
Redroid: A Regression Test Selection Approach for
Android Applications

Quan Do⇤, Guowei Yang⇤, Meiru Che†, Darren Hui†, Jefferson Ridgeway§
⇤ Department of Computer Science, Texas State University, San Marcos, TX 78666, USA

† Department of Electrical and Computer Engineering, University of Texas, Austin, TX 78712, USA
§ Elizabeth City State University, Elizabeth City, NC 27909, USA

Email: ⇤ {q d2, gyang}@txstate.edu, † {meiruche, darren hui}@utexas.edu, § jdridgeway787@students.ecsu.edu

Abstract—As the mobile platform pervades human life, much
research in recent years has focused on improving the reliability
of mobile applications on this platform, for example by applying
automatic testing. However, researchers have primarily consid-
ered testing of single version of mobile applications. Although
regression testing has been extensively studied for desktop appli-
cations, and many efficient and effective approaches have been
proposed, these approaches cannot be directly applied to mobile
applications. We first present a bug study on real-world Android
bugs to show the existence of regression bugs, which motivates
the need for an efficient regression test selection technique for
Android applications. Next, we introduce Redroid, a new ap-
proach to regression test selection for Android applications. Our
approach leverages the combination of static impact analysis and
dynamic code coverage, and identifies a subset of test cases for re-
execution on the modified application version. We implement our
approach for Android applications, and demonstrate its efficacy
through an extensive empirical study.

I. INTRODUCTION

Mobile devices have become ubiquitous in modern society.
The mobile platform is separating itself from a variety of areas
of desktop applications such as entertainment, e-commerce and
social media. Thus, developers are required to produce high
quality mobile applications (or simply, “apps”) in terms of
portability, reliability and security. In recent years, a great deal
of research has been performed to improve the reliability of
mobile apps on mobile platform, for example, by applying
automatic testing [5], [15], [6], [19], [8], [16], [7].

Mobile apps are evolving over time, for example, to cope
with new requirements or to fix bugs, and regression testing—a
process of validating modified software to ensure that changes
are correct and do not adversely affect other features of the
software—needs to be performed on the new versions of
the mobile apps. However, the majority of the research is
focused on testing of single version of mobile apps. Although
regression testing has been extensively studied for desktop
applications, and many efficient and effective approaches have
been proposed [10], [18], [13], [17], [11], [12], [20], these
approaches cannot be directly applied to mobile apps. A key
factor that causes the incompatibility is the difference between
the mobile platform’s system architecture and the desktop
platform’s. For example, although Android apps are developed
using the Java language, they use the Dalvik Virtual Machine

as a runtime environment, which is significantly different from
the Java Virtual Machine.

This paper first presents a bug study based on 10 real-
world Android apps from Google Code Repository [3]. The
study shows that there are regressions for Android apps during
evolution, and an efficient and effective regression testing
approach is highly needed for this area. This paper then intro-
duces Redroid, a new approach to regression test selection
for Android apps. Given a test suite that was performed on
the original Android app, and the two versions involved in a
change, Redroid identifies a subset of the tests that must be
re-executed to test the new Android version. Leveraging the
combination of static impact analysis with coverage informa-
tion that is dynamically generated at runtime, our approach
identifies a subset of tests to check the behaviors of the
modified version that can potentially be different from the
original version. We developed a prototype tool for Redroid,
and conducted an evaluation based on two real-world Android
apps, which shows that our approach can significantly reduce
the number of tests for re-execution after an Android app is
modified.

The remainder of this paper is organized as follows: we
present a bug study on open source Android apps in Section II.
We present our approach in Section III, and then evaluate it in
Section IV. We discuss related work and conclude the paper
in Sections V and VI.

II. BUG STUDY

We conducted a study to investigate real-world Android
bugs with an aim to find how these change-related bugs
(regressions) are manifested in Android apps.

