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Abstract— One of the main characteristics of business rules is their 
propensity for frequent change, due to internal or external factors to an 
enterprise.  As these rules change, their immediate dissemination across 
people and systems in an enterprise becomes vital. The delay in 
dissemination can adversely impact the reputation of the enterprise, and 
cause significant loss of revenue. The current BRMS are often maintained 
by the IT group within a company, therefore the modifications of the BRs 
intended by executive management would not be instantaneous, since 
they have to be coded, and tested before being deployed. Moreover, the 
executives might not have the possibility to take the best decisions, 
without having the benefit of analyzing historical data, and quickly 
simulating what-if scenarios to visualize the effects of a set of rules on the 
business. Some of the systems that provide this functionality are 
prohibitively expensive.  This paper addresses these challenges by using 
the power of Big Data analysis to source, clean and analyze historical data 
that is used for mining business rules, which can be visualized, tested on 
what-if scenarios, and immediately deployed without the intervention of 
the IT group.  The proposed approach is instantiated in this paper by 
using open source components to mine stop loss rules for financial 
systems. 

Keywords: Business Rules, Decision Support, Big Data, Rule 
Mining 

I.  INTRODUCTION  
Using a single piece of information to derive decisions 

could lead to polarized results and unprofitable decisions. To 
overcome this limitation, information from different sources, 
quantitative as well as qualitative has to be utilized. With 
today’s overwhelming number of information sources, one 
cannot neglect the benefits they can bring to a business by 
integrating the information and extracting a meaning from it. 
Based on the recent advances in Big Data analytics, businesses 
can use historical and market data to gain competitive 
advantages. These methods prove to be beneficial to software 
engineering tasks as well, such as identifying and classifying 
requirements and mining sentiment analysis from App reviews 
[1], [2], automatic requirements elicitation from feedback 
comments [3], mining user comments for helping 
requirements evolution[4], or extracting features from product 
descriptions to recommend features implementation for 
software product lines [5].  

Another major area of applying mining techniques in 
software engineering has been process mining [6] for tasks 
such as discovering processes from event logs, testing the 

conformance of processes, improvement of business 
processes, or mining user’s intentions in intentional process 
models [7], [8]. One very important component of business 
processes has been the treatment of business rules (BRs). In 
today’s highly agile world, where businesses need to quickly 
adapt to market changes, business processes have to 
dynamically react, and avoid locking processes in hard to 
change IT solutions. vonHalle [9] and Ross [10] have long 
been advocating the business rules approach, that claims that 
all BRs in an enterprise should be collected in a centralized 
business rules management system (BRMS). However, these 
BRs need to be created and verified by the business experts, 
who might not be familiar with formal languages, and hence 
their dependence on the IT staff. In order to alleviate this 
problem, a couple of solutions have been proposed, such as the 
OMG standard, Semantics of Business Vocabulary and Rules 
– Structured English (SBVR-SE) [11], a controlled natural 
language for business rules specifications (RuleCNL) [12], or 
the transformations of the SBVR specifications  into 
UML/OCL [13], or BPMN metamodel [14]. However, Lucie 
performed a state of the art analysis of business rules 
languages in  [15], and concluded that most of them are 
difficult to use by business experts.  

To avoid the need of using formal or semi-formal 
languages for expressing business rules, we propose an 
approach where the business rules are mined from existing 
historical data and market data, and are presented to the 
business user in an intuitive format for verification and 
immediate deployment. This solution is close to [16], which 
advocates the induction of BRs from statistical data using 
decision trees learning. With the recent advances in Big Data 
and Machine Learning, the abilities to create rules have been 
considerably expanded. The approach proposed in this paper 
covers not only the creation and modification of BRs, but also 
supports the dynamic decision making needs of a business 
user, by presenting in a visual, easy to grasp way, the 
historical and current market data, and allowing the simulation 
of what-if scenarios to understand the impact of a set of rules 
on the business. Whenever the business user approves new 
rules or changes existing ones, they can be immediately 
deployed using an operational rule engine, as opposed to 
approaches mentioned above, which stop at the specification 
of business rules in a modeling language, without the benefit 
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of observing their effects on the business. This way,  an agile 
reaction of the business to the market is made possible. 

