
Informed and Timely Business Decisions –
A Data-driven Approach

Veera Tadikonda and Daniela Rosca
Computer Science and Software Engineering Department Monmouth University

West Long Branch, NJ, USA
{veera.tadikonda@gmail.com, drosca@monmouth.edu}

Abstract— One of the main characteristics of business rules is their
propensity for frequent change, due to internal or external factors to an
enterprise. As these rules change, their immediate dissemination across
people and systems in an enterprise becomes vital. The delay in
dissemination can adversely impact the reputation of the enterprise, and
cause significant loss of revenue. The current BRMS are often maintained
by the IT group within a company, therefore the modifications of the BRs
intended by executive management would not be instantaneous, since
they have to be coded, and tested before being deployed. Moreover, the
executives might not have the possibility to take the best decisions,
without having the benefit of analyzing historical data, and quickly
simulating what-if scenarios to visualize the effects of a set of rules on the
business. Some of the systems that provide this functionality are
prohibitively expensive. This paper addresses these challenges by using
the power of Big Data analysis to source, clean and analyze historical data
that is used for mining business rules, which can be visualized, tested on
what-if scenarios, and immediately deployed without the intervention of
the IT group. The proposed approach is instantiated in this paper by
using open source components to mine stop loss rules for financial
systems.

Keywords: Business Rules, Decision Support, Big Data, Rule
Mining

I. INTRODUCTION
Using a single piece of information to derive decisions

could lead to polarized results and unprofitable decisions. To
overcome this limitation, information from different sources,
quantitative as well as qualitative has to be utilized. With
today’s overwhelming number of information sources, one
cannot neglect the benefits they can bring to a business by
integrating the information and extracting a meaning from it.
Based on the recent advances in Big Data analytics, businesses
can use historical and market data to gain competitive
advantages. These methods prove to be beneficial to software
engineering tasks as well, such as identifying and classifying
requirements and mining sentiment analysis from App reviews
[1], [2], automatic requirements elicitation from feedback
comments [3], mining user comments for helping
requirements evolution[4], or extracting features from product
descriptions to recommend features implementation for
software product lines [5].

Another major area of applying mining techniques in
software engineering has been process mining [6] for tasks
such as discovering processes from event logs, testing the

conformance of processes, improvement of business
processes, or mining user’s intentions in intentional process
models [7], [8]. One very important component of business
processes has been the treatment of business rules (BRs). In
today’s highly agile world, where businesses need to quickly
adapt to market changes, business processes have to
dynamically react, and avoid locking processes in hard to
change IT solutions. vonHalle [9] and Ross [10] have long
been advocating the business rules approach, that claims that
all BRs in an enterprise should be collected in a centralized
business rules management system (BRMS). However, these
BRs need to be created and verified by the business experts,
who might not be familiar with formal languages, and hence
their dependence on the IT staff. In order to alleviate this
problem, a couple of solutions have been proposed, such as the
OMG standard, Semantics of Business Vocabulary and Rules
– Structured English (SBVR-SE) [11], a controlled natural
language for business rules specifications (RuleCNL) [12], or
the transformations of the SBVR specifications into
UML/OCL [13], or BPMN metamodel [14]. However, Lucie
performed a state of the art analysis of business rules
languages in [15], and concluded that most of them are
difficult to use by business experts.

To avoid the need of using formal or semi-formal
languages for expressing business rules, we propose an
approach where the business rules are mined from existing
historical data and market data, and are presented to the
business user in an intuitive format for verification and
immediate deployment. This solution is close to [16], which
advocates the induction of BRs from statistical data using
decision trees learning. With the recent advances in Big Data
and Machine Learning, the abilities to create rules have been
considerably expanded. The approach proposed in this paper
covers not only the creation and modification of BRs, but also
supports the dynamic decision making needs of a business
user, by presenting in a visual, easy to grasp way, the
historical and current market data, and allowing the simulation
of what-if scenarios to understand the impact of a set of rules
on the business. Whenever the business user approves new
rules or changes existing ones, they can be immediately
deployed using an operational rule engine, as opposed to
approaches mentioned above, which stop at the specification
of business rules in a modeling language, without the benefit

 DOI reference number: 10.18293/SEKE2016-216

of observing their effects on the business. This way, an agile
reaction of the business to the market is made possible.

