
Modeling and analyzing cost-aware fault tolerant
strategy for cloud application

Liqiong Chen1,2, Guisheng Fan3, Yunxiang Liu1
1Department of Computer Science and Information Engineering

Shanghai Institute of Technology, Shanghai 200235, China
2Shanghai Key Laboratory of Computer Software Evaluating and Testing, Shanghai 201112, China

3 Department of Computer Science and Engineering
East China University of Science and Technology, Shanghai 200237, China
Correspondence should be addressed to Guisheng Fan; gsfan@ecust.edu.cn

1 Abstract—In this paper, we propose a method to model and
analyze cost-aware fault tolerant strategy for cloud computing.
First, Petri nets are used to describe the structure of cloud
computing, including component, cloud service and cloud appli-
cation, thus forming the fault tolerant model of cloud computing.
Second, a dynamic fault tolerant strategy is proposed, which
can dynamically make fault tolerant strategy with the lowest
cost based on the current state and failed component. Third, we
present operational semantics and related theories of Petri nets
for establishing the correctness of our proposed method. We have
also performed a series of simulations to evaluate our proposed
approach. Results show that it can help reveal the structural
and behavioral characteristics of cloud computing, and reduce
the fault tolerant cost.

Index Terms—Cloud computing, fault tolerance, cost, Petri net,
reliability

I. INTRODUCTION

Cloud computing sets a new paradigm for infrastructure
management by offering unprecedented possibilities to deploy
software in distributed environments[1]. While fault tolerant
processing techniques are mainly used for the development
of reliable distributed systems [2]. However, cloud computing
may include a number of cloud applications. The fault tolerant
strategy of cloud application may affect each other, and
different strategies may have different costs. It is a challenging
task to dynamically make the fault tolerance strategy with the
lowest cost for the failed cloud components. In addition, most
of the previous methods on fault tolerant process for cloud
application didn’t consider the user’s QoS constraints (such as
time, cost, etc.). If the cost of cloud application is high, then
the users will be unwilling to use cloud service, which in turn
would cause the loss of users’ interest in the cloud service.

This paper investigates how to model and analyze cost aware
fault tolerant strategy for cloud computing. Below summarizes
our main contributions: First, we provide a flexible way for
designers to specify their requirements, Petri nets are used to
model different components of cloud computing. Second, we
propose a method to dynamically make fault tolerant strategy,
which can get the fault tolerant strategy with the lowest cost
based on the current state and failed component. The process
that many cloud applications compete for cloud service is
converted into the optimization of fault tolerant strategy by
considering the recovery cost. Third, the operational semantics
and related theories of Petri nets help establish the effective-
ness of our proposed method.

1DOI reference number: 10.18293/SEKE2016-247

The remainder of this paper is organized as follows. Section
II describes how we model the different components of cloud
application. Next, Section III proposes the fault tolerant strat-
egy and analysis technique, and then evaluate the proposed
method via a series of simulations (Section IV). Section V
surveys related work, and Section VI concludes.

II. MODELING CLOUD APPLICATION

A. Requirements of cloud computing
Because cloud computing may include several cloud appli-

cations. As the function of cloud application is composed by a
number of independent sub-functions (component) according
to a certain composition rules [3], each component has several
cloud services which can realize its function.

Definition 1: The fault tolerant requirement of cloud
application is 6-tuple: Ξ = (C,WS,A,RC,RW,RL): (1)
C is the finite set of component in cloud application. (2)
WS = (WSc,WSe) is the finite set of service, WSc, WSe

are the set of matching service and replacement service. (3)
A is the finite set of cloud application. (4) RC : C → (0, 1)
is the weight of component. (5) RW = (CC,CE) is the
attribute function of service, CC is the reliability of service.
CE(WSe

i) = (aei, sei, ati, sti) is the cost, starting cost,
running time and start-up time of replacement service. (6)
RL = (RLr,RLe,RLc), RLr is the relation function be-
tween the components. RLe, RLc are the set of replacement
service and matching service of component.

The fault tolerant strategy of cloud application is composed
by a series of replacement services. SP = (SP1, . . ., SPf)
is the fault tolerant strategy of cloud applications a1, . . . af .
SPi = {WSk, . . ., WSg} describes the replacement service
of all components in ai.