The remainder of the paper is structured as follows: 
Section II describes the process and architecture that support 
the proposed approach. Section III presents the method for 
mining business parameters out of historical data, while 
Section IV describes how these parameters are used for 
mining BRs conditions. Section V shows the steps for 
generating the rules, while Section VI presents the 
deployment, execution, and feedback of the rules’ execution. 
Finally, the paper concludes with a summary, limitations and 
plans for extending this work. 

II. PROCESS AND SOLUTION ARCHITECTURE 

A. Process  
The solution proposed in this paper allows the business user 

to interactively and dynamically create or change business 
rules, using historical and market data. The process (as shown 
in Fig.1) is started with the classification phase, where the 
variables used in the subsequent rules are identified, based on 
either a supervised or unsupervised learning algorithm, 
depending on whether the variables are well known for the 
business user, or they need to be discovered from a data set, or 
a new source of data needs to be mined. Using the variables 
identified in the previous step, and the trends from the available 
data set, the system identifies conditions that can be applied to 
the active data to create corresponding rules. The business user 
has the option to vary the range of the variables that are under 
control by the business, dynamically visualizing the new 
conditions. Once the conditions are decided upon, the system 
creates corresponding rules. The user has the ability to choose 
all or some of the generated rules for deployment. 
Alternatively, the user can create his own rules with 
autosuggestions from the system. The created rules are applied 
to the active data, to generate actionable decision rules, specific 
to the domain of application. Before deciding on the best rules, 
the business user can visualize the effects of applying a set of 
rules in what-if scenarios.  Once the best rule set is identified, it 
is deployed for execution on the active data set, using a rule 
engine. The results of the execution are fed back into the 
system’s persistent storage, to be used in later decision 
processes. 

 
Figure 1.  Process for dynamic BRs creation, modification and deployment 

The domain of application for this paper is the stop-loss 
rules used in financial systems. Stop-loss is a technique of 
safeguarding the losses by the investor. The investor chooses to 
sell the stock if it falls to a certain price, such that the amount 
lost is limited to his risk capacity.  The scenario that will be 
implemented in this paper refers to making recommendations 
for selling or buying a certain stock.  It shadows the following 

procedure: using a standard stock movement prediction model, 
build an exposure chart, build a historical chart, create stop-loss 
rules and generate upside threshold messages for selling or 
buying. The fundamentals and market information from 
various sources are collated to predict an outcome for the 
stocks. These outputs/ predictions/ recommendations are 
converted to actionable rules. This scenario follows the steps of 
algorithmic trading.[17] 

B. System Architecture  
The approach proposed here relies on a generic 

architecture that is composed of four building blocks: 

1. Data collation and analysis – to capture heterogeneous 
data from multiple sources and analyze it. 

2. Data transfer – a typical Extract Transfer Load (ETL) 
component that extracts data from multiple sources and 
transforms it to be stored in an appropriate format in a 
NoSQL data store. 

3. Aggregation/Computation – processes data from the 
NoSQL data store using Big Data tools, in order to 
extract business parameters and rule conditions. 

4. Rule management and deployment – to support the 
creation, modification and deployment of the rules 
generated to a rules engine, in order to trigger the 
execution of relevant actions. It also helps to capture 
the feedback of the rules execution such that it can be 
used in future rule generation iterations. 

An instantiation of this generic architecture is described 
next for mining stop loss rules for financial systems.  

 
Figure 2. Instantiated Architecture Diagram 

The architecture shown in Fig. 2 is using data from multiple 
sources, such as current portfolio, historical trades, Tweets 
(for determining sentiment and market information), Stock, 
Sector, and Index quotes from Yahoo, CNNMoney, and 
Stockcharts, respectively. Tweepy is used for extracting tweets 
pertaining to the stocks in the portfolio and provide them to 
Amazon EMR (Elastic Map-Reduce) to analyze the number of 
positive, negative, and neutral tweets. The results of the 
analysis are stored into Amazon S3 (simple storage service). 
Using CURL, the sentiment analysis information, as well as 
the stock prices and trade information, are stored into 
MongoDB. The information from this document storage is 
used in a Map-Reduce script to generate scores for stock, 
sector, and index quotes, as well as sentiment scores, 
necessary for mining conditions. The output from Map-



