. C. Wu, "Estimating software project effort for
manufacturing firms," Computers in Industry, Vol. 64 (6), August
2013, pp. 732–740.

[4] Lionel C. Briand and Isabella Wieczorek, "Resource Estimation in
Software Engineering," Encyclopedia of Software Engineering, 2002

[5] Dirk Basten and Ali Sunyaev, "Guidelines for Software Development
Effort Estimation," IEEE Computer Society, Vol. 44 (10), October
2011, pp.88-90.

[6] Cuauhtémoc López-Martín, "Predictive Accuracy Comparison
between Neural Networks and Statistical Regression for Development
Effort of Software Projects," Journal of Applied Soft Computing, Vol.
27, Feburary 2015, pp. 434-449.

[7] Cuauhtémoc López-Martín and Alain Abran, "Neural Networks for
Predicting the Duration of New Software Projects," Journal of
Systems and Software Volume 101, March 2015, pp. 127-135.

[8] T. Halkjelsvik and M. Jørgensen, "From Origami to Software
Development: A Review of Studies on Judgment-Based Predictions
of Performance Time," Psychol Bull, Vol. 138 (2), 2012, pp. 238–
271.

[9] C. López-Martín, C. and A. Abran, "Applying Expert Judgment to
Improve an Individual’s Ability to Predict Software Development
Effort," International Journal of Software Eng. And Knowledge Eng.
(IJSEKE), Vol. 22 (4), 2012, pp. 467–483.

[10] J. Wen, S. Li, Z. Lin, , Y. Hu, and C. Huang, "Systematic Literature
Review of Machine Learning Based Software Development Effort

http://ieeexplore.ieee.org.ezproxy.lib.ucalgary.ca/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jorgensen,%20M..QT.&newsearch=true

Estimation Models," Information Software. Technologies, Vol. 54
(1), 2012, pp. 41–59.

[11] M. Jørgensen, "A Review of Studies on Expert Estimation of
Software Development Effort," Journal of Systems and Software,
Vol. 70, 2004, pp. 37-60.

[12] J. Kaur, et al., "Neural Network-A Novel Technique for Software
Effort Estimation," International Journal of Computer Theory and
Engineering, Vol. 2, 2010, pp. 17-19.

[13] C. S. Reddy and K. Raju, "A concise Neural Network Model for
Estimating Software Effort,” International Journal of Recent Trends
in Engineering, Vol. 1, 2009, pp. 188-193.

[14] I. Attarzadeh and S. H. Ow, "Software Development Cost and Time
Forecasting Using a High Performance Artificial Neural Network
Model," Intelligent Computing and Information Science, Vol. 134,
2011, pp. 18-26.

[15] A. Idri, et al., "Design of Radial Basis Function Neural Networks for
Software Effort Estimation," International Journal of Computer
Science, Vol. 7, 2010, pp. 11-16.

[16] K. V. Kumar, et al., "Software Development Cost Estimation using
Wavelet Neural Networks," Journal of Systems and Software, Vol.
81, 2008, pp. 1853-1867.

[17] I. K. Balich and C. L. Martin, "Applying a Feedforward Neural
Network for Predicting Software Development Effort of Short-Scale
Projects," Software Engineering Research, Management and
Applications (SERA), 2010, pp. 269-275.

[18] V. B. Khatibi and D. N. A. Jawawi, "Software Cost Estimation
Methods: A Review," Journal of Emerging Trends in Computing and
Information Sciences, Vol. 2, 2011, pp. 21-29.

[19] V. B. Khatibi, et al., "Neural Networks for Accurate Estimation of
Software Metrics," International Journal of Advancement in
Computing Technology, Vol. 3, 2011, pp. 54-66.

[20] Dinesh R. Pai, Kevin S. McFall, and Girish H, Subramanian,
"Software Effort Estimation using a Neural Network Ensemble,"
The Journal of Computer Information Systems, Vol. 53 (4), July
2013,pp. 49-58.

[21] Datasets: http://promise.site.uottawa.ca/SERepository/datasets-
page.html.

[22] NCSS Data Analysis Tool: http://www.ncss.com/.

http://ucalgary.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58XLxYX2C1hT14XbpJdpMtlOoqWxX7gO3W4qkkuwk9adV68N-bZB-KBQ8ek0kgJJnJZGb4PoAL3xMZY4K6OeFCf1Ay4YacYpfkmQh8wvSLwX_RAV1VoYHieCuraE11_pKZKHkHadNJuwYh7HL16hreKJNfLUk0tmEXY_3X0zeazZ_qPEIYWAJBq0qGbGvD4lqrOGhAlVKuykdqqo2iFGkTo_HfKz2A_dLXdKLichzClnw-gkbF4-CUan0Mj71lfzoZpPMoiXudZd_RzuskSR3dHU_T-5ENY1mBIem4dSIjGcezJBraXttK55PkoZg9nsaj62F8ArNBnN7cuSXfgrtCiOnj4l0kMKEBVnmOuCREeVwy5REmsfCkh5SQgR6ZyVxK1A0NdI1-zkSgm4p75BQcKpSigTCwZNKXCHNFhM-0Cx8iRAXNm9CutmzBhYnmZOv3xfeGNaFVy0tt-ik--1t8DnvY0lWYctoW7KzfPmS7xvT9_AI-_8Em
http://ucalgary.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58XLxYX2C1hT14XbpJdpMtlOoqWxX7gO3W4qkkuwk9adV68N-bZB-KBQ8ek0kgJJnJZGb4PoAL3xMZY4K6OeFCf1Ay4YacYpfkmQh8wvSLwX_RAV1VoYHieCuraE11_pKZKHkHadNJuwYh7HL16hreKJNfLUk0tmEXY_3X0zeazZ_qPEIYWAJBq0qGbGvD4lqrOGhAlVKuykdqqo2iFGkTo_HfKz2A_dLXdKLichzClnw-gkbF4-CUan0Mj71lfzoZpPMoiXudZd_RzuskSR3dHU_T-5ENY1mBIem4dSIjGcezJBraXttK55PkoZg9nsaj62F8ArNBnN7cuSXfgrtCiOnj4l0kMKEBVnmOuCREeVwy5REmsfCkh5SQgR6ZyVxK1A0NdI1-zkSgm4p75BQcKpSigTCwZNKXCHNFhM-0Cx8iRAXNm9CutmzBhYnmZOv3xfeGNaFVy0tt-ik--1t8DnvY0lWYctoW7KzfPmS7xvT9_AI-_8Em