B. Syntax and semantics
Petri net (PN) is a formal language for describing the

distributed system because its semantics is formally defined[4].
Definition 2: A 6-tuple Σ = (PN, IO, tr,D,AF ,M0) is

called a Fault tolerant Model(FTM): (1) PN = (P, T, F,W)
is a basic Petri net. P , T , F , W are the finite set of place,
transition, arc and weight. (2) IO is a special type of place,
which is the interface of Σ and denoted by dotted circle. (3) tr
is the attribute function of transition, tr(ti) = (λi, pii, ri, cti) is
the firing probability(deterministic), cost, priority and running
time of transition, the default value is (1, 0, 0, 0) The smaller
the value of ri, the higher the priority of transition, the priority
of instantaneous transition is higher than time transition. (4)

D = {dci,j , dwk , φ} is the individuality of component, the
matching service and data packet φ. (5) AF is the formula
set or individuality on the arc. (6) M0 is the initial marking
of FTM .

The input/output arc of transition ti and the free variable
in AT (ti) are denoted by FV (ti)={x1, x2, . . ., xn}. S=(M ,
EC, ET) is the state of model, EC and ET are the cost and
time when the system reaches S, the initial state S0=(M0,
EC0, ET0), EC0=ET0=0. ∀t ∈ T , if FV (ti)={x1, x2, . . .,
xn}, the token {d1, d2, . . ., dn} meets di ∈ {M(p) | p ∈•
t ∪ t•} and di corresponds to the variable xi, the instance
of t is obtained by replacing d1, d2, . . ., dn with x1, x2,
. . ., xn, which is called a replacement of t, denoted by
t < x1 ← d1, x2 ← d2, . . ., xn ← dn >, it can be
denoted by t < d1, d2, . . . , dn >. The replacement is mainly
used to bind the token to the input/output arc of t and all
free variables in AT (t). Let AT (t) < d1, d2, . . . , dn > and
AF (p, t) < d1, d2, . . . , dn > be the values got by replacing
AT (t) and AF (p, t) of input arc with d1, d2, . . ., dn.

Definition 3: If t < d1, d2, . . . , dn > makes AT (t) <
d1, d2, . . . , dn > ∧AF (t) < d1, d2, . . . , dn >=true, then
t < d1, d2, . . . , dn > is called the feasible replacement of
transition t under state S.

All the feasible replacements of transition t under S are
denoted by set V P (S, t). If V P (S, t) ̸= ∅, then t is enable
under S, denoted by S[t >. Let ET (S) = {t|S[t >}. For
ti ∈ ET (S), if λi ≤ min(λj), tj ∈ ET (S), then the firing
of ti under S is effective. All effective firing transitions under
state S are denoted by FT (S). The process that S reaches
S′ by firing a feasible replacement ti < d1, d2, . . ., dn > of
ti is denoted by S[ti < d1, d2, . . ., dn >S′. If the relation
between transitions is parallel, then the firing of any transition
cannot affect the firing of another transition. The concurrent
transitions under S are denoted by set MT (S).

Definition 4: H(S)={t < d1, d2, . . . , dn > |t ∈ MT (S),
t < d1, d2, . . . , dn >∈ V P (S, t) ∧ (cti ≤ min(ctf), tf ∈
MT (S′)) ∧ λi =∞} is called the greatest firing set of S.
FTM can reach a new state S′ by firing the greatest firing

set H(S) under the state S.
Definition 5: Let Ω be a FTM model, S is a state of Ω, the

system can reach a new state S′ by effectively firing H(M),
denoted by S[H(S) > S′, then S′ is called a reachable state
of S. S′ is computed based on the following rules:

(1) ∀ti < d1, d2, . . . , dn >∈ H(S), ∀pj ∈• ti ∪ t•i :
M ′(pj) = M(pj) − AF (pj , ti) < d1, d2, . . . , dn >+
AF (ti, pj) < d1, d2, . . ., dn >.

(2) Computing EC ′: EC ′= EC+
∑

ti∈H(S)

πi.

(3) Computing ET ′: ET ′=ET+max{cti}, tf ∈ H(S).
All the possibly reachable states of S are denoted by R(S).

FTM will start from the initial state S0 and generate the new
state by effectively firing the enabled transitions. δ(Si, Sj) is
the firing sequence from Si to Sj .

