

Figure 1. Agile OO SW reengineering methodology

Figure 2. Each iteration of the agile reengineering phase

An Agile Methodology for Reengineering

Object-Oriented Software
Anam Sahoo, David Kung, and Sanika Gupta

Department of Computer Science and Engineering, The University of Texas at Arlington, USA

Abstract— Software maintenance is an important phase in the

software development life cycle. More than 75% of

maintenance efforts are enhancement. Currently, most

enhancement projects are carried out in an ad hoc manner,

depending on the knowledge and experience of the developers.

Software reengineering aims to provide an engineering

approach for software enhancements. In this paper, we present

an agile reengineering methodology for object-oriented

software. The methodology has a quick planning phase

followed by a series of iterative reengineering phases. Each

iteration consists of three legs: the reverse engineering leg, the

reincarnation leg, and the validation leg. Academic and
industry experiments show promising results.

Keywords and phrases: Software process and methodology,

software maintenance, software reengineering, agile method,

object-oriented software.

I. INTRODUCTION

Software maintenance typically consumes an average of
60% of software life costs, with enhancements being
responsible for more than 75% of the costs [11]. These costs
are a grand challenge for the current software community, in
which tens of millions of lines of legacy code need to be
modified during enhancement maintenance. The problem
becomes even direr when the enhancement project is
performed by engineers who do not have sufficient
knowledge of the legacy system and documentation is
inadequate or nonexistent. Software reengineering aims to
provide an engineering approach for software enhancement.
Current literature surveys reveal that there is a lack of a
systematic reengineering methodology.

In this paper, we present a methodology for reengineering
object-oriented software. It has three distinct phases: a
release planning phase, iterative reengineering phase, and a
system validation phase as shown in Fig. 1.

Each release begins with a quick agile planning phase,
followed by an iterative reengineering phase consisting of a
series of iterations. At the end of the release, an optional
system validation phase is performed to validate the release
before it is formally delivered to customers. The planning
phase performs two activities. First, new requirements are
identified and prioritized by applying information collection
techniques and are based on a statement of work (SOW)
from the customer. Second, new use cases and changes to
existing use cases are derived. Finally, planning for release
iterations is performed to produce a roadmap to guide the
iterative reengineering activities. The iterative reengineering
phase consists of a series of iterations. Each iteration has
three legs: the reverse engineering leg, the reincarnation leg,
and the validation leg as shown in Fig 2. This is referred to
as the N-process model.

The reverse engineering leg recovers design artifacts and
helps to understand the existing system. It starts from a
legacy code and has three major outputs: recovered design,
recovered architecture, and recovered requirements in the
form of use cases. There are techniques described in

[2,6,12,17-18,21,23,25,28,33,35] for recovering these design
artifacts. The middle leg is the re-incarnation leg, which
transforms the legacy system to a new working system. The
third leg of the iterative reengineering phase focuses on
validating the implementation against the intended design
and requirements by preparing appropriate test cases. These
include component level unit test cases, subsystem/system
integration test cases, and system test cases. The system
validation phase is meant to perform a formal release testing
even though functional unit and integration testing have
already been performed during the iterative reengineering
phase. A formal system testing is conducted when a release
candidate build is ready. Then a well tested release build is
handed over to customer for customer acceptance testing.

The detailed step-by-step methodology for these phases is
described in section II. Section III describes the application
of the methodology to two academic experiments, which
show significant improvements in project schedule and
software quality. Section IV describes related work, followed
by conclusions and future work in section V.

II. THE REENGINEERING METHODOLOGY

To illustrate the steps of the methodology, the Academic
Advising Scheduler Web (AASW) system will be used as the
legacy system. It is a software application written in Java and
JSP with a MYSQL data base. It supports three types of
users: administrators, advisors, and students. TABLE I lists
the existing legacy requirements and use cases assumed to be
already available to limit the scope of this paper. If missing,
the needed use cases, can be recovered using techniques
described in [6,43].