The remainder of the paper is structured as follows:
Section II describes the process and architecture that support
the proposed approach. Section III presents the method for
mining business parameters out of historical data, while
Section IV describes how these parameters are used for
mining BRs conditions. Section V shows the steps for
generating the rules, while Section VI presents the
deployment, execution, and feedback of the rules’ execution.
Finally, the paper concludes with a summary, limitations and
plans for extending this work.

II. PROCESS AND SOLUTION ARCHITECTURE

A. Process
The solution proposed in this paper allows the business user

to interactively and dynamically create or change business
rules, using historical and market data. The process (as shown
in Fig.1) is started with the classification phase, where the
variables used in the subsequent rules are identified, based on
either a supervised or unsupervised learning algorithm,
depending on whether the variables are well known for the
business user, or they need to be discovered from a data set, or
a new source of data needs to be mined. Using the variables
identified in the previous step, and the trends from the available
data set, the system identifies conditions that can be applied to
the active data to create corresponding rules. The business user
has the option to vary the range of the variables that are under
control by the business, dynamically visualizing the new
conditions. Once the conditions are decided upon, the system
creates corresponding rules. The user has the ability to choose
all or some of the generated rules for deployment.
Alternatively, the user can create his own rules with
autosuggestions from the system. The created rules are applied
to the active data, to generate actionable decision rules, specific
to the domain of application. Before deciding on the best rules,
the business user can visualize the effects of applying a set of
rules in what-if scenarios. Once the best rule set is identified, it
is deployed for execution on the active data set, using a rule
engine. The results of the execution are fed back into the
system’s persistent storage, to be used in later decision
processes.

Figure 1. Process for dynamic BRs creation, modification and deployment

The domain of application for this paper is the stop-loss
rules used in financial systems. Stop-loss is a technique of
safeguarding the losses by the investor. The investor chooses to
sell the stock if it falls to a certain price, such that the amount
lost is limited to his risk capacity. The scenario that will be
implemented in this paper refers to making recommendations
for selling or buying a certain stock. It shadows the following

procedure: using a standard stock movement prediction model,
build an exposure chart, build a historical chart, create stop-loss
rules and generate upside threshold messages for selling or
buying. The fundamentals and market information from
various sources are collated to predict an outcome for the
stocks. These outputs/ predictions/ recommendations are
converted to actionable rules. This scenario follows the steps of
algorithmic trading.[17]

B. System Architecture
The approach proposed here relies on a generic

architecture that is composed of four building blocks:

1. Data collation and analysis – to capture heterogeneous
data from multiple sources and analyze it.

2. Data transfer – a typical Extract Transfer Load (ETL)
component that extracts data from multiple sources and
transforms it to be stored in an appropriate format in a
NoSQL data store.

3. Aggregation/Computation – processes data from the
NoSQL data store using Big Data tools, in order to
extract business parameters and rule conditions.

4. Rule management and deployment – to support the
creation, modification and deployment of the rules
generated to a rules engine, in order to trigger the
execution of relevant actions. It also helps to capture
the feedback of the rules execution such that it can be
used in future rule generation iterations.

An instantiation of this generic architecture is described
next for mining stop loss rules for financial systems.