C. Modeling basic elements

Modeling component. The FTM model of component Ci,j

is shown in Fig.1, where D = {dci,j , dwk , φ} is the individ-
uality of component, which represents the component Ci,j ,
the matching service WSk and data packet φ. The initial
resource distribution M0(pws,i,j) = dwk . AF is the formula set
or individuality on the arc, such as Af (pws,i,j , ts,i,j) = x.

ts,i,j

ps,i,j

x x
pe,i,j

pa,i,j

x x

pws,i,j

te,i,j

dci,j

x
tf,i,j

pf,i,j

x

poe,i,j

pof,i,j

dci,

jdci,

j

Fig. 1. Modeling component

Modeling replacement service. The FTM model of WSi is
shown in Fig.2, tr is the attribute function of transition. so
the firing time of te,i is equal to the execution time of service.
The initial distribution of resources is M0(pI,i) = dwi .

ts,i

dwi

pI,i
ps,i

pc,i

te,i
poe,ita,i pa,i

pab,i

tw,i

pec

tae,i

M(pc,i)x
x

x

x x

x

Fig. 2. Modeling replacement service

Modeling cloud application. The steps for constructing
cloud application are as follows. 1) Matching the resources
for each component based on the requirement, then construct
the model of all components. 2) Introducing ts,i and ps,i to
describe the beginning operation and position of the applica-
tion, then initialize the system based on the characteristics of
cloud application. At the same time, we introduce te,i and
pe,i to describe the termination operation and position of the
system. 3) Composing the model of each element based on the
basic relationships between each element. 4) Introducing paf,i
to store all failed component in ai. 5) Setting M0(ps,i) = φ.

Modeling fault tolerant processing. taf,i is used to upload
all failed components in cloud application ai to the place pfc.
pench is used to store the fault tolerant strategy of each cloud
application. If any component fails (|pfc| ̸= 0), then fire tench
to allocate the component to the replacement service according
to the fault tolerant strategy. toe,i is used to transfer the results
of replacement service WSi to the cloud application.

Modeling cloud computing Ω(spi1, spk2 , . . ., spfl). The steps
for constructing cloud computing are as follows. 1) Construct-
ing the fault tolerant model of component, replacement service
and cloud application. 2) Modeling the adopted fault tolerant
strategy for cloud computing, spij represents that aj takes the i-
th fault tolerant strategy, spij = {WSk, . . ., WSm}. 3) Merging
the same place and transition, then set the initial marking.

III. FAULT TOLERANT STRATEGY

A. Fault tolerant cost
Let the current fault tolerant strategy be spd. And the

configured replacement service of Ci,j under spd is WSf ,
which is denoted by exC(Ci,j , spd) = WSf . The principle
of fault tolerant strategy is to select the replacement service for
failed component, so WSf ∈ RW (Ci,j) and WSf is unique.

2

exW (WSf , spd)={Ci,j |Ci,j ∈ C ∧ exC(Ci,j , spd) = WSf}
is called the finished component set of WSf under spd.

The recovery time of component Ci,j :

Alt(Ci,j , spd)=
{

atf + stf , exW (WSf , spd) = Ci,j :
stf+atf×|exW (WSf ,spd)|

|exW (WSf ,spd)| : else
In the same way, the recovery cost of component Ci,j :

Ale(Ci,j , spd)=
{

sef + aef , exW (WSf , spd) = Ci,j :
sef+aef×|exW (WSf ,spd)|

|exW (WSf ,spd)| : else
The above formula computes the recovery cost and time

of component from the view of the reliability of matching
service. The recovery of component must consider the time
and cost. We will give the recovery cost of component in the
following:

The fault tolerant cost of Ci,j under spd is:
Al(Ci,j , spd)= x1 × max Alt(Ci,j)−Alt(Ci,j)

max Alt(Ci,j)−min Alt(Ci,j)
+

X2 × max Ale(Ci,j)−Ale(Ci,j)
max Ale(Ci,j)−min Ale(Ci,j)

, where x1 + x2 = 1
The fault tolerant cost of ai under spd is equal to the fault

tolerant cost of failed components:

Al(ai, spd)=
∏

Ci,j∈Ci

RW (Ci,j)×Al(Ci,j , spd)

The fault tolerant cost of cloud application under the strat-

egy spd is: Al(spd)=
∏
ai

Al(ai, spd)

B. Dynamic fault tolerant strategy
Let the initial value of current fault tolerant strategy spd be
{∅, ∅, . . ., ∅}. We will make dynamic fault tolerant strategy
based on the following steps when component Ci,j fails.