A. Planning Phase:

The planning phase performs two activities. First, new
requirements are identified and prioritized by applying
information collection techniques. Their impact on existing
use cases is assessed, resulting in new, modified, and deleted

DOI reference number: 10.18293/SEKE2016-227

TABLE I. REQUIREMENTS AND USE CASES FOR THE EXISTING

LEGACY SYSTEM

Legacy Requirements Legacy Use Cases
R1: An Administrator can create, edit

and delete advisors and define their

privileges

UC1: Create advisor

UC2: Edit advisor

UC3: Delete advisor

R2: Advisors can login and specify their

advising time.

UC4: Login user

UC5: Update schedule

R3: Student can create account, login to

it, and schedule an appointment

with an advisor.

UC6: Create student

UC4: Login user

UC7: Schedule appointment

TABLE II. ENHANCEMENT REQUIREMENTS AND IMPACT TO USE CASES

Enhancement

Requirements

Use Cases Category

R4: Users can change

passwords.

UC8: Change password New

R5: Users must change

system-generated

temporary passwords

when logs in for the

first time.

UC4:Login user

UC8:Change password

Modified

New

R6: Student ID and all

passwords must be

encrypted before

storing them in the

database.

UC1:Create advisor

UC6:Create student

UC4:Login user

UC7:Schedule appointment

UC8:Change password

Modified

Modified

Modified

Modified

New

use cases, respectively. Second, planning for release
iterations is performed to produce a roadmap to guide the
iterative reengineering activities.

Identifying and Prioritizing Enhancement Requirements:

Requirements are part of the contract of a software project.

They specify the capabilities that the software system must

deliver. Thus, correctly identifying and prioritizing

enhancement requirements are critical to the success of a

reengineering project. To identify and prioritize

enhancement requirements, information collection

techniques such as customer presentation, user survey, user

interview, and literature survey are used. Next, new,

modified and deleted use cases are derived. A new use case

is derived if an application-specific verb-noun phrase is

found or inferred from an enhancement requirement and the

verb-noun phrase satisfies the following conditions: (1) it

denotes a complete end-to-end business process of the

application, (2) the business process begins with a user, (3)

the business process ends with the user, and (4) the business

process accomplishes a useful business task for the user.

Sometimes, an enhancement requirement specifies that a

piece of functionality needs be incorporated to an existing

use case of the legacy system. Finally, existing use cases

may no longer be needed due to the changing business

environment. For AASW, the enhancement requirements

identified during the planning phase are: R4: Users can

change passwords. R5: Users must change system-generated

temporary passwords when logs in for the first time. R6:

Student ID and passwords must be encrypted before storing

them in the database. From R4 above, we derive one verb-

noun phrases: change password. This satisfies the four

conditions for a use case described above. Therefore, a

“Change password” new use case is derived. From both R5

and R6 above, we derive four modified use cases: “UC1:

Create advisor,” “UC6: Create student,” “UC4: Login user,”

and “UC7: Schedule appointment.” The existing use cases,

UC1 and UC6 need modifications to incorporate encryption

of temporary password. The UC4 needs modification to

force the user to change the temporary password during

login and encrypt the new password. The UC7 should be

modified to include encryption of student ID while

scheduling an appointment. Encryption of the password will

be implemented in the new UC8: change password use case.

TABLE II shows the impact to use cases. R4-R6 have

priority 1, and must be completed in the first reengineering

iteration.

The new, modified, and deleted use cases are assigned to

iterations in this step. First, an agile estimation technique

such as the poker game [7] is applied to obtain an effort

estimate for dealing with each of the use cases. An order to

design, implement, delete, and test the use cases is derived,

based on their dependencies and priorities. The use cases are

then assigned to iterations according to the order.