We selected Android apps from Google Code Repository [3]
based on four specific criteria: 1). large number of downloads,
2). large number of bug reports, 3). long development history,
and 4). wide range of apps from different categories. The
Google Code Repository houses over 900 apps, and enables
users to give feedback on their apps and provide insight to
bugs that the app may have while developers are unaware of.
The feedback or bug reports that users submit to Google Code
Repository for the specific app are given labels and types as
that bug is being worked on by the developer(s). Table I lists
the 10 apps that were selected for this study. The number

DOI reference number: 10.18293/SEKE2016-223



TABLE I
BUG STUDY RESULTS BASED ON REAL-WORLD ANDROID APPS FROM GOOGLE CODE REPOSITORY.

Application Category # Downloads # Bug Reports Time Span
(yrs) # Regressions

Ankidroid Education 1,000,000-5,000,000 2,645 6 15
ConnectBot Communication 1,000,000-5,000,000 688 6 2
Android Wifi Tether Communication 380,000 1,965 4 5
Ebookdroid Productivity 1,000,000-5,000,000 937 4 10
Android SMS Tool 70,000 195 5 4
Android Shuffle Productivty 50,000-100,000 330 5 6
Android Privacy Guard Communication 100,000-500,000 166 2 3
Open GPS Tracker Travel 100,000-500,000 432 4 1
Electric Sleep Health 100,000-500,000 217 2 3
DroidWall Tool 1,000,000-5,000,000 318 3 10

Fig. 1. Redroid Overview.

of downloads and category per app are retrieved from the
Google Play store. These 10 apps, chosen from six categories,
have 2-6 years of history, and all of them have more than 50k
downloads. All of these apps have more than a hundred bug
reports, and some of them have over two thousand bug reports.

For each reported bug, there are eight possible labels :
Invalid, WontFix, Duplicate, Accepted, Started, Fixed, Fix-
Pending, and Verified. The types of each bug report include
enhancements and defects. We manually analyzed bug reports
with the label “Fixed” and the type “Defect”, which also
signifies that the issue has been solved with an updated version
of the app and that the app did have a bug. We found
that regression bugs do exist in these apps. In particular, 15
regression bugs are found in Ankidroid. Note that our analysis
may not find all regression bugs in these apps as we require
the bug reports to explicitly mention that the bug is caused by
changes, such as changes to the app’s source code, to library
(i.e., a version update of the Android operating system), to
app’s configuration settings, or to hardware configurations.

We also analyzed these bugs with an aim for bug replication;
however, it turns out that replication is difficult since the
quality of the report is poor even though there were 10 strong
app candidates, due to one or more of the following conditions:
insufficient information of replication of the bug and/or how
the bug was fixed, the developer(s) not providing the apk
file and/or source code files on the Google Code Repository
or Github repository, or the source code was not able to
be compiled in either the Eclipse Integrated Development
Environment (IDE) or Android Studio.

This study shows that there are regressions for Android
apps during evolution, and an efficient and effective regression
testing approach is highly needed for this area.

III. APPROACH

A. Overview

Given two Android app versions and an initial test suite,
Redroid automatically computes the test cases that need to
be re-executed on the modified app version. An overview of
the approach is shown in Figure 1. There are three main com-
ponents in the framework: impact analyzer, coverage
generator and test case selector.

The impact analyzer takes as input the original app
and its the modified version, and generates impacted code
that contains changes between the two versions. It uses the
algorithm in Dejavu [18] for computing the change impact.
Dejavu constructs control-flow graph (CFG) representations
of the methods in the two app versions P and P’, in which
individual nodes are labeled by their corresponding statements.
Following identically-labeled edges, Dejavu performs a simul-
taneous depth-first graph walk on a pair of CFGs G and G’
for each method and its modified version in P and P’ to find
code changes. Given two edges e and e’ in G and G’, if the
code associated with nodes reached by e and e’ differs, e is
called a dangerous edge as it leads to code that may cause
program executions to exhibit different behavior. However, a
special handling is needed to find pairs of anonymous inner
classes (AICs) in two app versions. Different from regular Java
procedures, which are defined as a separated method, AIC is
defined as an inner procedure of another procedure.