Reduce is stored on a MySql transactional database, as 
conditions, together with rules, historical trades and portfolio 
data. The trade rules are being deployed in real-time using 
Nools (the Rete algorithm based rule engine) and the current 
data set. The output from the execution engine is circled back 
to the system’s data stores to improve the accuracy of its 
suggestion algorithm in future iterations. The interfaces 
between the architectural components are shown in Table 1. 
Id Source Purpose 
1 Twitter Feed to Tweepy Fetch tweets from Twitter 
1a Stock, Sector and Index quotes 

from Yahoo, CNNMoney, 
Stockcharts 

Fetch Stock, Sector and Index quotes  

2 Tweets Store tweets into Amazon S3  storage 
3 Tweets from Amazon S3 to 

Amazon EMR 
Process Tweets using Amazon EMR 

4 Amazon EMR output Sentiment analysis output from 
Amazon EMR 

5 Amazon S3 Sentiment analysis 
output 

Using CURL to fetch Sentiment 
analysis output from Amazon S3 

6 CURL to store Stock and 
Sentiment  

Store Stock and Sentiment data into 
MongoDB 

7 Data for Map-Reduce function Interchange  data between MongoDB 
and Map-Reduce function to generate 

scores 
8 Map-Reduce output Push Map-Reduce output into 

MySQL 
9 Web Application to MySQL For data interchange between Web 

application and MySQL 
10 MySQL to NOOLS Send and receive Rules and 

Execution information between 
MySQL and NOOLS 

11 MySQL to MongoDB Send execution results from MySQL 
to MongoDB 

Table 1. Interfaces between the architectural components. 

The entire architecture runs on the Amazon EC2 (Elastic 
Computer Cloud) platform, to allow the system to be used 
simultaneously by multiple users on different instances. The 
solution is built by integrating various open source 
applications in a web application. The design approach for this 
solution has kept customization to a minimal level, such that it 
can be applied across industries. Also, the usage of loosely 
coupled components in the architecture makes the solution 
implementable across different platforms and scenarios, and 
makes it possible that a part of the solution is in demilitarized 
zone, and the rest of the application, behind firewall. Next, we 
describe how the components of this architecture contribute to 
each phase of the process model shown in Figure 1. 

III. CLASSIFICATION  - MINING BUSINESS PARAMETERS 
In this phase, related business parameters (variables) are 

determined from the historical trades data, current portfolio, 
and market data (see Figure 3), using a supervised or un-
supervised machine-learning algorithm. For this application, 
since the variables are already known (stock price, sector 
score, index score, overall score and sentiment score), a linear 
regression supervised learning algorithm has been utilized. 
The variables are chosen to get a broad perspective of the 
stock price changes, since a stock price is generally dependent 
on the following factors: 

• Company news and performance (reflected by the 
Twitter feed – Sentiment score) 

• Industry performance (reflected by Sector score) 
• Investor sentiment (Bull/bear market – reflected by 

Index score) 

Based on these scores, the Overall Stock Score can be 
calculated as will be shown in Section V. 
 

  
Figure 3. A snapshot of current portfolio data, historical trades, and market 

data 
The linear regression algorithm is used to get the best-fit 

line for each of the above scores. To get the best-fit line, the 
linear regression formula of y = a + bx is used, where “a” is 
the intercept and “b” is the slope. The r2 provides the 
correlation coefficient, with values between -1 to +1. The 
inclination towards +1 denotes a strong correlation between 
the variables being tested, and thus for this application, a 
coefficient value above +0.5 is taken as a strong indicator of 
the relevance of the variables on the stock prices at that point 
in time. From the variables mentioned above, only the Sector 
score and Overall score show a strong correlation with the 
stock price, with r2 values of 0.98 (as seen in Figure 4).  

 

IV. DETERMINING RULES CONDITIONS 
The relevant variables are used as inputs to another 

regression algorithm to find the best-fit line that will help 
identify the optimal values for them, values that will be used 
in determining the rules’ conditions.  

The pentagon chart (radar chart shown in Figure 4) plots 
the current scores of five axes that influence the risk 
determination for a stock. The five axes comprise of Alpha, 
Beta, Sharpe ratio, Risk tolerance, and Time horizon.  

 



 
 

Figure 4. Radar chart visualization of new rules conditions 
 

The “New Conditions” window shows the details of the 
newly mined conditions (for the sample set that we used, the 
mined conditions were “Overall Score > 5%” and “Sector 
Score <5%”). These conditions are the ones that are carried to 
the next step, the rules generation. The conditions resulting 
here are generated by the system based on the linear regression 
algorithm, and further modified by the user by dynamically 
adjusting the arm values on the radar chart. 