(1) ∀WSf ∈ RW (CI,j), let sptemp=(spt1, spt2, . . ., spti−1,
spt

′

i,f ,. . ., sptk), that is, the system will select service WSf for
Ci,j to recovery under spti, then compute Al(Ci,j , sp

t′

i,f).
(2) The system will select WSf with the minimum value

of Al(Ci,j , sp
t′

i,f) as the replacement service of Ci,j : spd =
(spd1, spd2, . . ., spdi−1, sp

′

i, . . ., sp
d
k), where sp

′

i = spdi∪{(Ci,j ,
WSf)}, and spd will be viewed as the current strategy.

According to the above steps, we can ensure that cloud
computing can dynamically consider the fault tolerant cost.
We can weave the dynamic fault tolerant strategy into the
transitions of fault tolerant model.

Definition 6: Let Ω be a fault tolerant model, S is a
state of Ω, H(S)={t < d1, d2, . . ., dn > |t ∈ MT (S),
t < d1, d2, . . . , dn >∈ V P (S, t)} be the greatest concurrent
set of S, M(pench)=dsd, dsd is the token of current strategy. We
can further set H(S) according to the dynamic fault tolerant
strategy: If ∀tf,i,j ∈ FT (S), Al(Ci,j , sp

t′

i,f)=min{Al(Ci,j ,
spt

′

i,k)}, dwk , dwf ∈ #2(dci,j), then F (tench, pc,f) < x← dci,j >
We will analyze the correctness of dynamic fault tolerant

strategy based on the internal mechanism of cloud computing.
Theorem 1: Let Ω be the fault tolerant model of cloud

application, R(Ω) be the reachable state set which is obtained
by using fault tolerant strategy. ∀ ∈ R(Ω), EW (S) is the firing
set of cloud service when the system reaches S, ∀WSi ∈
EW (S), WSi is the replacement service of Cf,k then:
∀WSj ∈ WS − EW (S), if Cf,k ∈ RC(WSi) ∩ RC(WSj),
then Al(Cf,k, sp

t′

f,i) ≤ Al(Cf,k, sp
t′

f,j).
Proof by contradiction: ∃WSi ∈ EW (S), ∃WSj ∈

WS − EW (S), Cf,k ∈ RC(WSi) ∩ RC(WSj), then
Al(Cf,k, sp

t′

f,i) > Al(Cf,k, sp
t′

f,j). Because WSi ∈ EW (S),

TABLE I
RESOURCE CONFIGURATION AND ATTRIBUTES

C Actual meaning CC RA
C1,1 , C2,1 , C3,1 Requirement analysis 99% WS1 , WS2 , WS3

C1,2 , C4,1 Loading optimization 98% WS4 , WS5 , WS6
C1,3 , C2,2 , C4,2 Route optimization 99% WS7 , WS8 , WS9
C1,4 , C2,3 , C4,3 Network optimization 98% WS10 , WS11 , WS12
C1,5 , C3,2 , C4,4 Payment completion 98% WS13 , WS14 , WS15

C1,6 , C3,3 Transportation monitoring 97% WS16 , WS17 , WS18
C1,7 , C3,4 Transportation querying 98% WS19 , WS20

C3,5 Transportation route navigation 99% WS21
C1,8 ,C2,4 ,C3,6 Late, and other service 97% WS22 , WS23 , WS24

TABLE II
ATTRIBUTE OF REPLACEMENT SERVICE

WS ae se at st WS ae se at st
WS1 2 3 2 1 WS13 2 2 2 2
WS2 3 2 2 2 WS14 3 3 1 3
WS3 2 2 2 3 WS15 3 4 2 3
WS4 4 2 2 1 WS16 4 3 3 2
WS5 5 4 1 2 WS17 3 2 1 3
WS6 2 2 2 2 WS18 4 3 2 3
WS7 2 3 2 3 WS19 2 4 1 2
WS8 3 2 3 3 WS20 2 2 2 2
WS9 3 3 1 1 WS21 4 3 3 3
WS10 4 2 2 2 WS22 3 4 3 4
WS11 2 3 2 3 WS23 4 4 2 2
WS12 2 3 3 3 WS24 2 3 2 3