Figure 2. Instantiated Architecture Diagram

The architecture shown in Fig. 2 is using data from multiple
sources, such as current portfolio, historical trades, Tweets
(for determining sentiment and market information), Stock,
Sector, and Index quotes from Yahoo, CNNMoney, and
Stockcharts, respectively. Tweepy is used for extracting tweets
pertaining to the stocks in the portfolio and provide them to
Amazon EMR (Elastic Map-Reduce) to analyze the number of
positive, negative, and neutral tweets. The results of the
analysis are stored into Amazon S3 (simple storage service).
Using CURL, the sentiment analysis information, as well as
the stock prices and trade information, are stored into
MongoDB. The information from this document storage is
used in a Map-Reduce script to generate scores for stock,
sector, and index quotes, as well as sentiment scores,
necessary for mining conditions. The output from Map-

Reduce is stored on a MySql transactional database, as
conditions, together with rules, historical trades and portfolio
data. The trade rules are being deployed in real-time using
Nools (the Rete algorithm based rule engine) and the current
data set. The output from the execution engine is circled back
to the system’s data stores to improve the accuracy of its
suggestion algorithm in future iterations. The interfaces
between the architectural components are shown in Table 1.
Id Source Purpose
1 Twitter Feed to Tweepy Fetch tweets from Twitter
1a Stock, Sector and Index quotes

from Yahoo, CNNMoney,
Stockcharts

Fetch Stock, Sector and Index quotes

2 Tweets Store tweets into Amazon S3 storage
3 Tweets from Amazon S3 to

Amazon EMR
Process Tweets using Amazon EMR

4 Amazon EMR output Sentiment analysis output from
Amazon EMR

5 Amazon S3 Sentiment analysis
output

Using CURL to fetch Sentiment
analysis output from Amazon S3

6 CURL to store Stock and
Sentiment

Store Stock and Sentiment data into
MongoDB

7 Data for Map-Reduce function Interchange data between MongoDB
and Map-Reduce function to generate

scores
8 Map-Reduce output Push Map-Reduce output into

MySQL
9 Web Application to MySQL For data interchange between Web

application and MySQL
10 MySQL to NOOLS Send and receive Rules and

Execution information between
MySQL and NOOLS

11 MySQL to MongoDB Send execution results from MySQL
to MongoDB

Table 1. Interfaces between the architectural components.

The entire architecture runs on the Amazon EC2 (Elastic
Computer Cloud) platform, to allow the system to be used
simultaneously by multiple users on different instances. The
solution is built by integrating various open source
applications in a web application. The design approach for this
solution has kept customization to a minimal level, such that it
can be applied across industries. Also, the usage of loosely
coupled components in the architecture makes the solution
implementable across different platforms and scenarios, and
makes it possible that a part of the solution is in demilitarized
zone, and the rest of the application, behind firewall. Next, we
describe how the components of this architecture contribute to
each phase of the process model shown in Figure 1.

III. CLASSIFICATION - MINING BUSINESS PARAMETERS
In this phase, related business parameters (variables) are

determined from the historical trades data, current portfolio,
and market data (see Figure 3), using a supervised or un-
supervised machine-learning algorithm. For this application,
since the variables are already known (stock price, sector
score, index score, overall score and sentiment score), a linear
regression supervised learning algorithm has been utilized.
The variables are chosen to get a broad perspective of the
stock price changes, since a stock price is generally dependent
on the following factors:

• Company news and performance (reflected by the
Twitter feed – Sentiment score)

• Industry performance (reflected by Sector score)
• Investor sentiment (Bull/bear market – reflected by

Index score)

Based on these scores, the Overall Stock Score can be
calculated as will be shown in Section V.

Figure 3. A snapshot of current portfolio data, historical trades, and market

data
The linear regression algorithm is used to get the best-fit

line for each of the above scores. To get the best-fit line, the
linear regression formula of y = a + bx is used, where “a” is
the intercept and “b” is the slope. The r2 provides the
correlation coefficient, with values between -1 to +1. The
inclination towards +1 denotes a strong correlation between
the variables being tested, and thus for this application, a
coefficient value above +0.5 is taken as a strong indicator of
the relevance of the variables on the stock prices at that point
in time. From the variables mentioned above, only the Sector
score and Overall score show a strong correlation with the
stock price, with r2 values of 0.98 (as seen in Figure 4).

IV. DETERMINING RULES CONDITIONS
The relevant variables are used as inputs to another

regression algorithm to find the best-fit line that will help
identify the optimal values for them, values that will be used
in determining the rules’ conditions.

