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Abstract—Accurate effort estimation of software development 

projects plays a key role in project success.  However, it is still a 

challenge activity to researchers and practitioners because of the 

nature of software products and dynamics in software industry 

and development environment.  Artificial neural network (ANN) 

is as an effective method and has been widely used in various 

areas of software engineering. This paper proposes a new effort 

estimation method based on clustering and ANN ensembles. The 

contribution of the paper is twofold. First, the impact of 

clustering projects on the estimation accuracy is investigated. 

Second, the impact of using ANN ensembles instead of a single 

ANN is also investigated. The proposed method includes three 

phases called pre-processing, k-means clustering, and ANN 

ensembles effort estimation. The method starts with exploring the 

historical projects dataset. Afterward, k-means is used to cluster 

the projects. Finally, the proposed method as well as two other 

estimation methods (i.e. a single ANN and expert-based) were 

applied to the created clusters and results were compared using 

MMRE and PRED measures. The simulation results show that 

the proposed method significantly outperforms the two other 

estimation methods. 

Keywords-component; Artifical Neural Network Ensembles; 

Clustering; K-means; Effort Estimation; Mean Magnitude Relative 

Error; Percentage of/Predictions. 

I.  INTRODUCTION 

The estimation of software development resources is the 

process of predicting the amount of effort, schedule, and cost 

needed to develop or maintain a software system [1]. It plays 

an essential role in software project management. It can be 

used to (1) set the budget and schedule, (2) support build versus 

buy decision, (3) as a part of tradeoff analysis among cost, 

schedule, and scope triangle, (4) provide the cost part of cost-

benefit analysis, and (5) support the risk analysis of software 

cost and schedule [2]. Inaccurate estimation leads to software 

project crisis in terms of delivery delays and cost over-runs 

although releasing software systems on time and within the 

budget is a critical need for organizations.  

An analysis study of around 50,000 projects (i.e. 60% from 

USA, 25% from Europe, and 15% from the rest of the world) 

developed between 2003 and 2012 reports that around 39% 

(i.e. 19,500) of projects were delivered on time, within the 

planned budget, and meeting stakeholders’ needs; 43% (i.e. 

21,500) of them were late, over budget, and/or partially 

meeting stakeholders’ needs; and 18% (i.e. 9,000) of projects 

totally failed (cancelled prior to completion or delivered and 

never used) [3].  

Underestimating software development effort can lead to 

understaffing, schedule and cost overruns, and low quality of 

software systems therefore can have severe impact on business 

reputation, credibility with customers, competitiveness, and 

performance. Furthermore, overestimating software 

development effort can lead to poor allocation and ineffective 

use of resources (i.e. wasted resources) [4, 5]. Resource 

estimation in software development project is a challenge task 

and more difficult than resource estimation in other industries 

because (1) software requirements and development tasks are 

ambiguous and not granularly specified, (2) there is 

dependency between software requirements, (3) fast evolution 

of technologies, and (4) the information used in the estimation 

process is uncertain. Addressing these challenges requires the 

use of a systematic estimation process.   

The major role of software resource estimation in the 

project success and the associated challenges motivates 

researchers to (1) study software resource estimation problem, 

(2) propose new estimation techniques or combine existing 

techniques to better estimate effort, schedule, and cost, and (3) 

conducting comparative studies of current software resource 

estimation techniques to determine the most accurate 

technique. There are a vast number of estimation techniques 

which was proposed in the literature and can be classified into 

two main categories [6]: 

1) Expert based estimation techniques where experts with 

relevant experiences in the application domain and in 

similar projects are consulted to estimate effort, schedule, 

and cost. This category has the following disadvantages: 

(1) It lacks the use of analytical methods, (2) Estimates are 

prone to errors and very subjective particularly when there 

is a mismatch between expert experience and project 

characteristics, (3) Sometimes, it is hard if not impossible 

to find experts with the right experience and If they are 

found, the cost will be high. 

