A Method to Build Bayesian Networks based on Artifacts and Metrics to Assess
Agile Projects

Renan Willamy*', Jodo Nunes'!, Mirko Perkusich*!, Arthur Freire’?, Renata Saraiva’?, Hyggo
Almeidal?, and Angelo Perkusich**2

Paraiba Federal Institute of Education, Science and Technology, Monteiro, Brazil
2Embedded and Pervasive Computing Laboratory, Federal University of Campina Grande, Campina
Grande, Brazil

Abstract

Managing software development projects is a complex
task because it requires organizing and monitoring several
activities. Recently, in order to assist on software projects
management, artifact-based models were proposed in the
literature. However, the current solutions do not present
means to monitor projects health and assist on decisions
making. Due to the recent popularization of agile methods,
they are the units of study of this research. In this work,
we present a method to build artifact and measurement-
based models to assess agile projects health. We applied
the method to build a generic model based on industrys
best practice. We defined the models artifacts and met-
rics based on findings of a literature review and the assis-
tance of an expert. For each models artifact, we applied
the Goal-Question-Metric paradigm to define the metrics.
Afterwards, from the GOM meta-model, we constructed a
Bayesian network. We validated the model with simulated
scenarios. Given the successful results, we concluded that
the method and model are promising.

Agile Methods; Bayesian Network; Artifact; Metric;
Goal-Question-Metric

*renanwillamy2 @ gmail.com
tlockenunes @ gmail.com
tmirko.perkusich @ifpb.edu.br
Sarthur.freire @embedded.ufcg.edu.br
9Yrenata.saraiva@embedded.ufcg.edu.br
Ihyggo@embedded.ufcg.edu.br
**perkusic@embedded.ufcg.edu.br

DOI reference number: 10.18293/SEKE2016-213

1 Introduction

Managing software development projects is a complex
task, because it is necessary to organize and monitor many
activities such as requirements, architecture and project def-
inition, coding, testing and implementation of the prod-
uct. According to Emam and Koru [7], between 46% and
55% of IT projects fail. According to Boehm et al. [4],
the top six reasons for this high failure rate are: incom-
plete requirements, lack of user involvement, lack of re-
sources,unrealistic expectations, lack of executive support
and changing requirements and specifications. Most of
these reasons are caused by communication and interaction
issues between developers and stakeholders.

Recently, agile methods have become largely adopted
by software development industry [27]. Agile methods are
focused on the improvement of collaboration between de-
velopers and stakeholders in order to improve effectiveness
when requirements change.

Managing agile projects is a big challenge, specially in
organizations with traditional culture [21]. Besides being
flexible to changing requirements and adopting iterative and
incremental development, the adoption of agile methods
is complex given the context of architecture definition, re-
quirements prioritization, and quality assurance. According
to VersionOne [26], 44% of respondents pointed to lack of
experience with agile methods as the main cause for ag-
ile to fail; 42% to company philosophy or culture at odds
with core agile values. As barriers to agile adoption, 44%
pointed to the ability to change organizational culture, 35%
to not enough personnel with the necessary agile experi-
ence, 32% to pre-existing waterfall framework. Therefore,
there is a need for resources to assist on the adoption and

continuous improvement of agile methods.

According to Briand et al. [5], it is important to assess
a software development process model to define the study
objects of a measuring program, and, consequently, the nec-
essary metrics to be collected. In the literature, artifact-
based models are proposed to assist on the managing of
projects, specially, distributed teams-based projects. Arti-
facts represent the products related to the software develop-
ment project such as source code, documentation, specifi-
cations e architectural models.

Kuhrmann et al. [16] presented a generic artifact-based
model for distributed agile software development teams.
Despite the fact that this model is a result of an evolution
for centralizing the management of agile distributed teams,
some information regarding the project’s health, which help
on the decision making process, are missing. In our context
project health is the current status of the project given its
goals (e.g., scope and time restrictions).