B. Iterative Reengineering Phase:

The iterative reengineering phase consists of a series of
iterations. Each iteration has three legs: the reverse
engineering leg, the reincarnation leg, and the validation leg.
It is worth noting a new term “reincarnation” here for the
middle leg of the N-process model instead of using the over
used term “reengineering” to avoid confusion. We interpret
reengineering as a complete end-to-end methodology.
Reverse engineering is performed only if design
documentation that accurately represents the code does not
exist. The reverse engineering leg starts from a legacy code
and has three major outputs: recovered design, recovered
architecture, and recovered requirements in the form of use
cases. First, design artifacts such as class diagrams, sequence
diagrams, and use cases can be recovered from existing code.
High-level architectural design, domain model, and
requirements for legacy system can then be derived from the
recovered design artifacts. TABLE III summarizes all the
needed artifacts and activities for each of new, modified, and
deleted use cases.

In this paper we discuss only two reverse-engineered
artifacts--- that is, implementation sequence diagram (ISD)
and implementation class diagram (ICD). An ISD shows
how the software objects interact with one another and in
what order to process a user request. An ICD is an integrated
view of the implemented classes, their attributes, methods,
and relationships. Detailed steps for reverse engineering ISD
and ICD are given below.

B.1. Reverse engineering ISD and ICD:

Step 1. Observe how a user uses the current system and
describe the actor system interaction behavior. For example,

a login use case behavior is as follows: (a) AASW displays

any page having username and password fields in the page

header area, (b) the user enters username and password and

clicks “Submit,” (c) if the user authenticates correctly,

AAWS displays the user’s dashboard, and (d) the user sees

his dashboard.

Step 2. Identify nontrivial step(s) as follows: (a) If the
step does not require background processing, or (b) if the

system response simply displays a menu/input dialog, or (c)

if the step displays the same system response for all actors,

then it is a trivial step. but (d) if the system response is
different for different actors, then it is a non-trivial step. In

above example, the nontrivial step is (d).

TABLE III. REENGINEERING ARTIFACTS AND ACTIVITIES FOR DIFFERENT USE CASE CATEGORY

Artifacts/Activities Category of Use Case

New Modified Deleted

Reverse engineer

ISD

Not needed. Yes, needed, to be modified to take into

account the enhancement requirements.

Yes, needed, to identify potential

classes and methods to delete.

Reverse engineer

ICD

Yes, needed, to identify classes and methods

to reuse or extend

Yes, needed, to identify classes and

methods to reuse or extend.

Yes, needed, to identify classes

and methods to delete.

Construct expanded

Use Case (EUC)

Yes, needed. May be needed if actor-system interaction

behavior need be changed.

No, not needed

Construct/modify

Design Sequence

Diagram (DSD)/ISD

New DSD - with new and existing classes

from ICD. May apply software design

patterns (SDP) such as adapter, controller,

and facade.

Modified ISD, consider reusing existing

classes from ICD.

Use ISD to identify classes and

methods to delete.

Modify ICD Add new classes and modify classes of ICD

according to the DSD. Enhance design with

SDP.

Add new classes and modify classes of ICD

according to modified ISD. Enhance design

with SDP such as adapter and facade.

Delete identified classes and

methods from ICD.

Create New Test

Cases

Needed for new classes and new methods,

and classes affected by changes.

Needed for modified classes and methods,

and classes affected by the changes.

No new test cases needed

Do Regression Test Yes, needed. Yes, needed. Yes, needed.

 Step 3. Identify the button that initiates the nontrivial
step. Identify the action listener for the button. Trace the

action listener handler code for objects and messages sent

between them. Construct implementation sequence
diagrams (ISD) to describe interactions between these

objects. Techniques and tools for reverse engineering code

to produce ISD and ICD are found in [13,17-18,21,23,25-26]

and [13,18,22,26-28,30] respectively. Some of these tools

could be used to reduce effort.

Reincarnation: This middle leg transforms the legacy

system to a new working system. The new, modified and

deleted use cases are already identified during planning

phase. For each use case, depending on its category, the

following three steps are performed: First, an individual use

case is used to identify and recover implemented design and

high-level architectural artifacts from the code. Second, the

necessary additions, modifications, and deletions are made to

those recovered artifacts. Finally, changes in the artifacts are

incorporated into the existing code during the

implementation phase.