2) Model-based estimation techniques which use some 

algorithms and models to analyze historical data of past 



projects to estimate effort, schedule, and cost of the new 

projects. This category includes statistical regression based 

models, machine learning based models (e.g. artificial 

neural networks (ANN), decision trees, case-based 

reasoning, Bayesian networks, etc.). It has a number of 

advantages over expert-based techniques. For example, the 

estimates are more objective, the same technique 

with/without adaptation can be used in different projects, 

and historical data of enormous number of past projects 

can be used to improve the accuracy of the estimation 

technique.  

For decades, many techniques have been used for 

estimating software project effort, project duration, and 

product size. These estimation techniques have been 

developed using informal models (e.g. expert-judgement based 

estimation techniques), or formal models such as statistical 

and machine learning techniques [7-11]. Many researchers 

used artificial neural networks (ANNs) to estimate the 

software project effort because of its learning capability and 

its ability to model complex problems which are characterized 

by the existence of nonlinear relationship between problem 

variables. Examples of ANN-based estimation techniques are 

[12-19]. Feed-forward multilayer perceptron neural networks 

with back-propagation have been widely used to estimate 

project effort [12-14]. A number of estimation techniques 

were developed using radial basis function (RBF) neural 

networks [15]. Few research attempts [20] investigated the use 

of clustering and ANN ensembles and their impact on 

improving the estimation accuracy.     

There are numerous software estimation techniques but the 

accurate effort estimation is still a challenge for the 

researchers and practitioners particularly project managers. In 

this paper, clustering and ANN ensembles based estimation 

method is proposed. The proposed method has three main 

phases: (1) Pre-processing, (2) K-means clustering, and (3) 

ANN ensembles-based estimation. The proposed method was 

evaluated using three datasets [21] and its performance was 

compared to the performance of a single ANN and expert-

judgement based estimation techniques. The simulation results 

show that the proposed method outperforms other estimation 

techniques. Specifically, clustering projects improves the 

estimation accuracy. In addition, Applying ANN ensembles to 

the clustered projects also significantly improve the estimation 

accuracy. 

The rest of the paper is organized as follows. Section 2 

presents the proposed estimation method. Section 3 discusses 

the two measures used to evaluate the proposed method. In 

section 4, the proposed method is evaluated as well as the 

simulation results are presented and discussed. Section 5 

presents the conclusion and summarizes the future research 

directions.  

II. THE PROPOSED EFFORT ESTIMATION METHOD 

The main idea of the proposed technique is using 

1. Clustering to categorize the projects according to their 

similarity.  The created clusters will be used to train and 

validate the neural network component. Clustering is used 

to improve the reliability of effort estimation because only 

relevant and homogenous projects are used to estimate 

project effort. 
2. Artificial Neural network (ANN) ensembles where 

multiple neural network models are created, trained, and 

validated to estimate the project effort. The estimated 

efforts are then combined and averaged to represent the 

predicted project effort. Neural network ensembles are 

used to improve the accuracy of effort estimation.     

The conceptual diagram of the proposed method is shown 

in Figure 1. The following subsections discuss pre-processing, 

K-means, and ANN-based Effort Estimation phases.  

 
Figure 1.  Conceptual Diagram of the Proposed Estimation Technique 

A. Pre-Processing  

In this phase, project datasets are explored to 

determine (1) number of projects in each dataset, (2) the 

key features (e.g., application domain) of the projects, (3) 

effort multipliers that are common between the projects, 

and (4) data types of the effort multipliers (e.g. numeric, 

discrete, etc.). In this phase, datasets are also searched for 

incomplete projects which have missing values for effort 

multipliers. According to the relative impact of the effort 

multipliers with missing values, a decision of including or 

excluding these projects is made. Conversion of discrete 

values to numeric values is also done to facilitate the 

combination of the project datasets for the purpose of 

validating the proposed method (see section IV-A). 

B. K-means Clustering 

K-means clustering technique is selected to cluster the 

projects because it is relatively scalable and efficient in 

processing large datasets. The projects are clustered as 

follows.  

Input: A set of K-software development projects with r-

features, C: number of clusters to be created where C<=K. 

C=K means each cluster will have only one project this is 

unrealistic. 