These missing information can be collected through soft-
ware metrics. These metrics allow the measurement, assess-
ment, control and improvement of software artifacts [11].
As a result, it is possible to define a meta-model connecting
the artifacts as well as their respective metrics. However,
only a meta-model is not enough to assess the artifact ac-
cording to the collected data.

Recently, Bayesian Networks have become a popular as
a mechanism for constructing executable models that are
able to deal with uncertainty and assist on the decision mak-
ing process. It has been applied in several context of soft-
ware engineering such as risk management [8, 9, 15, 13],
quality prediction [1, 14] and process management [19].

In this paper, we aim to complement the work presented
by Kuhrmann et al. [16] by presenting a method for con-
structing artifact-based probabilistic models to assist on the
management of agile projects. With the help of a specialist,
a generic model (i.e., Bayesian Network) for agile projects
was constructed, addressing the main agile projects arti-
facts and their respective metrics. To define the metrics,
we applied the Goal-Question-Metric (GQM) paradigm [2].
Given that the model is a Bayesian Network, its structure fa-
cilitates possible modifications to address other artifacts and
metrics.

The method and model presented in this paper are lim-
ited to the context of projects composed by only one team.
To validate them, we used ten simulated scenarios. Based
on the results, we concluded that both method and model
are promising.

This paper is organized as follows. Section 2 presents an
overview of the usage of Bayesian networks in software en-
gineering context. Section 3 presents the method developed
to build Bayesian networks based on artifacts and metrics
to assess the health of the project. Section 4 presents the
generic model build for agile projects. Section 5 the results

of the validation Section 6 presents our conclusions, limita-
tions and future works.

2 Overview of Bayesian Networks applied to
Software Engineering

Bayesian networks have been applied to many areas in
software engineering such as risk management and product
quality prediction. Fan and Yu [8], Fenton et al. [9] and
Hu et al. [13] modeled software processes to support risk
management. Fan and Yu [8] built a model capable of pre-
dicting potential risks, identifying the source of risks, and
supporting dynamic resource adjustment. [9] showed how
to use a Bayesian network to predict software defects and
perform “what if” scenarios. Jeet et al.[15] built a model to
estimate the impact of low productivity on the schedule of
a software development. They used interviews and histori-
cal data to build the model. Hu et al. [13] proposed a risk
identification framework for outsourced software projects.

Abouelela and Benedicenti [1] and Jeet et al. [14] mod-
eled software processes to support quality management.
Abouelela and Benedicenti [1] built a model to predict a
releases rate of defects in a XP project and its duration. Jeet
et al. [14] built a model to detect the number of defects in
a software development project. The rate of defects and the
project manager’s judgments are used for predictions and
support in managing the number of defects.

Settas et al. [22], Stamelos [23], Stamelos et al. [24] and
[19] modeled software processes to support other project
management activities. Settas et al. [22] and Stamelos
[23] used Bayesian networks to help managerial decision
making by modeling software project management anti-
patterns. Stamelos et al. [24] modeled the uncertainties
of factors to estimate software productivity. Perkusich et
al. [19] modeled software processes to support continuous
improvement.

Hearty et al. [12] and Perkusich et al. [18] applied
Bayesian networks to agile context. Hearty et al. [12] used
a Learning Dynamic Bayesian network model to predict
project velocity in XP. Perkusich et al. [18] modeled the
processes of Scrum projects to detect problems in the team
and processes. None of them used artifacts as a base to build
the Bayesian networks.

3 The Method

The goal of the method is to assist on the construction
of a Bayesian Network-model based on artifacts and met-
rics to assess the health of agile projects, which consists of
their status given their goals. This method consists of five
sequential steps: (i) measurement goals definition; (ii) arti-
facts definition; (iii) metrics definition; (iv) Bayesian Net-

work construction; and (v) validation. Despite being se-
quential, there are feedback loops between the steps. In step
(i), the measuring goals are defined according to the needs.
In general, they are related to a project restriction, such as
schedule, budget or scope.