S1 is in one of the firing sequence from S0 to S, which makes
tench ∈ FT (S1). Because Cf,k ∈ RC(WSi) ∩ RC(WSj),
therefore dcf,k ∈ S(pfc). According to the definition of feasible
replacement, we can get tench < x ← dcf,k > and tench <
y ← dcf,k > are two feasible replacements of tench. Because
Al(Cf,k, sp

t′

f,i) > Al(Cf,k, sp
t′

f,j), according to the Definition
3, we can get H(S1) = H(S1) ∧ tench < x ← dcf,k >,
therefore, ∃WSj ∈ EW (S), which is contradicted with
WSj ∈WS − EW (S), the assumption does not establish.

Theorem 1 illustrates that the proposed method can ensure
that fault tolerant cost of dynamically selected component is
the locally optimal value, the function is to select the schema
with the lowest cost in the execution process.

IV. EXAMPLE

In this paper, we use a simplified logistics cloud as an
example. Four logistics clouds are operating at the same time,
because each application has the different purpose, its execu-
tion processes are different too: a1 : C1,1 > C1,2 > (C1,3 ∥
C1,4) > C1,5 > (C1,6 + C1,7) > C1,8; a2 : C2,1 > (C2,2 ∥
C2,3) > C2,4; a3 : C3,1 > C3,2 > (C3,3+C3,4+C3,5) > C3,6;
a4 : C4,1 > (C4,2 ∥ C4,3) > C4,4. The attributes of
component are shown in Table I. The weight of components in
application is {0.1, 0.1, 0.2, 0.1, 0.1, 0.1, 0.2, 0.1}, {0.3, 0.3,
0.2, 0.2}, {0.2, 0.1, 0.2, 0.2, 0.1, 0.2}, {0.2, 0.3, 0.4, 0.1}.
The system has 24 replacement services, their attributes are
shown in Table II.

We can construct the fault tolerant model of replacement
service, cloud application and cloud computing in the same
way. We can verify the related properties of model by using
the related tools of Petri nets, which includes the correctness
of execution process and fault tolerant strategy, the selection of
replacement service. Based on the state space of fault tolerant
model, we can get that the state space is limited, and the
applications can reliably operate when the component fails. We
can randomly generate 15 fault tolerant strategies. i represents
the service WSi. First, we can compute the cost of C1,1,
C2,4, C3,6, C3,5 under the different strategies, which is shown
in Fig.3(a). We can get that the cost of C2,4, C3,6 under
the same strategy is different even if the actual meaning and
the replacement service of component are same. The cost

3

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

sp1 sp2 sp3 sp4 sp5 sp6 sp7 sp8 sp9 sp10 sp11 sp12 sp13 sp14 sp15

C
o
s
t

SP

c1,1 c2,4 c3,6

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

sp1 sp2 sp3 sp4 sp5 sp6 sp7 sp8 sp9 sp10 sp11 sp12 sp13 sp14 sp15

C
o
s
t

SP

a1 a2 a3 a4

Fig. 3. Fault tolerant cost of application under different strategies

of all applications under the different strategy is shown in
Fig.3(b). We can get that: (1) For the same application, the
cost is different under the different strategies due to the cost
of component is different. And all applications can get the
lower cost under the strategy SP8. (2) Not all applications
can get the lowest cost under SP8.

V. RELATED WORKS

Fault tolerance is an important means to improve the
software reliability. Reference [6] proposes a large-scale fault
injection system that can execute numerous model-based fault-
injection simulations in a reasonable time using a cloud com-
puting environment. A scalable hybrid Cloud infrastructure as
well as resource provisioning policies to assure QoS targets
of the users is presented in [7]. In order to increase the
fault tolerance of cloud computing, a number of researcher
and institutions begin to focus on cloud computing fault-
tolerant framework [8], and to further explore the Byzantine
fault -oriented cloud computing architecture [9]. However,
several aspects differentiate our approach from the above
approaches. First, the modeling and analysis process is easier
to use because of the high abstraction level offered by using
formal method, which help in strengthening the flexibility of
composition process. Second, we propose the dynamic fault
tolerant strategy, which can guarantee that cloud computing
can select the optimal cloud service to realize the function of
failed component, thus reducing the cost.