Validation: The third leg of the iterative reengineering

phase focuses on validating the implementation against the

intended design and requirements by preparing appropriate

test cases. These include component level unit test cases,

subsystem/system integration test cases, and system test

cases. The combined detailed steps for reincarnation and

validation activities for new, modified, and delete use cases

are as follows:

B.2.Reengineering for a New Use Case:

Treatment for new use cases is similar to forward
engineering, except that existing the legacy code and some

of the test cases may be reused. Forward engineering is

described in various publications [1,3,14-16,18]. The steps

are summarized as follows:

Step 1. For each new use case, describe how a user or
actor will interact with the system to carry out the business

process. This is called actor-system interaction

modeling/design. Consider, for example, the “change

password” use case as described in the planning phase A.1.

It may go as follows: (a) the user select the “change

password” tab after login, (b) the system asks the user to

enter information: new pass word, and confirmation

password, (c) user enter needed information and press enter,

(d) the system displays a confirmation message, and (e) the

user sees the confirmation message that the new password is

successfully stored in the system.

Step 2. Identify actor-system interaction steps that
required background processing such as database access or

user-dependent computation. For example, steps (c) and

above require the system process user information and

display the confirmation message to the user. We call such

steps nontrivial steps.

Step 3. For each pair of nontrivial steps, produce a
design sequence diagram (DSD) to describe how software

objects would interact with each other through message

passing (or function calls) to produce the output (e.g., the

confirmation message) from the user input (e.g., new

password and confirmation password). Software

reengineering should reuse existing code as much as
possible, classes of the ICD as recovered in section B.1.

Extract classes from the DSDs along with their methods,

attributes, and relationships such as call relationship and use

relationship. Use these to modify the recovered ICD as

follows. To facilitate identification of classes, methods, and

relationships to be implemented, the changes are highlighted

in the ICD accordingly. (a) If a class is not in the ICD, then

add the class to the ICD along with all its methods and

attributes extracted from the DSDs. (b) If a class is in the

ICD but some of its methods/attributes extracted from the

DSD are not in the ICD, then add these to the class in the
ICD. (c) If a relationship is not in the ICD, then add the

relationship to the ICD.

Step 4. Implement new classes and methods and modify

the existing classes and methods as per the new DSD and

modified ICD.

Step 5. Prepare and execute functional unit and
integration regression test cases for new classes and

methods, modified classes, and classes and methods affected

by changes.

Step 6. Make the necessary code changes until the test

cases successfully pass as per TDD.

Step 7. Maintain traceability to keep track of changes.
Examples of DSD and ICD for “UC8: Change password”

new use case for AASW code base A are shown in Fig. 3

and Fig. 4 respectively.

B.3.Reengineering for a Modified Use Case:

 Figure 5. Login user recovered and modified ISD

 Figure 3. Change password DSD

Figure 4. Recovered and modified ICD

Reengineering for modified use cases is the most

common reengineering activity. The steps are as follows:

Step 1. Observe how a user uses the current system and
reverse engineer the ISD and ICD as specified in the above

reverse engineering section B.1.

Step 2. Modify the recovered ISD as required by the
enhanced requirements. This step should attempt to reuse

legacy code classes and is described in step 3 for new use

cases in section B.2.

Step 3. Extract classes, methods and relationships from
the modified recovered ISD and use them to modify the ICD,

as described in step 4 for new use cases in section B.2.

Step 4. For each class method, prepare necessary unit
test cases and subsystem/system integration regression test

cases in parallel while incorporating the necessary code

changes. Perform the code review, functional unit testing

and integration regression testing immediately before and

after any code modification is performed as per TDD.

Step 5. Maintain traceability to keep track of changes.
Recovered/modified ISD for UC4 for code base A is shown

in Fig. 5.

B.4.Reengineering for a Deleted Use Case:

Deleted use cases need to be handled carefully as
follows: Step 1. Observe how a user uses the current system

and reverse engineer the ISD as specified in the above

reverse engineering section B.1.