In step (ii), development processes artifacts that are re-
lated to the measurement goals are defined. An artifact
might be associated to more than one measurement goals,
and a measurement goal might be associated to more than
one artifact, which is a many-to-many relationship. In this
step, it is preferable to choose artifacts that are already used
in the development process to avoid additional effort on the
measurement process.

To execute step (iii), it is necessary to apply the GQM
paradigm. Since an artifact may be associated to more than
one measurement goal, it is possible to have more than one
instance for a given artifact. For each instance, according to
its measurement goal, it is necessary to define the goal (i.e.,
level G), a set of questions (i.e., level Q) for this goal, and
metrics (i.e., level M) to be collected in order to measure if
the goal associated to the artifact is reached.

In step (iv), the meta-model constructed in step (iii) is
transformed in a Bayesian Network. To define the DAG
(Directed Acyclic Graph), it is necessary to define a node
for each artifact. Afterwards, these nodes need to be de-
composed until the metrics associated to them are reached.
This can be done by following some steps:

1. For each managing area, define a node;

2. For each goal, define a node and connect it to one or
more management areas;

3. For each relationship, an edge is added, in which the
edge’s endpoint points to the management area;

4. For each artifact, a node is defined and, then, con-
nected to one or more goals;

5. For each relationship, an edge is added, in which the
edge’s endpoint points to the goal;

6. For each question, define a node and connect it to an
artifact. For each relationship, an edge is added, in
which the edge’s endpoint points to the artifact;

7. For each metric, define a node and connects it to one
or more questions;

8. For each metric, an edge is added, in which the edge’s
endpoint points to the question.

After transforming the GQM meta-model into the DAG,
it is necessary to define the probability functions by per-
forming “what if” analysis.

In step (v), it is necessary to validate the Bayesian Net-
work. For this purpose, it is possible to use the Brier score
[10] and simulated scenarios [18].

4 Generic Model

To build the generic model, we used the artifacts pre-
sented in Kuhrmann [16] and elicited knowledge from an
expert. In Section 5, we present the results and the profile
of the expert. Moreover, we executed the method presented
in Section 3.

The goal of this generic model is to represent an agile
project, based on agile best practices, to measure its health.
Given that the projects run in different contexts, there might
be necessary to modify the model to apply it. Usually, In the
context of software process modeling, organizations need
to adapt methods and models, so they fit their contexts.
However, we believe the generic model presented is robust
enough to guarantee minimum modification.

The first step for constructing the model is to define the
goals of its measuring. We used the Agile Manifesto [3] to
define the measuring goals. In addition to that, we tried to
categorized the principles of the Agile Manifest based on
projects restrictions: scope, quality, schedule, and cost. We
introduce some agile principle as follows:

1. The highest priority is to satisfy the customer through
early and continuous delivery of valuable software;

2. Deliver working software frequently, from a couple of
weeks to a couple of months, with a preference to the
shorter timescale;

3. Deliver working software frequently, from a couple of
weeks to a couple of months, with a preference to the
shorter timescale;

4. Continuous attention to technical excellence and good
design enhances agility.

By analysing these principles, it is possible to classify
1, 2, and 4 as scope principles; and 3 as a schedule prin-
ciple. We considered principles related to product quality
connected to the scope principles. We did not consider met-
rics for cost, because they are not directly related to any
agile principle.

Afterwards, the artifacts were defined. As scope arti-
facts, we considered the Product Backlog, the Product In-
crement, and the Tests Report. Since the model is limited
to the project level and a product can be delivered through
more than one project (i.e., releases), we also decided to
use the Release Backlog, which is a subset of the Product
Backlog. As schedule artifact, we only considered the Re-
lease Burndown. For each artifact, the GQM template was
applied to describe its the measuring goal.

e GI: Analyse the Release Backlog for characterizing it
regarding the product quality, from the viewpoint of
the PO;

e G2: Analyse the Product Increment for characterizing
it regarding the product satisfaction, from the view-
point of the PO;

e (G3: Analyse the Tests Report for characterizing it re-
garding the tests completeness, from the viewpoint of
the PO;

e G4: Analyse the Release Burndown for characterizing
it regarding the product progress, from the viewpoint
of the PO.