Processing: K-means will organize the projects into C-clusters 

so that the similarity is high within the clusters and low 

between clusters. Assuming C=3 (i.e., 3 clusters will be 

formed), 3 projects each of which initially represents a cluster 

mean or center, will be randomly selected. Each of the 

remaining projects (K-3) is assigned to a cluster based on the 

distance between the project and the cluster mean. The project 

is basically assigned to the nearest (i.e., the lowest distance) 

cluster. Then, the mean value (i.e., center) for each cluster is 

recalculated according to the current projects in the cluster. 

The projects will be reassigned to the clusters according to the 



updated cluster centers and based on which cluster center is 

the closest. The process will be repeated till no reassignment 

of projects in any cluster occurs. 

Output: C clusters are created.  

C. ANN Ensembles-based Effort Estimation 

The ANN model used in the proposed method is shown in 

Figure 2.  

 

 

 

 

 

 

 

 

 
Figure 2.  ANN Model 

The input layer has 16 nodes each of which corresponds to 

an effort multiplier. The hidden layer has 2 nodes and the 

output layer has one node. 

The ANN-based effort estimation algorithm shown in 

Figure 3 was developed around neural network ensembles 

concept. This is because the performance of neural networks 

and the accuracy of effort estimation can be impacted by how 

the data is split into training and validation datasets. Different 

splits of training and validation datasets produce different effort 

estimations. Therefore, 20 ANN models (i.e. ANN ensembles) 

with different training (80%) and validation (20%) splits were 

used to estimate the project effort. During the neural network 

training, weights are continuously adjusted till reaching their 

optimal values where the mean square error (MSE) is less than 

or equal to a threshold value (Tv). Datasets may contain 

numerous local minima. A widely used technique to overcome 

the problem of local minima is training ANN more than once 

starting with different random weights. The best ANN which 

has with the lowest MRE is selected because it represents most 

likely the global optimal values of ANN weights. In the 

proposed method, Each ANN ensemble is trained several times 

(e.g., up to 25 runs) using different random weights for the 

same dataset. Training is repeated until achieving an acceptable 

accuracy (e.g., MRE is less than or equal 10%) or reaching the 

maximum number of runs (e.g., 25 runs).  If 25 runs are 

completed and MRE is still more than 10%, the project effort 

estimated by the ANN having the lowest MRE will be 

recorded. The 20 estimated efforts were combined using a 

weighted average technique as follows: 

1. A weight which ranges from 0 to 1 is assigned to each 

ANN ensemble depending on its magnitude relative error 

(MRE) which measures the difference between actual and 

estimated effort for a given project relative to the actual 

effort. The lower MRE is the higher weight is assigned to 

the ANN ensemble. The MRE and weight of a ANN 

ensemble is calculated as follows: 
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Figure 3.  ANN Ensembles Estimation Process 

Where: 

MREi,j: Magnitude relative error of ANN ensemble i for 

project j.  

Aj: Actual effort for project j. 

Ei,j: Effort for project j estimated by ensemble i. 

wi: weight assigned to ANN ensemble i. 
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For example, a weight of 1 is assigned to the ANN 

ensemble whose MRE is 0 (i.e., the estimated project effort 

equals to the actual project effort).  

2. The weighted median effort of a project j ( jE ) is 

calculated as follows: 

ji

N

i

ij Ew
N

E ,

1

1



             (3) 

Where: 

N: Number of ANN ensembles. 

wi: weight assigned to ANN ensemble i. 

Ei,j: Estimated effort for project j by ANN ensemble i. 

III. PERFOMANCE EVALUATION MEASURES 

Two measures are used to evaluate the performance of 

the proposed estimation technique.  

1. Mean Magnitude Relative Error (MMRE): It is the most 

widely used criterion for evaluating the performance of 

software estimation models. MMRE is calculated as 

follows: 





k

j

jk MRE
k

MMRE
1

1
             (4) 

Where: 

K: number of projects for which the effort is estimated 

MREj: Magnitude relative error for project j 

Suppose that there are 2 estimation models with MMRE1 

and MMRE2 respectively. If MMRE2 is less than MMRE1 then 

the performance of the second estimation model is higher than 

the performance of the first estimation model. Therefore, the 

lower the MMRE is the higher the performance of the 

estimation model is. 