Step 2. Identify the classes and methods of the ICD that

need to be deleted.

Step 3. Identify and run necessary regression integration
test cases for each deleted class and run before deleting any

code. Check that functionality exists.

Step 4. Comment out classes and methods and make sure
that no other modules are dependent on them. Comment out

classes or methods that are not used.

Step 5. Run the system/subsystem integration regression
test cases immediately after the code is commented out as

per TDD. Make sure that the functionality is deleted.

Identify and run selective impacted other regression test

cases.

Step 6. Delete commented classes and methods and

make necessary changes to the ICD.

Step 7. Maintain traceability to keep track of changes.

III. CASE STUDIES

In this section, we briefly present the impact of the
methodology on schedule and quality of reengineering

projects in comparison to doing it in any other way.

Overview of Case studies: We conducted two academic
case studies, as summarized in TABLE IV and an industry

one. The academic case studies involved 30-31 graduate

students in two different semesters using two legacy code

bases of the AASW system. The third case study is for an

industry project conducted by a local railroad company to

reengineer a Driver-Assist legacy system to an Auto-pilot

system involving a team of 8 experience engineers. For the

first phase of the first case study, students divided into 7

teams were asked to do their reengineering assignments in

their own ways. Then, the methodology was taught to the

class. In the second phase, the code bases were swapped and
asked to do the second reengineering assignments following

the methodology. In the second case study, the eight teams

were asked to learn and use the Rational Unified Process

(RUP)[4] and Agile Unified Methodology (AUM)[16] for

the first assignment. Then, teams used the methodology for

the second assignment after swapping the code bases. For

both the phases of case studies, data were collected from all

the teams in the following two ways: (1) artifacts

submission that include enhanced code and (2) the teams

were asked to give demonstration of their working code to

TABLE V. PROJECT ARTIFACTS AND CODE COMPLETION STATUS COMPARISON

Code

Base

Submitted

Artifacts

 Case Study 1 Case Study 2

Teams using any

Ad-hoc way

Teams using The

Methodology

 Teams using process Teams using the Methodology

 RUP AUM

Base -

A

Teams 2 3 4 Avg. 1 5 6 Avg. 1 3 2 4 Avg. 5 6 7 8 Avg.

Requirements x x x 100% x x x 100% x x x x 100% x x x x 100%

ISD/DSD - - - 0% x x x 100% - - x 25% x x x x 100%

ICD - - x 33% x x x 100% - - x - 25% x x x x 100%

Test cases - - - 0% x x x 100% - - - - 0% x x x x 100%

Traceability - - - 0% x x x 100% - - - - 0% x x x x 100%

Running code - - x 33% x x x 100% - x x x 75% x x x x 100%

Completion % 0 0 10 3 % 60 95 90 82% 0 40 30 35 24% 70 60 80 90 80%

Base -

B

Teams 5 6 7 Avg. 2 3 4 Avg. 5 7 6 8 Avg. 1 2 3 4 Avg.

Requirements x x x 100% x x x 100% x x x x 100% x x x x 100%

ISD/DSD - - - 0% x x x 100% - - x x 50% x x x x 100%

ICD x - - 33% x x x 100% - - x - 25% x x x x 100%

Test cases - - - 0% x x x 100% - - - - 25% x x x x 100%

Traceability - - - 0% x x x 100% - - - - 25% x x x x 100%

Running code x - - 0% x x x 100% - x x x 25% x x x x 100%

Completion % 33 0 0 11% 65 95 75 78% 0 0 25 50 19% 60 70 90 80 75%
“
 x

 ”
– Artifacts submitted

and

 “-“ – Artifacts not submitted .

TABLE IV. OVERVIEW OF CASE STUDIES

Case Studies 1 2

of Participants 30

CSE Students

31

CSE Students

Teams 2-4 1, 5-7 1,3,5,7 2,4,6,8

A
A

W
S

 P
ro

je
ct

co
d

e
b

as
e

Before

learning the

methodology

A B A B

After

learning the

methodology

B A B A

Duration 5 weeks 5 weeks 5 weeks 5 weeks

validate their claim. For the third case study, the railroad

company used and shared their experience of using the

methodology.