The coverage generator collects coverage informa-
tion while the original test suite is executed on the original
app version. It computes the lines of code that are executed by
each test case. While there are tools such as EMMA [2] that can
be used to compute the code coverage during Android testing,
we find that EMMA cannot provide the coverage information for
each individual test case when a set of test cases are executed
in one time. In other words, to get the coverage for each
test case, we have to build and run one test case at a time.
Therefore, in this work, we automatically instrument each
block in bytecode level, so that when executed the intrumented
code generates some execution logs, where we can identify the
blocks executed by each test.
Test case selector takes as input the change impact

information from impact analyzer and the coverage in-
formation from coverage generator, and selects for re-



Fig. 2. The four arithmetic operations and their corresponding tests.

execution test cases that are affected by the changes. Since
the impact analyzer outputs changed blocks using the
same format as used by the coverage generator, the
test case selector can easily check whether a test
case executes any changed block; if so, that test case is selected
for re-execution, as this test case can execute the change and
thus its execution on the modified app version may exhibit
different behaviors.

B. Illustrating Example

Simple Calculator is a basic calculator that takes as input
two numbers and performs four arithmetic operations: ad-
dition, subtraction, multiplication and division, which corre-
spond to buttons “+”, “�”, “⇤”, and “/” respectively. Figure 2
shows part of its implementation for these four operations. 18
test cases are created to test the app’s functionality. By running
all the 18 test cases, two bugs are found in the original app,
and two fixes are made to lines 4 and 22, where the operators
“⇤” and “�” are replaced by “+” and “/” (in the parentheses),
respectively.

After modifying an implementation, the app is required to
be re-tested in order to assure the two fixes remove the bugs
that are found previously and do not adversely affect other
program behaviors. Traditional approach simply re-executes
all the test cases in the original test suite on the modified app.
However, the modifications may not impact all the test cases,
and simply re-running all test cases may not be an efficient
way to check the modified app.

Our approach combines change impact analysis and cov-
erage information to reduce the number of test cases for
re-execution, and only re-executes the test cases that can
potentially reveal different behaviors from the original app
version. First, by running all the test cases in the original
test suite on the original app, our approach uses coverage
generator to collect the coverage information of each test case,
i.e., the lines of code that are executed by each test case. As
shown in Figure 2, lines 1 ! 6 are covered by test cases
T1, T2, and T3; lines 7 ! 12 are covered by test cases T4,

TABLE II
ANDROID APPS SELECTED FOR EVALUATION. EACH APP HAS TEST

CASES MAINTAINED BY THE DEVELOPERS FOR TESTING.

Apps Classes Methods LOC Versions Test Cases
Inetify 63 356 1, 500 15 206

AndStatus 250 2, 700 15, 000 15 99

T5, T6, and T7; lines 13 ! 18 are covered by test cases T8,
T9, T10, T11, T12, and T13; and lines 19 ! 24 are covered
by test cases T14, T15, T16, T17, and T18. Moreover, impact
analyzer is used to find code changes, and it finds that lines 4
and 22 are changed. Combining this change information and
the computed coverage information, our approach selects test
cases T1, T2, T3, T14, T15, T16, T17, and T18 for re-execution
on the modified app, since the execution traces of these test
cases contain the changes. It eliminates 10 out of 18 test cases
for re-execution, which is a 55.6% reduction.

IV. EVALUATION

Since our technique relies on the output of the coverage
generator (CG), we first evaluate the efficiency and pre-
ciseness of the CG, by considering two research questions:

• RQ1: How efficient is CG compared to the exiting
coverage analysis tool EMMA?

• RQ2: Does CG achieve the same level of preciseness
compared to EMMA?

We then evaluate the overall cost of Redroid rela-
tive to the traditional approach which re-runs all test cases
(ReTestAll) by considering two research questions:

• RQ3: How does the number of test cases selected by
Redroid compare to the traditional ReTestAll ap-
proach?

• RQ4: How does the time cost of applying Redroid
compare to the traditional ReTestAll approach?