Then, for each artifact, we defined a set of questions and
metrics. Due to space limitations, we only present the ques-
tions for the Release Backlog. To define the questions for
this artifact, the expert recommended to use the DEEP cri-
teria [20]. Given this, we defined four questions: “Is it
correctly detailed?”, ”Is it correctly estimated?”, "Does it
evolve correctly?”, and “’Is it correctly ordered?”.

For each question, we derived one metric: item detail
level, estimation conformity, and dynamics of the estima-
tion. Since these metrics are all subjective, we decided to
represent them in 5-point Likert scale. To collect them, it is
necessary to answer, respectively, the following questions:
”Do you agree that the next iteration’s items satisfy the IN-
VEST criteria [6]?7”; ”Are the next iteration’s items small
enough so they be done in one iteration?”’; and “Does the
backlog evolve (i.e., new items added, existing items re-
fined, deleted or reordered) continuously according to the
product feedback and changes in the business scenario?”

Since the space is limited, we will only present the as-
sessment method for the metric item detail level. Each item
allocated for the next iteration needs to be assessed accord-
ing to the INVEST criteria. This criteria assess six factors:
(i) independence, (ii) negotiability, (iii) value, (iv) if it is
estimable (v) size, and (iv) testability. It i’s ideal that all
items are independent; their scope had been already dis-
cussed between the development team and the client; they
have business value; the developers have enough knowledge
to estimate them; and they’re small enough so they can be
done in one iteration, as well as tested considering non-
functional requirements (e.g., performance, usability, and
security). For this purpose, it is necessary to assess each
backlog item according to these criteria in a 5-point scale
(i.e., 717 for Very Low, and ’5” for Very High). Afterwards,
the results need to be aggregated and mapped into the item
detail level metric. For doing so, we used the WMIN func-
tion.

Regarding the question “Is it correctly ordered?”, the
metrics were defined according to the criteria DIVE [20].
These metrics are: backlog items dependency, risks, esti-
mation conformity, and business value. Since these metrics
are all subjective, we decided to represent them in 5-point
Likert scale. To collect these metrics, it is necessary to an-

swer, respectively, the following questions: Do you con-
sider the backlogs’ items technical dependency?”, Do you
consider the backlogs’ items technical and business risks?”,
”Are next iteration’s items estimated with points or ideal
days?”, and ”Do you consider the business value, in the con-
texts of the user, schedule, and organization?” For the busi-
ness value metric, it is possible to use the numeric methods
presented by Thatte [25]. However, the assessment of their
usage wasn’t addressed in this study. After defining the set
of questions and metrics for each artifact identified, we built
a GQM meta-model, which was later transformed into the
DAG. We present the DAG in Figure 1.

To calibrate the probability functions, we used the
knowledge of one expert, which has over five years of ex-
perience as an agile project manager. For each child-node,
we defined a questionnaire composed by a set of combina-
tions of its parent nodes. Due to space limitations, we limit
ourselves to state that, to generate the probability functions,
we applied the approach proposed by Laitila [17].

5 Validation

We validated the model and the procedure in ten simu-
lated scenarios, defined according to the expert availability.
To due space limitations, we only present the results of one
scenario. This scenario (i) describes an experienced and
efficient development team, in which the manager is inef-
fective and absent.

For each scenario, according to their contexts, the values
for the input nodes (i.e., nodes with no parents) were de-
fined by the specialist. Furthermore, for the nodes related
to the goals and artifacts, the specialist defined the expected
values. For this scenario, the expected results were:

e Scope: central tendency between Very Low and Low.

Time: central tendency between Very Low and Low.

G1: central tendency between Very Low and Low.

G2: central tendency between Medium and Low.

G3: central tendency between Medium and Low.