The pentagon chart (radar chart shown in Figure 4) plots
the current scores of five axes that influence the risk
determination for a stock. The five axes comprise of Alpha,
Beta, Sharpe ratio, Risk tolerance, and Time horizon.

Figure 4. Radar chart visualization of new rules conditions

The “New Conditions” window shows the details of the
newly mined conditions (for the sample set that we used, the
mined conditions were “Overall Score > 5%” and “Sector
Score <5%”). These conditions are the ones that are carried to
the next step, the rules generation. The conditions resulting
here are generated by the system based on the linear regression
algorithm, and further modified by the user by dynamically
adjusting the arm values on the radar chart.

 Of the five axes of the radar chart, Alpha, Beta and
Sharpe ratio are driven by the market conditions. The
investor/portfolio manager controls only the Risk Tolerance
and Time Horizon. A portfolio manager can reduce or increase
Risk. In addition to the information on the other 3 axes, the
change on this axis will determine the new conditions that
could be applied to the portfolio. The intent is to optimize the
portfolio and reduce the loss. Similarly, the Time Horizon can
be adjusted to reduce loss and maximize returns. For example,
a longer time horizon could flatten out the intermediate
changes in a stock and yield better returns. But, if the sector is
not performing well and is going through a bear phase, it
might actually be riskier to have a longer time horizon.

One additional step in helping the business user to make
informed decisions is the evaluation of the impact of the
identified conditions on the portfolio, based on previous
trades. The impact is calculated as:

Stock PL = Quantity x (Current Price – Avg. Purchase Price) (1)
Impact = (Stock PL / Net PL of Portfolio) x 100 (2)

where PL = Profit/Loss
The system will discard the conditions with the least impact.
Figure 5 shows the anticipated vs. actual impact, thus allowing
the portfolio manager to see which of the conditions gave the
maximum impact on the portfolio, based on past trades with
similar conditions, vs the actual impact on the current
portfolio.

Figure 5. Assessing the impact of conditions using previous trades

V. GENERATING RULES
Based on the conditions identified in the previous step,

the web application suggests new rules that can be edited by
the business user before deploying them.

Figure 6. Rules editing

The information associated with a rule, as shown in

Figure 6, consists of Name, Conditions, Action, Price Factor,
Quantity, and Anticipated Impact. The Name is used to easily
identify each rule among all the existing rules. The
combination of one or more Conditions of a rule would get
matched to the active data during deployment. Each condition
has the form <variable> <operator> <value>, where the
variables are facts from the domain of application. The Action
determines what kind of trade should occur; in a stock trading
scenario, there are only 2 possible actions, either “Sell” or
“Buy”. In a different scenario or application, the options
would differ accordingly. The Price Factor denotes the price
at which either of the action should happen. The options for
this solution are: default (11%), fixed amount (“10”),
percentage (“5%”), incremental (“up 3%”). The system uses
the price determination based on the percentage stop-loss
method, where the selling price is determined based on a set
percentage of the initial purchase price of the stock, and the
current price. For this application, the default percentage is set
to 11%, as the middle of the normal range of 5-15%, based on
the risk tolerance of the investor. The options for expressing
the Price Factor provide the user with extreme flexibility in
creating the rule. The Quantity determines the number of
shares to be bought or sold. The options available to the user
are: as percentage, as fixed quantity, or system determined
based on rules. When the quantity is set as “100%”, the entire
quantity held is sold, or if the action is “buy”, the number of
shares will be doubled. Whereas, if the quantity is set as “50”,
a fixed quantity of 50 shares will be bought or sold. If the
quantity that is available for sale is less than the denoted
quantity, the existing quantity is sold. The other option is
“auto/0”, this is the default option where the system
determines the quantity based on the portfolio share. If the
portfolio share is greater than 5%, the system will determine
the necessary quantity to bring the portfolio share to 5%
(normal range for each stock is 3-5% shares of the entire
portfolio) [17]. Based on past trades with similar conditions,

the system calculates the Anticipated Impact of the rule on the
portfolio, according to equations (1) and (2). For the sample
set we used, the value of the anticipated impact was 3%.