A. Artifacts

Although 10 apps were studied for our bug study in
Section II, no tests were found for these apps. Thus, we
selected two other open source Android apps for evaluation:
Inetify [4] and AndStatus [1]. For each of the two
selected apps, Table II provides information on its associ-
ated number of class files (Classes), number of methods
(Methods), number of lines of code (LOC), number of basic
blocks (Blocks), number of versions we used for evaluation
(Versions), and number of test cases. The test cases are
found from the projects and maintained by the developers for
testing the functionalities of these two apps.
Inetify provides two features related to Wifi networks.

First, the app gives a notification if a Wifi network does not
provide Internet access. Secondly, it automatically activates
Wifi when being near a Wifi network and deactivates Wifi
otherwise. AndStatus allows users to login multiple social
app accounts such as Twitter and Pump.io. It can combine
multiple accounts from all networks into one Timeline and
allow users to read and post even if they are offline.



To evaluate our approach, we required multiple versions of
each app being analyzed. Because multiple versions of these
apps were not available, we generated versions by manually
creating mutants of the available app (v0). When creating
mutants, we considered a broad range of changes that can
be applied to the code: change type, change location, and
number of changes. The change types include modification,
deletion, and addition of source code statements. Changes
are introduced at different locations: (1) control statements
including if statements, case statements, and while, for, and
do loops, (2) non-control statements, (3) general locations
such as top, middle and bottom of the program source code,
(4) Anonymous Inner Class (AIC). AIC procedures are spe-
cially considered because they are special Android features
which are not existent in regular Java programs, and they are
generated as separate class files by the Android Development
Environment. Each mutant has one, three, and five changes.
For each app, we created five mutants v1 to v5 each with
one change, five mutants v6 to v10 each with three changes,
and five mutants v11 to v15 each with five changes. Thus, in
total we created 15 versions for Inetify and 15 versions
for AndStatus, respectively.

B. Variables and Measures

1) Independent Variables: The independent variables that
we used in the empirical study are the different techniques
used for computing coverage and for selecting test cases. To
study RQ1 and RQ2, we use our coverage generator
(CG), which is based on instrumentation, and the existing
coverage tool EMMA [2], a built-in testing framework for
Android Platform. To study RQ3 and RQ4, we use Redroid
and the traditional ReTestAll approach which re-tests all
test cases.

2) Dependent Variables: We selected three dependent vari-
ables and measures which are ultimately related to the pre-
ciseness and cost of coverage generation techniques and test
case selection techniques. Given an original app P, which is
modified to a new version P’. Note that the costs can be
measured differently depending on what technique is being
applied. CG and EMMA are only applied to the original app
version P. Redroid is applied to both P and P’.

The first dependent variable is execution time. To study
RQ1, we need to measure execution time to compare the
efficiency of CG versus EMMA. To study RQ4, we also need to
measure execution time to compare the time cost of Redroid
and ReTestAll. The time cost of Redroid is divided
to the time for performing static impact analysis, coverage
generation, and test selection—which is considered as the
overhead of applying Redroid and the time for executing
the selected test cases.

The second dependent variable is code coverage, which is
used to study RQ2. It is measured in terms of the number of
executed blocks and the percentage of executed blocks out of
the total number of blocks.

The third dependent variable is the number of selected test
cases. To study RQ3, we need to measure the number of

selected test cases for each test case selection technique, since
the goal of our approach is to reduce the number of test cases
and thus reduce the cost of performing regression testing. We
note that reduction in number of test cases does not necessarily
correlate with reduction in time cost, because not all test cases
are the same in terms of their execution cost. For example,
some test case’s execution may cover a large portion of an
application and may take long time to execute; while some test
case’s execution may cover a small portion of the application
and may take short time to execute.

C. Experiment Setup

We ran Redroid using the Android Development Envi-
ronment, together with the Ant tool and Eclipse. The study
was performed on a Windows operation system running at
3.4GHz with 8GB of memory. We automated the process from
analyzing change impact, generating code coverage report, to
selecting test cases by running a batch file under Windows
operation system.

For each original app version v0, we ran all the test cases
in the original test suite with the application of CG and EMMA.