We present the results for this scenario in Table 1. These
results match the expected results we defined before start-
ing the validation process. Given this, we concluded both
method and generic model are promising. However, the
number of scenarios we defined for validating the method
and model are not enough to conclude they would be useful
in the context of real projects.

Is it
correctly
ordered?

Does it
evolve
correctly?

Is it
correctly
detailed?

Is it
correctly
estimated?

Number
of open
bugs

Business
value

Dependency

Item Dynamics
Estimation

detail stimat ‘,) of the
conformity . X

level estimation

How many
features
done?

How many;
unwanted
behaviors?

Static
analysis
warnings

How many
automated
functional
tests?

How many
automated
integration
tests?

Releasable
product
on time?

How
many unit
tests?

Tested
features

Functional
tests
coverage

Integration

Unit tests
coverage

tests
coverage

Figure 1. Complete directed acyclic graph for the Bayesian network.

States
Node VL L M | H | VH
Scope | 56% | 44% 0 0 0
Time 0 100% 0 0 0
Gl 100% 0 0 0 0
G2 0 61% | 39% | O 0
G3 0 70% | 30% | O 0

Table 1. Scenario results for highest level
nodes in the model

6 Conclusions

In this paper, we presented a method to construct
Bayesian networks based in artifacts and metrics to assist
in agile project management. The method consists of five
steps: (i) measurement goals definition; (ii) artifacts defi-
nition; (iii) metrics definition; (iv) Bayesian Network con-
struction; and (v) validation. The purpose of the method is
to measure agile projects’ health.

The method was applied to construct a generic model
considering the most popular artifacts and metrics in the in-
dustry. The model’s measurement goals were defined ac-
cording to agile principles, and it was constructed with the
help of an expert. We validated the model through two sim-
ulated scenarios with positive results. Thus, we concluded
that the results are promising.

This study limitations are related to the quantity of sim-
ulated scenarios in which we performed the validation. In
addition to that, we only collected knowledge from one ex-
pert. However, both limitations are due to the unavailability

of industry experts to collaborate in the study during the re-
quired period.

For future works, we pretend to perform a systematic
review to identify metrics, consult other specialists for
constructing the model, perform empirical case studies to
evaluate the method and the models constructed in industry
context, and extend the method to consider projects with
multiple distributed teams.

Acknowledgments

This work was financially supported by Paraba Federal
Institute of Education, Science and Technology, Campus
Monteiro.

References

[1] M. Abouelela and L. Benedicenti. Bayesian network
based xp process modelling. [International Journal
of Software Engineering and Applications, 1(3):1-15,
2010.

[2] V.R. Basili and D. M. Weiss. A methodology for col-
lecting valid software engineering data. IEEE Trans-
actions on Software Engineering, SE-10(6):728-738,
Nov 1984.

[3] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn,
W. Cunningham, M. Fowler, J. Grenning, J. High-
smith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C.
Martin, S. Mellor, K. Schwaber, J. Sutherland, and
D. Thomas. Manifesto for agile software develop-
ment, 2001. Accessed: 29th February 2016.

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

(12]

(13]

[14]

(15]

[16]

B. Boehm. Software engineering is a value-based con-
tact sport. IEEE Softw., 19(5):95-96, Sept. 2002.

L. C. Briand, C. M. Differding, and H. D. Rombach.
Practical guidelines for measurement-based process
improvement. Software Process: Improvement and
Practice, 2(4):253-280, 1996.

M. Cohn. Succeeding with Agile: Software Develop-
ment Using Scrum. Addison-Wesley Professional, 1st
edition, 2009.

K. E. Emam and A. G. Koru. A replicated survey of
it software project failures. IEEE Software, 25(5):84—
90, Sept 2008.

C.-F. Fan and Y.-C. Yu. Bbn-based software project
risk management. Journal of Systems and Software,
73(2):193-203, Oct. 2004.