Each field of a rule can be edited, with the exception of
the Anticipated Impact. To help the business user make
informed decisions when editing or creating new rules, the
system will support the visualization of the stock movement
for the previous 4 weeks, for each stock in the portfolio, as a
trend line chart.(see Figure 7).

Figure 7. Stocks score trends

The stock scores in Figure 7 are calculated based on a

weighted method that takes into consideration various
variables for each stock, as follows:

1. Source the stock historical data - Averaged weekly
2. Source the sectorial data - Taken monthly
3. Perform sentiment analysis - Averaged Weekly
4. Calculate 50 day EMA (Exponential Moving

Average) for each score (stock, sector, sentiment).
EMA stands for Exponential Moving Average, a stock price

average that applies more importance to the recent prices, reacting
faster to the recent price changes, than a simple moving average.

5. Generate the Overall Score for each stock in the
portfolio:

Overall Score = StockEMA * 0.5 +
SectorEMA*.25 + SentSc*.25 (3)

 where StockEMA = 50 day Stock EMA
 SectorEMA = 50 day Sector EMA
 SentSc = Sentiment Score

The proportions for stock score, sector score and sentiment
score, are defined by the portfolio manager as part of the
application setup process. Higher overall scores are safe. The
weights of the business parameters within a system can be
adjusted by the business user, thus giving him the fine-grained
control over the outcomes. In the current application the
weights have been assumed as 0.5 for the Stock prices, 0.25
for Index and 0.25 for Sentiment analysis results, respectively.
These weights can be different for a different application.

The calculations of scores for a particular stock (EMA,
Sentiment, sector scores, overall score) are done using Map-
Reduce on the data from MongoDB.

When editing rules, the system can also suggest
conditions that have been used in the past, and have had a high
impact on the portfolio. The best three conditions are shown as
suggestions.

Before deciding on the deployment of a particular rule,
the business user can visualize the effect of applying it on the
portfolio. This kind of what-if scenario is visualized using a
Current vs. Target State scatter plots, of profit/loss versus
sector score (see Figure 8). The target state is plotted using the
portfolio structure that would shape-up once the trade rules are
executed.

Figure 8. What-if scatter charts showing the risk of the stocks in a portfolio

A scatter chart is divided into 4 zones: left bottom
quadrant is the high-risk zone, the top right quadrant is the
ideal desired zone that is the safe zone, the left top and right
bottom quadrants are the zones of moderate risk. The high-risk
zone denotes area of loss and negative score. The safe zone
denotes the area of profit and positive score. The moderate
risk zones have either the Profit/Loss or the Sector Score as
negative values. Stocks mapped in the high-risk zone are
prone to higher risk; hence, stocks present in this zone are to
be exited. The stocks present in the safe zone are the ones that
would yield the best returns within the current portfolio. It
would be a good idea to reduce the current holding of stocks
present in a moderate risk zone, when the near term trend is
negative.

All these actions help in reducing risk. The idea of the
Target State is to move the portfolio into the top right
quadrant zone, by adjusting the portfolio distribution and
exposure to risk, hence resulting in minimized loss and better
returns. This movement of stocks is based on the following
algorithm that identifies the appropriate rules to do it:

1. Calculate a + /– range from the Overall score, based
on the average movement of the sector index in the

preceding month (for example, if the sector index for
Automotive had a low of 50 and a high of 70, the
expected variations will be +/- 10).This range will
determine the target state upper & lower limits.