For each mutant app version vk (k > 0), we performed
Redroid, which selects test cases by analyzing vk and v0,
and runs only the selected test cases on vk; we also performed
ReTestAll, which re-runs all the test cases in the original
test suite on vk.

D. Results and Analysis

In this section, we present the results of our experiments,
and analyze the results with respect to our four research
questions.

Table III presents the results of applying the two code
coverage analysis tools CG and EMMA. In the table, for each
app we list the total number of blocks, the number of executed
blocks, the percentage of executed blocks out of the total
blocks, and the time cost for coverage analysis, computed by
CG and EMMA, respectively.

Table IV presents the results of applying the two test
case selection techniques ReTestAll and Redroid on
Inetify. In the table, for each mutant version, we list the
number of selected test cases and the time cost for running
these tests using ReTestAll; we also list the overhead
caused, the number of selected test cases and the time cost
for executing these test cases using Redroid.

Table V presents the results of applying the two test
case selection techniques ReTestAll and Redroid on
AndStatus. We list similar types of results as in Table IV.

RQ1: How efficient is CG compared to the exiting cover-
age analysis tool EMMA?

In Table III, we can see that, for Inetify, EMMA took 341
seconds to get the coverage information for each test case in
the test suite, while CG only took 136 seconds, which is more
than 60% reduction in time cost. While for AndStatus, the
reduction is not that much, CG is still more efficient than EMMA.
The main reason for the reduction achieved by CG is because



TABLE III
RESULTS OF CG VS. EMMA

Apps Number of
Test Cases

CG EMMA
Total Blocks Excuted Blocks Time (SS) Total Blocks Excuted Blocks Time (SS)

Inetify 206 7, 403 4, 930 66.6% 136 6, 691 4, 452 66.5% 341
AndStatus 99 71, 304 41, 071 57.6% 497 65, 904 37, 770 57.3% 595

TABLE IV
TEST CASE SELECTION RESULTS FOR INETIFY

Versions # Changes Redroid
Overhead (SS) # Test Cases Time (SS)

v1 1 4 56 37
v2 1 4 38 25
v3 1 4 39 26
v4 1 4 36 24
v5 1 4 53 35
v6 2 4 108 71
v7 2 4 63 41
v8 2 4 95 62
v9 2 4 111 73
v10 2 4 86 56
v11 3 4 136 96
v12 3 4 140 91
v13 3 4 126 82
v14 3 4 162 106
v15 3 4 171 112

using EMMA we have to build and run each test at a time to
compute its code coverage.

RQ2: Does CG achieve the same level of preciseness
compared to EMMA?

In Table III, we can see that CG generated 7, 403 blocks
while EMMA generated 6, 691 blocks, which is a 712-block
difference for Inetify. Moreover, CG generated 71, 304
blocks and EMMA generated 65, 904 blocks, which is a 5, 400-
block difference for AndStatus. One possible reason for
this difference is that during the process of instrumentation,
we insert some virtual blocks such as entry blocks and ending
blocks for each CFG, which can lead to more blocks to be
counted. Since we do not have knowledge of EMMA’s imple-
mentation, we are unable to verify what kind of measurement
is used by EMMA to count the number of total generated blocks.

Similarly, we can also find the difference in the executed
blocks for both Inetify and AndStatus.

Despite the difference in the number of total blocks and
in the number of executed blocks, CG and EMMA achieved
almost the same code coverage in terms of percentage. We
find a 0.1% difference in code coverage for Inetify, and
a 0.3% difference in code coverage for AndStatus. These
differences are so small that they can be neglected. Even if
they cannot be neglected, since CG provides more coverage
than EMMA, CG can be considered as conservative if not as
precise as EMMA, therefore, it is safe to use CG’s output for
computing test cases.

RQ3: How does the number of test cases selected by
Redroid compare to the traditional ReTestAll ap-
proach?