Analysis of the data collected from the first case study

was performed by comparing different groups for the same

legacy systems--that is, the quality of the enhanced code base

A performed by the teams 2-4 in case study 1 using the

methodology was compared with 3 out of the rest of the 4

teams (randomly picked) using ad hoc ways. But in the

second academic case study, the analysis was performed

comparing student performance with RUP and AUM with

that of the methodology.

Analysis and Results Interpretation: Case study 1 results

indicate that for both the code bases of AASW, following

any ad hoc way, only one out of three teams submitted and

demonstrated the working code. All the teams for both code

bases just submitted the requirements as it was given to them

without any prioritization, categorization, effort estimation,

and traceability. In contrast, the teams who followed the

methodology for both the code bases performed much better

with 78-80% of enhancement requirements completed. All

the teams submitted all the listed artifacts, which were

evaluated to be of much better quality. The second case

study results intdicate that students following RUP or AUM

could complete only 30 to 50% of needed enhancements.

The team who submitted the working code just submitted

some ISD and ICD but no other artifacts. In contrast, the

teams performed much better with 75-80% enhancement

completion as shown in TABLE V. All the teams submitted

all the listed artifacts, which again were evaluated to be of

much better quality. Feedback from the industrial

application indicated that the methodology significantly

imroved the schedule and quality of the company’s safety

critical auto-pilot reengineering project in terms of

requirements understanding, reverse engineering,

enhancement of design, implementation, and testing. The

estimated improvements was perceived to lead to a 25%

reduction in schedule due to smooth integration and a 50%

reduction in defects as compared to similar past

reengineering projects.

There are a few limitations to our first two case studies:

first, only two AASW legacy code bases were used to

compare the effectiveness of the methodology. Second, even

though students are inexperienced and the two projects have

different code bases, the domain learning during the first

assignment was definitely an advantage for the second

assignment. Finally, the sample size is too limited to run any

statistical analysis on. Despite all these limitations, these

case studies show preliminarily that the participants

performed much better using the proposed methodology

compared to using RUP, AUM or doing it in any ad hoc way.

IV. RELATED WORK

There are very few studies performed on reengineering
processes and methodology even though several plan-based
and agile forward engineering processes and methodologies
are currently used for reengineering activity. A framework-
based agile reengineering process named PARFAIT using
static structure of rational unified process (RUP) is described
in [4], which explains how to rapidly provide an user with
evolved versions of legacy system. [5] describes a
segmentation reengineering process after recovering the
analysis model from the procedural legacy C code and then
partially transforming it to an object-oriented java code using
design patterns. Another reengineering process for migrating
legacy object-oriented systems to component based systems
is described in [19], which suggests process metrics to
improve code granularity and reusability. [32] explains an
ontology based approach to reengineer legacy enterprise
software to cloud computing environment. A reengineering
process called “The Renaissance” is overviewed in [3]. It is
a two-stage process for transforming legacy system to

evolvable system: first, the strategic planning stage, and then,
the continuous evolution stage.

Missing or outdated documentation in legacy projects is
always an issue during reengineering. Many techniques,
however, have been presented for reverse engineering
artifacts, such as domain models[12], class diagrams[28],
sequence diagrams [16,18,23,25,33], and use cases[7] from
legacy code. An architecture recovery methodology using
feature modeling is described in [24]. In this methodology,
the top-down architectural element hypotheses are generated
based on domain knowledge and verified using bottom-up
tracing procedures. Finally, feature models are introduced
bridging the gap between requirements and architecture. The
rapidly changing business environment causes requirements
to constantly change. However, missing legacy requirements
or use cases is a common problem, and recovery is a very
complex affair. A few use case recovery techniques are
described in [6, 34]. The most important of all of these is the
ability to trace all the reengineering activities from legacy
code to requirements, to reincarnated design elements, and
enhanced code. Tracing all around in reengineering using
RETH tool is described in [10].