 Of the five axes of the radar chart, Alpha, Beta and 
Sharpe ratio are driven by the market conditions. The 
investor/portfolio manager controls only the Risk Tolerance 
and Time Horizon. A portfolio manager can reduce or increase 
Risk. In addition to the information on the other 3 axes, the 
change on this axis will determine the new conditions that 
could be applied to the portfolio. The intent is to optimize the 
portfolio and reduce the loss. Similarly, the Time Horizon can 
be adjusted to reduce loss and maximize returns. For example, 
a longer time horizon could flatten out the intermediate 
changes in a stock and yield better returns. But, if the sector is 
not performing well and is going through a bear phase, it 
might actually be riskier to have a longer time horizon.  

One additional step in helping the business user to make 
informed decisions is the evaluation of the impact of the 
identified conditions on the portfolio, based on previous 
trades. The impact is calculated as: 

Stock PL = Quantity x (Current Price – Avg. Purchase Price) (1) 
Impact = (Stock PL  / Net PL of Portfolio) x 100       (2) 

where PL = Profit/Loss 
The system will discard the conditions with the least impact. 
Figure 5 shows the anticipated vs. actual impact, thus allowing 
the portfolio manager to see which of the conditions gave the 
maximum impact on the portfolio, based on past trades with 
similar conditions, vs the actual impact on the current 
portfolio.  

 
Figure 5. Assessing the impact of conditions using previous trades 

 

V. GENERATING RULES  
Based on the conditions identified in the previous step, 

the web application suggests new rules that can be edited by 
the business user before deploying them. 

 
Figure 6. Rules editing 

 
The information associated with a rule, as shown in 

Figure 6,  consists of Name, Conditions, Action, Price Factor, 
Quantity, and Anticipated Impact. The Name is used to easily 
identify each rule among all the existing rules. The 
combination of one or more Conditions of a rule would get 
matched to the active data during deployment. Each condition 
has the form <variable> <operator> <value>, where the 
variables are facts from the domain of application. The Action 
determines what kind of trade should occur; in a stock trading 
scenario, there are only 2 possible actions, either “Sell” or 
“Buy”. In a different scenario or application, the options 
would differ accordingly. The Price Factor denotes the price 
at which either of the action should happen. The options for 
this solution are: default (11%), fixed amount (“10”), 
percentage (“5%”), incremental (“up 3%”). The system uses 
the price determination based on the percentage stop-loss 
method, where the selling price is determined based on a set 
percentage of the initial purchase price of the stock, and the 
current price. For this application, the default percentage is set 
to 11%, as the middle of the normal range of 5-15%, based on 
the risk tolerance of the investor. The options for expressing 
the Price Factor provide the user with extreme flexibility in 
creating the rule. The Quantity determines the number of 
shares to be bought or sold. The options available to the user 
are: as percentage, as fixed quantity, or system determined 
based on rules. When the quantity is set as “100%”, the entire 
quantity held is sold, or if the action is “buy”,  the number of 
shares will be doubled. Whereas, if the quantity is set as “50”, 
a fixed quantity of 50 shares will be bought or sold. If the 
quantity that is available for sale is less than the denoted 
quantity, the existing quantity is sold. The other option is 
“auto/0”, this is the default option where the system 
determines the quantity based on the portfolio share. If the 
portfolio share is greater than 5%, the system will determine 
the necessary quantity to bring the portfolio share to 5% 
(normal range for each stock is 3-5% shares of the entire 
portfolio) [17]. Based on past trades with similar conditions, 



the system calculates the Anticipated Impact of the rule on the 
portfolio, according to equations (1)  and (2).  For the sample 
set we used, the value of the anticipated impact was 3%. 

Each field of a rule can be edited, with the exception of 
the Anticipated Impact. To help the business user make 
informed decisions when editing or creating new rules, the 
system will support the visualization of the stock movement 
for the previous 4 weeks, for each stock in the portfolio, as a 
trend line chart.(see Figure 7).  