Many research efforts for cloud computing have adopted
formal methods techniques to leverage its mathematically
precise foundation for providing theoretically sound and cor-
rect formalisms. Bruneo, D. et al. propose a technique to
model and evaluate the VMM aging process and to investigate
the optimal rejuvenation policy that maximizes the VMM
availability under variable workload conditions [10]. Ghosha et
al. [11] develop a scalable stochastic analytic model for per-
formance quantification of Infrastructure-as-a-Service (IaaS)
Cloud. Reference [12] presents a framework called E-mc2 for
modelling the energy consumption in cloud computing system.
In contrast, we have proposed an approach to constructing
the reliable service composition, which provides means to
observe behaviors of basic component, and to describe their
interrelationship [13]. Most of the aforementioned formalisms
cover basic and structured activities of cloud application, but
they are unable to ensure that the constructed model can meet
the users’ requirements, such as cost and reliability.

VI. CONCLUSION

In this paper, Petri nets are used to describe different
components of cloud computing. The reliability and cost are
took into account in the modeling process. Then, we propose
a method to dynamically make fault tolerant strategy, which
can get the fault tolerant strategy with the lowest cost based
on the current state and failed component. Third, we present
the operational semantics and related theories of Petri nets to
help prove the effectiveness of proposed method,. Finally, we
also conduct experiments to evaluate the proposed method.

ACKNOWLEDGMENT

The work is partially supported by the NSF of China under
grants No. 61173048 and 61300041. Research Fund for the
Doctoral Program of Higher Education of China under Grants
No. 20130074110015.

REFERENCES

[1] S. Marstona, Z. Lia, S. Bandyopadhyaya, et al. Cloud computing-the
business perspective. Decision Support Systems. 2011, 51(1): 176-189.

[2] B. Yang, F. Tan, Y. S. Dai. Performance evaluation of cloud service con-
sidering fault recovery. The Journal of Supercomputing. 2013, 65(1):426-
444.

[3] Wang, X. Y, Du, Z. H, Chen, Y. N. An adaptive model-free resource and
power management approach for multi-tier cloud environments. Journal
of Systems and Software. 2012, 85(5): 1135-1146.

[4] M. TADAO. Petri nets: properties, analysis and application. Proceedings
of the IEEE. 1989, 77(4):540-581.

[5] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, R. Buyya.
CloudSim: a toolkit for modeling and simulation of cloud computing en-
vironments and evaluation of resource provisioning algorithms. Software:
Practice and Experience. 2011, 41(1):23-50.

[6] Y. Nakata, Y. Ito, Y. Takeuchi, et al. Model-based fault injection
for large-scale failure effect analysis with 600-node cloud computers.
http://cs28.cs.kobe-u.ac.jp/assets/files/pdf/1303 nakata RIIF.pdf.

[7] B.Javadi, J. H. Abawajy, R. Buyya. Failure-aware resource provisioning
for hybrid Cloud infrastructure. Journal of Parallel and Distributed
Computing. 2012, 72(10): 1318-1331.

[8] G. Belalem, S. Limam. Fault tolerant architecture to cloud computing
using adaptive checkpoint. International Journal of Cloud Applications
and Computing. 2011, 1(4): 60-69.

[9] Y. Zhang, Z. Zheng, M. R. Lyu. BFTCloud: A byzantine fault tolerance
framework for voluntary-resource cloud computing. Processing of the
2011 IEEE International Conference on Cloud Computing. IEEE Com-
puter Society, Washington, DC, USA, 2011: 444-451.

[10] D. Bruneo, S. Distefano, F. Longo, A. Puliafito, M. Scarpa. Workload-
based software rejuvenation in cloud systems. IEEE Transactions on
Computers. 2013, 62(6):1072-1085.

[11] R. Ghosha, F. Longob, V. K. Naikc, K. S. Trivedi. Modeling and
performance analysis of large scale IaaS Clouds. Future Generation
Computer Systems. 2013, 29(5):1216-1234.

[12] G. C. Gabriel, N. Alberto, L. Pablo, et al. E-mc2: A formal framework
for energy modelling in cloud computing. Simulation Modelling Practice
and Theory. 2013, 39(2013): 56-75.

[13] G. Fan, H.Yu, L.Chen, D.Liu. Petri net based techniques for constructing
reliable service composition. Journal of Systems and Software. 2013,
86(4): 1089-1106.

4