V. CONCLUSIONS AND FUTURE WORK

Reengineering is an important part of software
maintenance in an industry in which the environment is
constantly evolving and customer needs are ever-changing.
This paper presents an agile methodology to reengineer
object-oriented software, which focuses on a front end quick
planning phase, an iterative development phase, and a
system validation phase using test driven development
approach. The application of the methodology on academic
and industry experiments gives an early indication of
improved code quality and project schedule over using RUP,
AUM, or doing it in any ad-hoc way. The future work that
remains to be completed seeks to extract a domain model
and use cases from the recovered ICD and ISD
iteratively. The agility of the methodology can also be
improved by automating the manual steps and integrating
them with existing reverse engineering tool sets. Finally, the
code can be enhanced by restructuring with design patterns.

REFERENCES
[1] M.R. Blaha & J.R. Rumbaugh, "Object-Oriented Modeling and Design

with UML (2nd Edition)," Prentice Hall, 2004.

[2] J. Borchers, "Invited Talk: Reengineering from a Practitioner's View --
A Personal Lesson's Learned Assessment," 15th European Conference

on Software Maintenance and Reengineering (CSMR), 2011., pp. 1-2.

[3] B. Bruegge & A.H. Dutoit, "Object-Oriented Software Engineering:
Using UML, Patterns, and Java (3rd Edition)," Prentice Hall, 2009.

[4] M.I. Cagnin & J.C. Maldonado, "PARFAIT: towards a framework-based

agile reengineering process," Proceedings of the Agile Development
Conference (ADC), 2003., pp. 22-31.

[5] M.I. Cagnin, R. Penteado, R.T.V. Braga & P.C. Masiero,

"Reengineering using design patterns," . Proceedings Seventh Working
Conference on Reverse Engineering, 2000., pp. 118-127.

[6] F. Chen, H. Zhou, H. Yang, M. Ward & W.C.C. Chu, "Requirements

Recovery by Matching Domain Ontology and Program Ontology," IEEE
35th Annual Computer Software and Applications Conference

(COMPSAC), 2011., pp. 602-607.

[7] P. Claudia, M. Liliana & F. Liliana, "Recovering Use Case Diagrams

from Object Oriented Code: An MDA-based Approach," Eighth
International Conference on Information Technology: New Generations

(ITNG), 2011., pp. 737-742.

[8] M. Cohn, "Agile estimating and planning Prentice Hall Professional
Technical Reference, 2006.

[9] J.M. deBaud & S. Rugaber, "A software re-engineering method using

domain models," International Conference on Software Maintenance,
1995., pp. 204-213.

[10] G. Ebner & H. Kaindl, "Tracing all around in reengineering," IEEE
Software, vol. 19, no. 3, 2002., pp. 70-77.

[11] R.L. Glass, "Frequently forgotten fundamental facts about software
engineering," IEEE Software, vol. 18, no. 3, 2001., pp. 112-111.

[12] M. Hong, T. Xie & F. Yang, "JBOORET: an automated tool to recover

OO design and source models," 25th Annual International Computer
Software and Applications Conference (COMPSAC), 2001., pp. 71-76.

[13] IBM tool, "Rational Rose Architectl," Available:

http://www.ibm.com/software/products/en/ratisoftarch.

[14] I. Jacobson, J. Rumbaugh & G. Booch, "Unified Software Development
Process Addison-Wesley, 1999.

[15] D.C. Kung, "On use case identification," , Boston, USA, Proc. of 25th

Int'l Conf. on Software Engineering and Knowledge Engineering, June
26-29, 2013.

[16] D.C. Kung, "Object-oriented software engineering: an agile unified

methodology (International Student Edition)," McGraw-Hill, a business
unit of the McGraw-Hill Companies, Inc, 2014.