N. Fenton, P. Krause, and M. Neil. Software mea-
surement: uncertainty and causal modeling. Software,
IEEE, 19(4):116-122, 2002.

N. Fenton and M. Neil. Risk assessment and decision
analysis with Bayesian networks. CRC Press, 2012.

K. A. M. Ferreira, M. A. S. Bigonha, R. S. Bigonha,
L. F. O. Mendes, and H. C. Almeida. Identifying
thresholds for object-oriented software metrics. J.
Syst. Softw., 85(2):244-257, Feb. 2012.

P. Hearty, N. Fenton, D. Marquez, and M. Neil. Pre-
dicting project velocity in xp using a learning dynamic
bayesian network model. IEEE Transactions on Soft-
ware Engineering, 35(1):124—137, Jan 2009.

Y. Hu, X. Mo, X. Zhang, Y. Zeng, J. Du, and K. Xie.
Intelligent analysis model for outsourced software
project risk using constraint-based bayesian network.
Journal of Systems and Software, 7(2):440 — 449,
2012.

K. Jeet, N. Bhatia, and R. S. Minhas. A bayesian net-
work based approach for software defects prediction.
SIGSOFT Softw. Eng. Notes, 36(4):1-5, Aug. 2011.

K. Jeet, N. Bhatia, and R. S. Minhas. A model for esti-
mating the impact of low productivity on the schedule
of a software development project. SIGSOFT Softw.
Eng. Notes, 36(4):1-6, Aug. 2011.

M. Kuhrmann, D. M. Fernandez, and M. Grober. To-
wards artifact models as process interfaces in dis-
tributed software projects. In Proceedings of the 2013
IEEE 8th International Conference on Global Soft-
ware Engineering, ICGSE ’13, pages 11-20, Wash-
ington, DC, USA, 2013. IEEE Computer Society.

[17]

[25]

P. Laitila. Improving the use of ranked nodes in
the elicitation of conditional probabilities for bayesian
networks. Master’s thesis, Aalto University, Finland,
2013.

M. Perkusich, H. O. de Almeida, and A. Perkusich.
A model to detect problems on scrum-based software
development projects. In Proceedings of the 28th An-
nual ACM Symposium on Applied Computing, pages
1037-1042. ACM, 2013.

M. Perkusich, G. Soares, H. Almeida, and A. Perku-
sich. A procedure to detect problems of processes
in software development projects using bayesian net-
works. Expert Systems with Applications, 42(1):437 —
450, 2015.

R. Pichler. Agile Product Management with Scrum:
Creating Products that Customers Love (Adobe
Reader). Addison-Wesley Professional, 2010.

K. Schwaber
scrum.

and J. Sutherland. Guia do
http://www.scrumguides.
org/docs/scrumguide/vl1/

Scrum-Guide—-Portuguese—-BR.pdf,
Accessed: 17th March 2016.

2015.

D. Settas, S. Bibi, P. Sfetsos, I. Stamelos, and V. Gero-
giannis. Using bayesian belief networks to model
software project management antipatterns. In Soft-
ware Engineering Research, Management and Appli-

cations, 2006. Fourth International Conference on,
pages 117-124, 2006.

I. Stamelos. Software project management anti-
patterns. Journal of Systems and Software, 83(1):52
-59, 2010.

I. Stamelos, L. Angelis, P. Dimou, and E. Sakellaris.
On the use of bayesian belief networks for the predic-
tion of software productivity. Information and Soft-
ware Technology, 45(1):51 — 60, 2003.

S. Thatte. Agile prioritization: a comprehensive
and customizable et simple and practical method.

https://goo.gl/97POHR/, 2014. Accessed:
17th March 2016.
VersionOne. 9th annual state of agile development

survey results. http://www.versionone.com/pdf/state-
of-agile-development-survey-ninth.pdf, 2015. Ac-
cessed: 2015-05-05.

Y. Zhang and S. Patel. Agile model-driven develop-
ment in practice. I[EEE Software, 28(2):84-91, March
2011.