TABLE V
TEST CASE SELECTION RESULTS FOR ANDSTATUS

Versions # Changes Redroid
Overhead (SS) # Test Cases Time (SS)

v1 1 6 8 40
v2 1 6 9 45
v3 1 6 4 20
v4 1 6 10 50
v5 1 6 8 40
v6 2 6 40 200
v7 2 6 37 185
v8 2 6 18 90
v9 2 6 46 230

v10 2 6 44 220
v11 3 6 55 275
v12 3 6 67 335
v13 3 6 64 320
v14 3 6 70 350
v15 3 6 66 330

From Table IV, we can see that for Inetify, while
ReTestAll selected all the 206 test cases, Redroid se-
lected a range from 36 to 172 test cases, achieving 16% to
83% reduction in the number of selected test cases. Moreover,
we find the the number of selected test cases varies for mutant
versions with the same number of changes, e.g., for mutant
versions v0 to v5 where only one change is involved in each
mutant, Redroid selected five different numbers of test cases.
This shows that different changes can actually have different
impact on behaviors of the app, and thus lead to different
selections of test cases. Despite that, unsurprisingly we find
that overall the more changes got involved in the mutants,
the more test cases were selected, since usually more changes
would have more impact. Similar pattern of results can be also
found in Table V.

RQ4: How does the time cost of applying Redroid
compare to the traditional ReTestAll approach?

From Table IV, we can find that for Inetify, there was 4
seconds overhead of applying Redroid, due to static impact
analysis, coverage generation, and test selection. However,
compared the execution time of all the test cases which is 134
seconds, the overhead is not much. Similarly, from Table V
we find that for AndStatus there was 6 seconds overhead
compared to 495 seconds for executing all the test cases.

Moreover, we see that when Redroid is performed, due
to the reduction of the number of test cases for re-execution,
the time cost for executing the selected test is also reduced.
Even when the overhead is counted, Redroid still achieved
reduction in time cost. The biggest time reduction is 79%
for version v4 in Inetify, and 95% for version v3 in
AndStatus, respectively.



V. RELATED WORK

Android bugs have been studied previously for different
purposes. For example, Hu and Neamtiu [14] conducted a
bug study to investigate the categories of Android bugs and
how Android bugs are manifested; Bhattacharya et al. [9]
performed a bug study to understand the bug-fixing process
in Android platform and Android-based apps; and Zaeem et
al. [21] performed a study to identify user-interaction features
for which oracles could be constructed. Different from these
studies, our study focuses on investigating bugs that occurred
as a result of changes.

Much research has been done to test a single version of
Android apps. The behaviors of the tested Android app are
explored by using different exploration strategies, including
random exploration [5], [15], model-based exploration [6],
[19], [8], or systematic exploration [16], [7].

Regression testing has been extensively studied for desktop
applications. It is concerned with validating the modified
program version after a change. Reusing all of original test
suite can be expensive, so various approaches have been
developed for re-using tests more effectively by regression test
selection [18], [13] and test case prioritization [11], [12], [20].

Regression test selection (RTS) techniques use data on the
original and modified program versions, and the original test
suite to select a subset of the test suite with which to test the
modified program version. One class of RTS techniques, safe
techniques (e.g. [18]), guarantee that under certain conditions,
test cases not selected could not have exposed faults in the
modified program version. Empirical studies have shown that
these techniques can be cost-effective. However, due to the
difference between desktop platform and Android platform,
these approaches cannot be directly applied to mobile apps.
Our impact analyzer extends the algorithm in Dejavu [18] to
cope with Android bytecode to compute the change impact.

Test case prioritization (TCP) techniques reorder the test
cases in the original test suite such that testers can more
quickly achieve testing objectives, e.g., to reveal the faults in
the modified program [12]. Our work is different as it focuses
on regression test selection rather than test case prioritization.