2. Percentage of Prediction (PRED): PRED(x) refers to the 

percentage of the projects for which MRE is less than or 

equal to x. PRED(x) is calculated as follows: 

K

S
xPRED )(              (5) 

Where: 

S: Number of projects with MRE less than or equal x 

K: Total number of projects    

The ideal value of x which is used in software estimation 

technique is 0.25. Therefore, PRED(0.25) is used to compare 

between the proposed estimation method and other estimation 

methods (i.e. single ANN and expert-based estimation). 

IV. EVALUATION AND RESULTS DISCUSSION 

In this section, the performance of the proposed estimation 

technique is evaluated and compared with (1) ANN-based 

technique and (2) Expert-based technique. The section is 

divided into three subsections as follows: 

1- Datasets where the characteristics of the three datasets 

used in the method evaluation are summarized. 

Furthermore, the process of combining the three datasets 

into a large dataset is discussed. 

2- Clustering where the combined datasets are clustered into 3 

clusters using K-means clustering technique. Results of 

clustering are presented. 

3- Effort Estimation where the effort is estimated using ANN 

ensembles, ANN, and expert methods for the three clusters 

and the combined datasets. MMRE and PRED(0.25) 

measures are used to compare between the three estimation 

methods. 

A.  Datasets [21] 

Three public datasets from PROMISE Software 

Engineering Repository [21] are used to evaluate the 

performance of the proposed method. Characteristics of the 

datasets are summarized in Table 1. 

 

TABLE I.  CHARACTERISTICS OF THE 3 DATASETS 

Dataset No. of Projects No. of Effort Multipliers 

COCOMO81 63 16 

COCOMO-NASA 60 16 

COCOMO-NASA2 93 16 + 7 General Attributes 

Effort 

Multiplier 
Description MIN MAX MEAN 

STD 

DEV 
Variance 

Rely Required software reliability 0.75 1.4 1.12 0.16 0.02 

Data data base size 0.94 1.16 1.01 0.08 0.01 

CPLX process complexity 0.7 1.65 1.16 0.16 0.02 

Time time constraint for CPU 1 1.66 1.14 0.17 0.03 

STOR main memory constraint 1 1.56 1.13 0.16 0.03 

VIRT machine volatility 0.87 1.3 0.95 0.11 0.01 

Turn turnaround time 0.87 1.15 0.96 0.09 0.01 

ACAP analysts capability 0.71 1.46 1.08 0.18 0.03 

AEXP Application Ex perience 0.82 1.29 1.06 0.12 0.02 

PCAP Programmers Capability 0.7 1.42 1.06 0.16 0.03 

VEXP virtual machine experience 0.75 1.21 1 0.08 0.01 

LEXP language experience 0.7 1.14 1.03 0.07 0.004 

MODP modern programing practices 0.82 1.24 1.03 0.11 0.01 

TOOL use of  software tools 0.83 1.24 1.02 0.1 0.01 

SCHED schedule constraint 1 1.23 1.03 0.05 0.002 

LOC Line of code 0.9 1150 83.72 135.69 18413.03 



The three datasets have 16 common effort multipliers. In 

COCOMO81 and COCOMO-NASA datasets, the 16 effort 

multipliers are numeric. However, in COCOMO-NASA2, 

the effort multipliers have discrete values ranging from very 

low to extra high. In pre-processing step, the numeric-to-

discrete conversion table provided by [21] is used to convert 

discrete values to numeric. The numeric-to-discrete 

conversion is required to combine the three datasets. A total 

of 216 projects form the combined dataset. There are two 

types of correlation between the effort multipliers and the 

effort. 

 Positive correlation: when the effort multiplier increases, 

the effort also increases and vice versa.  For example by 

increasing the software reliability (Rely) or the 

complexity of the process (CPLX), the effort will 

increase.  

 Negative correlation: when the effort multiplier 

increases, the effort decreases and vice versa. Increasing 

analyst’s capability (ACAP), programmer’s capability 

(PCAP), language experience (LEXP), or application 

experience (AEXP) decrease the effort. 