2. Calculate exposure risk
exposure risk = SectScore * AvgStockPr *
OverallVal *100 (4)

 where SectScore = Sector wise Score
AvgStockPr = Percentage of the individual
average stock price for the week
OverallVal = Percentage of the overall
stock value held

3. Based on the exposure risk value, retrieve stop loss
rules (where price is below purchase price, or where
there has been a consistent negative trend)

4. Derive new trade rules based on the stop loss rules
retrieved in step 3.

VI. RULES DEPLOYMENT, EXECUTION AND FEEDBACK
For each rule in the system, the conditions are run against

the data of each stock in the portfolio. If there is a match
between a rule condition and a stock data, then the action part
of the rule is matched against the action parts of a set of rule
templates. Assuming that a rule is matched to a rule template,
a new trade rule is generated, and will be placed to the stock
exchange (executed in Nools). For example, if we start with
the rule in Figure 9,

Figure 9. Sample rule

a possible match from the current portfolio, could be the
Toyota Motor stock, because its portfolio share is 8.62% (as
seen in Figure 10), and therefore is greater than 5%.

Figure 10. Snapshot of the current portfolio showing Toyota Motor

A rule template that matches the action of the Sample rule
(sell), could be the Reduce Risk rule template “Sell {X} units
of {INSTRUMENT} at{TARGET} price”, as in Fig. 11:

Figure 11. Rule template

In the template, the variables “{X}”, “{INSTRUMENT}”
and “{TARGET}” are bound to specific values for quantity,

stock name, and price respectively, as follows: for quantity, as
the portfolio share of Toyota Motor is 8.62, applying the rule,
it should be brought down to 5% by selling the excess quantity
of the shares, so to achieve that 10000 – (10000 * 5/8.62)
results in 4200. The price is determined using the price factor
set for the matched rule, therefore the current price being
122.62, applying a price factor of 11%, the resulting sell price
is 122.62 – (122.62 * 11/100) = 109.13. The stock name is
bound to Toyota Motor. Hence, the trade generated will be
“Sell 4200 units of Toyota Motor at 109.13“. This pseudo-
code is later used to generate the actual trade order:

‘newTrade("ToyotaMotor","Sell",4200,109.13,true,"Sample
Rule")’.

The mechanism in which the newly derived trades are
deployed into the running system is handled as part of
implementation. The implementation comprises validation of
the new rules, adding them to the decision rules table and
activating them. The decision rules table is stored in the
MySQL database and loaded to the Nools rule engine for rule
execution. This implementation provides the major benefit of
implementing rules dynamically, without bringing down the
system. Moreover, the business user is able to implement new
rules much faster, without having to go through the entire IT
development cycle, spanning over weeks to months.

Once a trade has been initiated, it shows up in the
execution engine window, where the status of the execution
engine and trades are shown (see Figure 12).

Figure 12. Execution Engine Window

Figure 13. Deployment screen showing queued trading orders

Figure 13 shows the profit/loss table with the queued

trade orders. As a trade is executed, the profit/loss table of the
portfolio gets updated providing up-to date status. The
resulting table is shown in Figure 14.

The executed trades move to the upper left section of the
execution engine window in Figure 14, while the profit and
loss table shows the post execution difference of previous
profit & loss vs. current profit & loss side-by-side.

The resulting data is saved into the system’s persistent
storage for supporting the analytical process that is used for

producing better recommendations of rules conditions in the
future.

Figure 14. Executed trades and updated profit/loss table

VII. CONCLUSIONS

The approach described in this paper allows the business
user to interactively and dynamically create or change stop
loss business rules using data from a multitude of sources,
such as historical trades, market sources, and current portfolio.
Before deciding on the best rules to apply on the current
portfolio, the business user can visualize the effects of
applying a set of rules in what-if scenarios. Once the best rule
set is identified, it is immediately deployed for execution on
the active data set. The results of the execution are fed back
into the system’s data storage, to be used in later decision
processes. The main beneficiaries of this approach are the
executives who feel too dependent on the IT staff for
materializing their business ideas into working enterprise
systems. With this solution, a business executive is in control
of the business, because of the support provided for making
informed and timely decisions.

This solution addressed the problem of reducing
impending loss in financial trading using open source
components to accomplish the task. The ability to use different
sources of information, collate heterogeneous data into a
common factor, and process it to come up with decision rules,
provides an inexpensive solution for businesses of any size.