 
Figure 7. Stocks score trends 

 
The stock scores in Figure 7 are calculated based on a 

weighted method that takes into consideration various 
variables for each stock, as follows: 

1. Source the stock historical data - Averaged weekly 
2. Source the sectorial data - Taken monthly 
3. Perform sentiment analysis - Averaged Weekly 
4. Calculate 50 day EMA (Exponential Moving 

Average) for each score (stock, sector, sentiment).  
EMA stands for Exponential Moving Average, a stock price 

average that applies more importance to the recent prices, reacting 
faster to the recent price changes, than a simple moving average.  

5. Generate the Overall Score for each stock in the 
portfolio: 

Overall Score = StockEMA * 0.5 +  
SectorEMA*.25 + SentSc*.25  (3) 

  where  StockEMA  = 50 day Stock EMA 
   SectorEMA = 50 day Sector EMA 
   SentSc         = Sentiment Score 

  
The proportions for stock score,  sector score and sentiment 
score, are defined by the portfolio manager as part of the 
application setup process. Higher overall scores are safe. The 
weights of the business parameters within a system can be 
adjusted by the business user, thus giving him the fine-grained 
control over the outcomes. In the current application the 
weights have been assumed as 0.5 for the Stock prices, 0.25 
for Index and 0.25 for Sentiment analysis results, respectively. 
These weights can be different for  a different application. 
 

The calculations of scores for a particular stock (EMA, 
Sentiment, sector scores, overall score) are done using Map-
Reduce on the data from MongoDB. 

When editing rules, the system can also suggest 
conditions that have been used in the past, and have had a high 
impact on the portfolio. The best three conditions are shown as 
suggestions. 

Before deciding on the deployment of a particular rule, 
the business user can visualize the effect of applying it on the 
portfolio. This kind of what-if scenario is visualized using a 
Current vs. Target State scatter plots, of profit/loss versus 
sector score (see Figure 8). The target state is plotted using the 
portfolio structure that would shape-up once the trade rules are 
executed. 

 

 
 

Figure 8. What-if scatter charts showing the risk of the stocks in a portfolio 
  

A scatter chart is divided into 4 zones: left bottom 
quadrant is the high-risk zone, the top right quadrant is the 
ideal desired zone that is the safe zone, the left top and right 
bottom quadrants are the zones of moderate risk. The high-risk 
zone denotes area of loss and negative score. The safe zone 
denotes the area of profit and positive score. The moderate 
risk zones have either the Profit/Loss or the  Sector Score as 
negative values. Stocks mapped in the high-risk zone are 
prone to higher risk; hence, stocks present in this zone are to 
be exited. The stocks present in the safe zone are the ones that 
would yield the best returns within the current portfolio. It 
would be a good idea to reduce the current holding of stocks 
present in a moderate risk zone, when the near term trend is 
negative.  

All these actions help in reducing risk. The idea of the 
Target State is to move the portfolio into the top right 
quadrant zone, by adjusting the portfolio distribution and 
exposure to risk, hence resulting in minimized loss and better 
returns. This movement of stocks is based on the following 
algorithm that identifies the appropriate rules to do it: 

1. Calculate a + /– range from the Overall score, based 
on the average movement of the sector index in the 



preceding month (for example, if the sector index for 
Automotive had a low of 50 and a high of 70, the 
expected variations will be +/- 10).This range will 
determine the target state upper & lower limits. 

2. Calculate exposure risk  
exposure risk = SectScore * AvgStockPr  * 
OverallVal *100   (4) 

 where  SectScore   = Sector wise Score 
AvgStockPr = Percentage of the individual 
average stock price for the week 
OverallVal  = Percentage of the overall 
stock value held 

3. Based on the exposure risk value, retrieve stop loss 
rules (where price is below purchase price, or where 
there has been a consistent negative trend) 

4.  Derive new trade rules based on the stop loss rules 
retrieved in step 3. 

 

VI. RULES DEPLOYMENT, EXECUTION AND FEEDBACK 
For each rule in the system, the conditions are run against 

the data of each stock in the portfolio. If there is a match 
between a rule condition and a stock data, then the action part 
of the rule is matched against the action parts of a set of rule 
templates. Assuming that a rule is matched to a rule template, 
a new trade rule is generated, and will be placed to the stock 
exchange (executed in Nools). For example, if we start with 
the rule in Figure 9, 

 
Figure 9. Sample rule 

 
a possible match from the current portfolio, could be the 
Toyota Motor stock, because its portfolio share is 8.62% (as 
seen in Figure 10), and therefore is greater than 5%. 