B. Clustering  

NCSS data analysis tool [22] is used to cluster the 

combined datasets into 3 clusters using K-means technique.             

Figure 4 shows a screenshot for NCSS tool. The summary 

of clusters created using K-means is shown in Table 2 and 

Table 3 shows the means of effort multipliers in the three 

clusters. 

 
Figure 4.  NCSS Data Analysis Tool 

TABLE II.  CLUSTERS SUMMARY 

Cluster Number Number of Projects Percentage (%) 

1 100 46% 

2 80 37% 

3 36 17% 

Combined Dataset 216 100% 

TABLE III.  MEANS OF EFFORT MULTIPLIERS IN THE 3 CLUSTERS 

Effort Multiplier Cluster 1 Cluster 2 Cluster 3 

Rely 1.14 1.05 1.19 

Data 0.98 1.01 1.10 

CPLX 1.19 1.11 1.23 

Time 1.11 1.07 1.36 

STOR 1.11 1.07 1.28 

VIRT 0.97 0.94 0.93 

Turn 0.94 0.95 1.05 

ACAP 0.94 1.15 1.28 

AEXP 0.97 1.14 1.12 

PCAP 0.95 1.18 1.09 

VEXP 1.01 1.00 0.96 

LEXP 1.03 1.02 1.04 

MODP 1.02 1.00 1.13 

TOOL 1.03 0.96 1.15 

SCHED 1.04 1.02 1.04 

LOC 39.49 135.88 90.67 

Table 4 presents the distance between the first 20 

projects and the center of the three clusters. Distance 1 

represents the distance between a project and the center of 

cluster 1. For example, (1) Project 1 is assigned to cluster 2 

because the distance between project 1 and center of cluster 

2, is the smallest distance, (2) Project 3 is assigned to cluster 

1 because the distance between project 3 and center of 

cluster 1 is the smallest distance, and (3) Project 18 is 

assigned to cluster 3 because the distance between project 

18 and center of cluster 3 is the smallest distance. Smallest 

distances for all projects are highlighted in grey. 

TABLE IV.  DISTANCE TO CENTER OF THE 3 CLUSTERS  

Project 

No. 
Cluster 

Distance 

1 

Distance 

2 

Distance 

3 

1 2 5.92 5.14 5.64 

2 2 4.91 4.56 5.55 

3 1 4.63 4.89 6.63 

4 2 6.28 5.26 6.39 

5 1 3.90 4.31 5.53 

6 2 6.10 5.05 5.65 

7 2 4.12 3.73 6.41 

8 1 6.47 7.81 6.94 



9 1 3.12 4.56 5.25 

10 1 4.30 5.88 5.53 

11 1 4.30 5.88 5.53 

12 1 2.56 4.51 5.60 

13 1 3.71 5.29 6.63 

14 1 6.80 8.41 7.10 

15 1 6.10 7.11 7.60 

16 1 3.85 5.26 5.04 

17 1 4.02 5.75 5.50 

18 3 4.42 4.92 3.70 

19 2 8.74 8.36 9.55 

20 1 4.90 6.04 5.77 

Figure 5 shows a bivariate plot example which graphs 

the relationship between reliability (RELY) and process 

complexity (CPLX) effort multipliers. The bivariate plot 

helps to identify the degree and pattern relation between the 

two effort multipliers within different clusters. In cluster 1, 

increasing the process complexity reduces the software 

reliability and vice versa.  

 
Figure 5.  RELY vs. CPLX Bivariate Plot by Clusters  

C. Comparison between ANN ensembles, ANN, and Expert 

based method  

Before presenting and discussing the comparison results 

between the three estimation methods, we have noticed that 

the most influential effort multipliers vary from cluster to 

another (see Figures 6 and 7). For example In the combined 

datasets, the most influential effort multipliers are SCHED, 

ACAP, MODP, TOOL, LOC, VIRT, and TIME.  However, 

the most influential effort multipliers in cluster 1 are LOC, 

VEXP, RELY, and AEXP. These multipliers have impact 

on project effort estimation more than the rest of 16 

multipliers. Figure 8 shows the estimated effort versus the 

actual effort for 100 projects which belong to cluster 1.  