This paper demonstrates the proposed solution using rules
that require simple conditions. In the near future, we intend to
extend this work to rules with complex conditions. The rules
derived in this paper refer only to Reduce or Increase Risk
Exposure rules. However, we want to extend this work with
other types of stop loss rules, such as Intra-sector Shift
Exposure or Inter-sector Shift Exposure. Also, we intend to
extend this solution to other industries, such as retail, or
healthcare, and report on the extent of work needed to adapt to
new industry models. In this paper we have used only a linear

regression algorithm for processing the various types of data.
We plan on experimenting with other Machine Learning
algorithms, to see which one will provide the best performance
for deriving business rules.

Disclaimer - The Company names and financial data are fictional, and used to
solely demonstrate the proposed solution. In no way they resemble real
company financial information.

REFERENCES

[1] H. Yang, P.Liang, “Identification and Classification of Requirements
from App User Reviews,” SEKE’15,

[2] E. Guzman, W. Maalej,” How DO Users Likes This Feature? A Fine
Grained Sentiment Analysis of App Reviews”, RE’14, p.153-162.

[3] H. Takahashi, H. Nakagawa, T. Ysuchiya, “Towards Automatic
Requirements Elicitation from Feedback Comments: Extracting
Requirements Topics Using LDA”, SEKE’15

[4] L.V. Galvis Carreno, K. Winbladh, “,Analysis of Users Comments:An
Approach for Software Requirements Evolution”, ICSE’13, p.582-591,
IEEE Press

[5] H. Dumitru, M. Gibiec, N. Hariri, J. Cleland-Huang, B.Mobasher, C.
Castro-Herrera, M.Mirakhorli, “On-Demand Feature Recommendations
Derived from Mining Public Product Descriptions”, ICSE’11, p.181-.

[6] W. Van der Aalst, “Process Mining: Discovery, Conformance, and
Enhancement of Business Processes, Springer, 2011

[7] C. Rolland, “Capturing System Intentionality with Maps”, in Conceptual
Modelling in Information Systems Engineering, p. 141-158, Springer,
2007.

[8] G. Khodabandelou, C. Hug, C. Salinesi, “ Mining Users’ Intents from
Logs”, International Journal of Information System Modeling and
Design, IGI Global, 2015, Special Issue from the 8th IEEE International
Conference on Research Challenges in Information Science (RCIS):
2014, p. 43-71

[9] B. von Hale, “Business Ruels Applied: Building Better Systems Using
Business Rules Approach”,John Wiley & Sons, New York, 2001

[10] R.Ross, “Principles of the Business Ruels Approach”, Addison-Wesley
Professional, 2003

[11] Semantics of Business Vocabulary and Business Rules (SBVR), v1.0
OMG, http://www.omg.org/spec/SBVR/1.0/, 2008

[12] P. B. Feuto Njonko, S. Cardey, P. Greenfeld, W. El Abed, “ RuleCNL:
A Controlled Natural Language for Business Rules Specifications”,
Volume 8625 of the series Lecture Notes in Computer Science, p. 66-77

[13] L. Nemuraite, T. Skersys, A. Sukis, E. Sinkevicius, L. Ablonskis, “
VEtis Tool for Efditing and Transforming SBVR Business Vocabularies
and Business Rules into UML & OCL Models”, 16th International
Conference on Information & Software Technologies, pp. 377-384, 2010

[14] O.C. Tantan, J. Akoka, “ Automated Transformation of Business Rules
into Business Processes, From SBVR to BPMN”, SEKE2014

[15] B. Lucie, “ Report on State of the Art and Prospective Evolution of
Formal Languages for Business Rules”, Public Research Center Henri
Tudor, Luxemburg, 2006

[16] D. Rosca, S. Greenspan, C. Wild, “ Enterprise Modeling and Decision-
Support for Automating the Business Rules Lifecycle”, Automated
Software Engineering, vol.9, p.361-404, 2002

[17] H.M. Markowitz, "Portfolio Selection". The Journal of Finance 7 (1):
77–91., March 1952.