[17] Y. Labiche, B. Kolbah & H. Mehrfard, "Combining Static and Dynamic
Analyses to Reverse-Engineer Scenario Diagrams," 29th IEEE

International Conference on Software Maintenance (ICSM), 2013., pp.
130-139.

[18] C. Larman, "Applying UML and Patterns: An Introduction to Object-

Oriented Analysis and Design and Iterative Development (3rd Edition),"
Prentice Hall, 2005.

[19] E. Lee, B. Lee, W. Shin & C. Wu, "A reengineering process for

migrating from an object-oriented legacy system to a component-based
system," The 27th Annual International Conference on Computer

Software and Applications(COMPSAC), 2003., pp. 336-341.

[20] M. Lee & S. Park, "A methodology to extract objects from procedural
software," The 24th Annual International Conference on Computer

Software and Applications(COMPSAC) 2000., pp. 557-566.

[21] L. Martinez, C. Pereira & L. Favre, "Recovering sequence diagrams
from object-oriented code: An ADM approach," International

Conference on Evaluation of Novel Approaches to Software
Engineering (ENASE), 2014., pp. 1-8.

[22] Object-Aid tool, "ObjectAid," Available: http://objectaid.com/.

[23] T. Parsons, A. Mos, M. Trofin, T. Gschwind & J. Murphy, "Extracting
Interactions in Component-Based Systems," IEEE Transactions on

Software Engineering, vol. 34, no. 6, 2008., pp. 783-799.

[24] I. Pashov & M. Riebisch, "Using feature modeling for program
comprehension and software architecture recovery," The 11th IEEE

International Conference and Workshop on Engineering of Computer-
Based Systems, 2004., pp. 406-417.

[25] A. Serebrenik, S. Roubtsov, E. Roubtsova & M. van den Brand,

"Reverse Engineering Sequence Diagrams for Enterprise JavaBeans
with Business Method Interceptors," The 16th Working Conference on

Reverse Engineering, WCRE, 2009., pp. 269-273.

[26] Sparxsystems tool, "Enterprise Architect," Available:
http://www.sparxsystems.com/.

[27] Tigris tool, "AgroUML," Available: http://argouml.tigris.org .

[28] P. Tonella & A. Potrich, "Static and dynamic C++ code analysis for the

recovery of the object diagram," International Conference on Software
Maintenance, 2002., pp. 54-63.

[29] M. Trudel, C.A. Furia, M. Nordio, B. Meyer & M. Oriol, "C to O-O
Translation: Beyond the Easy Stuff," The 19th Working Conference on

Reverse Engineering (WCRE), 2012., pp. 19-28.

[30] UML-Lab tool, "UML-Lab," Available: http://www.uml-
lab.com/en/uml-lab/academic/.

[31] I. Warren & J. Ransom, "Renaissance: a method to support software

system evolution," The 26th Annual International Computer Software
and Applications Conference (COMPSAC), 2002., pp. 415-420.

[32] H. Zhou, H. Yang & A. Hugill, "An Ontology-Based Approach to

Reengineering Enterprise Software for Cloud Computing," IEEE 34th
Annual Computer Software and Applications Conference (COMPSAC),

2010., pp. 383-388.

[33] T. Ziadi, M.A.A. Da Silva, L.M. Hillah & M. Ziane, "A Fully Dynamic
Approach to the Reverse Engineering of UML Sequence Diagrams,"

16th IEEE International Conference on,Engineering of Complex
Computer Systems (ICECCS), 2011., pp. 107-116

[34] Q. Li, S. Hu, P. Chen, L. Wu & W. Chen, "Discovering and Mining Use

Case Model in Reverse Engineering," Fourth International Conference
on Fuzzy Systems and Knowledge Discovery(FSKD), 2007., pp.431-436

http://www.ibm.com/software/products/en/ratisoftarch
http://objectaid.com/
http://www.sparxsystems.com/
http://argouml.tigris.org/
http://www.uml-lab.com/en/uml-lab/academic/
http://www.uml-lab.com/en/uml-lab/academic/