 
Figure 6.  Relative Impact of Effort Multipliers in the Combined Datasets 

 
Figure 7.  Relative Impact of Effort Multipliers in Cluster 1 

The comparison between ANN ensembles, ANN, and 

expert estimation techniques using MMRE and PRED(0.25) 

measures is presented  in Table 5. 

The simulation results show that the proposed method 

performs better than using a single ANN and expert-based 

model.

 
Figure 8.   Estimated Effort versus Actual Effort in Cluster 1 



TABLE V.   MMRE AND PRED(0.25) SUMMARY 

Dataset/ Estimation 
ANN 

Ensembles 
ANN Expert 

Combined 

Dataset 

MMRE 0.451 0.71 1.86 

PRED(0.25) 36.31% 27.2% 19.51% 

Cluster 1 
MMRE 0.115 0.322 1.05 

PRED(0.25) 82% 70.65% 21.32% 

Cluster 2 
MMRE 0.164 0.34 0.73 

PRED(0.25) 71.45% 69.1% 29.3% 

Cluster 3 
MMRE 0.35 0.403 0.30 

PRED(0.25) 55.25% 51.5% 67.22% 

The best results of the MMRE and PRED (0.25) 

measures are achieved by applying the ANN ensembles to 

projects in cluster 1. The values of MMRE and PRED(0.25) 

are 0.115 and 82% (82 projects out of 100 have MRE which 

is less than or equal 0.25) respectively. Overall, ANN 

ensembles perform better when it is applied to cluster 1. The 

worst results of the ANN ensembles and ANN was achieved 

when it is used to estimate the effort of projects belonging to 

the combined datasets. The estimation accuracy using ANN 

ensembles and ANN methods is decreased when it is trained 

and validated using heterogeneous projects or small number 

of projects. Expert-based model performs well when it is 

applied to a cluster with a small number of projects. Overall,  

clustering significantly improves the estimation accuracy and 

the performance of the three estimation methods. In addition, 

clustering the projects then using ANN ensembles to 

estimate the effort also enhances the estimation accuracy.   

V. CONCLUSION AND FUTURE WORK 

In this paper, we proposed an effort estimation 

method. The proposed method has been developed using 

clustering and artifical neural network (ANN) ensembles. It 

consists of three phases: pre-processing, k-means clustering, 

and ANN ensembles based effort estimation. The paper 

briefly discussed the three phases and the used estimation 

algorithm . NCSS data analysis tool was used to cluster the 

combined datasets into 3 clusters using k-means clustering 

method. The proposed ANN ensembles estimation 

algorithm, a single ANN and expert-based methods were 

applied to the combined datasets and the created three 

clusters. Two measures (i.e. MMRE and PRED(0.25) were 

used to evaluate performance of the proposed estimation 

method and compare it to the performance of ANN and 

expert based estimation methods. Overall, the simulation 

results show that: 

1- The proposed estimation method outperforms the ANN 

and expert based estimation methods. 

2- The best results for the proposed method was achieved 

when it is applied to cluster 1 because cluster 1 has 

homogenous and/or similar projects and the number of 

projects is fair enough to train and validate the ANN 

enesmbles. 

3- The performance of the proposed method was low 

when it is applied to the combined datasets and cluster 

3 because the combined datasets has a large number of 

hetrogenous projects and cluster 3 does not have 

enough projects to train and validate the ANN 

ensembles. 

4- Clustering projects then using ANN ensembles, ANN, 

or expert-based estimation significantly improves the 

estimation accuracy.  

Our future research will focus on: 

5- Investigating the impact of using a subset of relevant 

effort multipliers on the accuracy and performance of 

the proposed estimation method. 

6- Studying the impact of number of nodes in the hidden 

layer as well as number of hidden layers on the 

perfoamnce and accuracy of the proposed estimation 

method. 

7- More experimentation using different datasets and 

comparing the results of the proposed estimation 

method with other estimation techniques proposed in 

the literature. 
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