VI. CONCLUSIONS

In this paper, we presented a bug study based on 10 real-
world Android apps from Google Code Repository [3], show-
ing that regressions exist for Android apps during evolution;
we also presented a manual case study on change impact
across the Android activity tree, which shows that regression
testing methods can be potentially made more efficient by
focusing on changed sections within an Android application.
Motivated by these studies, we introduced Redroid, a new
approach to regression test selection for Android apps. Given a
test suite that was performed on the original Android app, and
the two versions involved in a change, Redroid identifies a
subset of the tests that must be re-executed to test the new
Android version.
Redroid leverages the combination of static impact anal-

ysis and coverage information that is dynamically generated at

runtime, and identifies a subset of test cases for re-execution
on the modified app version. The execution of those selected
test cases can potentially be different from the execution on
the original app version. We developed a prototype tool for
Redroid, and conducted an evaluation based on two real-
world Android apps. Experimental results showed that our
approach can significantly reduce the number of tests for re-
execution, as well as the time cost for re-executing the selected
tests after an Android app is modified.

In future work, we plan to conduct a more comprehensive
evaluation of our Redroid technique. We also plan to have
a broader range of static analysis that can be used for change
impact analysis on Android platform—not only do we focus on
changes of the sources code, but also other kinds of changes,
such as library changes and hardware changes.

ACKNOWLEDGMENTS

This work is partially supported by the National Science
Foundation under Grant No. CNS-1358939.

REFERENCES

[1] AndStatus. http://andstatus.org/.
[2] EMMA Code Coverage Tool. http://emma.sourceforge.net/.
[3] Google Code Repository. https://code.google.com/.
[4] Inetify. https://code.google.com/p/inetify/.
[5] Monkey. http://developer.android.com/tools/help/monkey.html.
[6] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and

A. M. Memon. Using GUI ripping for automated testing of Android
applications. In ASE 2012, pages 258–261, 2012.

[7] S. Anand, M. Naik, M. J. Harrold, and H. Yang. Automated concolic
testing of smartphone apps. In FSE ’12, pages 59:1–59:11.

[8] T. Azim and I. Neamtiu. Targeted and depth-first exploration for
systematic testing of Android apps. In OOPSLA ’13, pages 641–660.

[9] P. Bhattacharya, L. Ulanova, I. Neamtiu, and S. C. Koduru. An empirical
analysis of bug reports and bug fixing in open source Android apps. In
CSMR ’13, pages 133–143.

[10] D. Binkley. Semantics guided regression test cost reduction. IEEE Trans.
Softw. Eng., 23(8):498–516, Aug. 1997.

[11] H. Do and G. Rothermel. On the use of mutation faults in empirical
assessments of test case prioritization techniques. IEEE Trans. Softw.
Eng., 32(9):733–752, Sept. 2006.

[12] S. Elbaum, A. Malishevsky, and G. Rothermel. Incorporating varying
test costs and fault severities into test case prioritization. In ICSE ’01,
pages 329–338.

[13] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings,
S. Sinha, S. A. Spoon, and A. Gujarathi. Regression test selection for
Java software. In OOPSLA ’01, pages 312–326.

[14] C. Hu and I. Neamtiu. Automating GUI testing for Android applications.
In AST ’11, pages 77–83.

[15] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input generation
system for Android apps. In ESEC/FSE 2013, pages 224–234, 2013.

[16] R. Mahmood, N. Mirzaei, and S. Malek. EvoDroid: Segmented evolu-
tionary testing of Android apps. In FSE 2014, pages 599–609.

[17] A. Orso, N. Shi, and M. J. Harrold. Scaling regression testing to large
software systems. In SIGSOFT ’04/FSE-12, pages 241–251.

[18] G. Rothermel and M. J. Harrold. A safe, efficient regression test
selection technique. ACM Trans. Softw. Eng. Methodol., 6(2):173–210,
Apr. 1997.

[19] W. Yang, M. R. Prasad, and T. Xie. A grey-box approach for automated
GUI-model generation of mobile applications. In FASE ’13, pages 250–
265.

[20] S. Yoo, M. Harman, P. Tonella, and A. Susi. Clustering test cases
to achieve effective and scalable prioritisation incorporating expert
knowledge. In ISSTA ’09, pages 201–212.

[21] R. N. Zaeem, M. R. Prasad, and S. Khurshid. Automated generation
of oracles for testing user-interaction features of mobile apps. In ICST
’14, pages 183–192.