 
Figure 10. Snapshot of the current portfolio showing Toyota Motor 

 
A rule template that matches the action of the Sample rule 
(sell),  could be the Reduce Risk rule template “Sell {X} units 
of {INSTRUMENT} at{TARGET} price”, as in Fig. 11: 

 
Figure 11. Rule template 

In the template, the variables “{X}”, “{INSTRUMENT}” 
and “{TARGET}” are bound to specific values for quantity, 

stock name, and price respectively, as follows: for quantity, as 
the portfolio share of Toyota Motor is 8.62, applying the rule, 
it should be brought down to 5% by selling the excess quantity 
of the shares, so to achieve that 10000 – (10000 * 5/8.62) 
results in 4200. The price is determined using the price factor 
set for the matched rule, therefore the current price being 
122.62, applying a price factor of 11%, the resulting sell price 
is 122.62 – (122.62 * 11/100) = 109.13. The stock name is 
bound to Toyota Motor. Hence, the trade generated will be  
“Sell 4200 units of Toyota Motor at 109.13“. This pseudo-
code is later used to generate the actual trade order:  

‘newTrade("ToyotaMotor","Sell",4200,109.13,true,"Sample 
Rule")’. 

The mechanism in which the newly derived trades are 
deployed into the running system is handled as part of 
implementation. The implementation comprises validation of 
the new rules, adding them to the decision rules table and 
activating them.  The decision rules table is stored in the 
MySQL database and loaded to the Nools rule engine for rule 
execution. This implementation provides the major benefit of 
implementing rules dynamically, without bringing down the 
system. Moreover, the business user is able to implement new 
rules much faster, without having to go through the entire IT 
development cycle, spanning over weeks to months. 

Once a trade has been initiated, it shows up in the 
execution engine window, where the status of the execution 
engine and trades are shown (see Figure 12). 

 
Figure 12. Execution Engine Window 

 

 
Figure 13. Deployment screen showing queued trading orders 

 
Figure 13 shows the profit/loss table with the queued 

trade orders. As a trade is executed, the profit/loss table of the 
portfolio gets updated providing up-to date status. The 
resulting table is shown in Figure 14. 

The executed trades move to the upper left section of the 
execution engine window in Figure 14, while the profit and 
loss table shows the post execution difference of previous 
profit & loss vs. current profit & loss side-by-side. 

The resulting data is saved into the system’s persistent 
storage for supporting the analytical process that is used for 



producing better recommendations of rules conditions in the 
future. 

 
Figure 14. Executed trades and updated profit/loss table 

 

VII. CONCLUSIONS 

The approach described in this paper allows the business 
user to interactively and dynamically create or change stop 
loss business rules using data from a multitude of sources, 
such as historical trades, market sources, and current portfolio. 
Before deciding on the best rules to apply on the current 
portfolio, the business user can visualize the effects of 
applying a set of rules in what-if scenarios.  Once the best rule 
set is identified, it is immediately deployed for execution on 
the active data set. The results of the execution are fed back 
into the system’s data storage, to be used in later decision 
processes. The main beneficiaries of this approach are the 
executives who feel too dependent on the IT staff for 
materializing their business ideas into working enterprise 
systems. With this solution, a business executive is in control 
of the business, because of the support provided for making 
informed and timely decisions. 

This solution addressed the problem of reducing 
impending loss in financial trading using open source 
components to accomplish the task. The ability to use different 
sources of information, collate heterogeneous data into a 
common factor, and process it to come up with decision rules, 
provides an inexpensive solution for businesses of any size. 

This paper demonstrates the proposed solution using rules 
that require simple conditions. In the near future, we intend to 
extend this work to rules with complex conditions. The rules 
derived in this paper refer only to Reduce or Increase Risk 
Exposure rules. However, we want to extend this work with 
other types of stop loss rules, such as Intra-sector Shift 
Exposure or Inter-sector Shift Exposure. Also, we intend to 
extend this solution to other industries, such as retail, or 
healthcare, and report on the extent of work needed to adapt to 
new industry models. In this paper we have used only a linear 

regression algorithm for processing the various types of data. 
We plan on experimenting with other Machine Learning 
algorithms, to see which one will provide the best performance 
for deriving business rules.  

 
Disclaimer - The Company names and financial data are fictional, and used to 
solely demonstrate the proposed solution. In no way they resemble real 
company financial information. 
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