
Collecting Usage Data for Software Development:
Selection Framework for Technological Approaches

Sampo Suonsyrjä, Kari Systä, Tommi Mikkonen and Henri Terho
Tampere University of Technology, Korkeakoulunkatu 1, FI-33720 Tampere, Finland

{sampo.suonsyrja, kari.systa, tommi.mikkonen, henri.terho}@tut.fi

Abstract—Software development methods are shifting towards
faster deployments and closer to the end users. Their ever
tighter engagement of end-users also requires new technologies
for gathering feedback from those users. At the same time,
widespread Internet connectivity of different application envi-
ronments is enabling the collection of this post-deployment data
also from sources other than traditional web and mobile software.
However, the sheer number of different alternatives of collecting
technologies makes the selection a complicated process in itself.
In this paper, we describe the process of data-driven software
development and study the challenges organizations face when
they want to start guiding their development towards it. From
these challenges, we extract evaluation criteria for technological
approaches to usage data collecting. We list such approaches
and evaluate them using the extracted criteria. Using a design
science approach, we refine the evaluation criteria to a selection
framework that can help practitioners in finding a suitable
technological approach for automated collecting of usage data.

I. INTRODUCTION

One of the clear trends in the field of software development
has been the ever tighter engagement of the end-users to the
software development process. For example, methods such as
Lean Startup [1] are dependent on more and more rapid feed-
back cycles. As described in a more general level in [2], the
shift from Agile processes towards Continuous Deployment
and experiment systems requires faster ways to validate the
developed software than is possible with traditional communi-
cation methods, such as face to face conversations with end-
users.

As these new methods are emerging, the whole software
development process can be rearranged. In the aforementioned
experiment systems for example, the deployment of software is
not the end of the road for development efforts, but more of an
initial step to start collecting data on user needs and then fine-
tune the software [2]. With such approach, post-deployment
data is first collected and then used for guiding the software
development making the development process data-driven.

First and foremost this post-deployment data, such as data
about how the system is used (i.e. usage data), has been
used for guiding software development in environments like
web and mobile development. In these contexts, constant
connectivity – an important enabler for usage data collection
– is the norm. However, breakthroughs of cloud software and
Software-as-a-Service model, and the fact that most appli-
cations and platforms are Internet connected to begin with,

are extending the use of data collection to a wider range of
applications.

As this range of potential target applications, or programs
whose usage data can be collected from, is getting wider, we
are left with the challenge of finding the right technologi-
cal approach for usage data collecting in the varying target
application environments and cases. For example, manually
adding code to target applications for logging purposes can
be a straightforward option for developers in simple cases on
one hand. But on the other hand, there are also different kinds
of standardized tools and various approaches that among other
things can automate this instrumentation or at least some parts
of it.

To address this, we study what kind of challenges organi-
zations face when they are starting the usage data collecting.
Literature reviews along with a case study in an international
telecommunication organization are used for finding these
challenges, and they are extracted into evaluation criteria for
data collecting technologies. We then describe several options
for the automatic usage data collecting and evaluate them with
the formed criteria. After this, we refine the criteria and the
evaluated technological approaches into a selection framework
that should help practitioners choose the suitable technologies.

The main research problem is how to select the right
technological approach for automated collecting of usage
data?. To address this, we derive two research questions from
the main problem as follows.

• RQ1: How to evaluate different technological approaches
for automated collecting of usage data?

• RQ2: What kind of technological approaches are there
for the automated collecting of usage data?

The rest of the paper is structured as follows. In Section
II, we take a look at the context of data-driven software
development. Additionally, we go through the appropriate
literature to find out challenges in automatic collecting of post-
deployment data. Section III explains the formed evaluation
criteria, and in Section IV we use the criteria to evaluate
several technological approaches to usage data collecting. In
Section V we derive a selection framework from the evaluation
criteria and the technological approaches. In Section VI we
draw some final conclusions.

II. BACKGROUND

The background of this paper is two-fold. First, we address
data-driven software development. Then, we introduce theDOI reference number: 10.18293/SEKE2016-186



challenges of automatic usage data collecting.

A. Data-Driven Software Development

As presented in [2], companies typically evolve their soft-
ware development processes by climbing the Stairway to
Heaven (StH). StH describes the shift from traditional water-
fall development towards continuous deployment of software.
The steps to be taken in the proposed chronological order
are Traditional Development, Agile R&D Organization, Con-
tinuous Integration, Continuous Deployment, and the model
ends up with R&D as an Experiment System. With each step,
software development is becoming faster in the sense that it
produces new releases of software ever more quickly. In the
scope of this paper, the last phase is especially interesting as
climbing the last step requires a fast-track of information from
customers back to the development organization.

However, feedback gathering from customers is often slow,
and sufficient mechanisms for it are missing. This can result
in opinion-based development decisions. To ease the climb
to the final step and make development more data-driven,
Olsson & Bosch have developed the HYPEX model, i.e.
Hypothesis Experiment Data-Driven Development [3]. In this
model, Minimal Viable Features (MVF) are implemented and
their expected behavior is described. A feature is implemented
over many iterations and so the first 10% to 20% of its
functionality is called an MVF. The deployed MVF is always
instrumented to collect data on its use by customers, and this
data is then compared with the initial descriptions of how the
development organization thought that it would be used. Based
on this Gap Analysis, the developers then either finalize or
abandon the feature, or iterate the experimentation over again
with a different hypothesis.

Such process has a lot in common with the Build-Measure-
Learn loop (BML-loop) described in [1].Compared to the
HYPEX model, the BML loop has many similarities and main
differences are in the abstraction level. The BML loop is meant
to validate the business feasibility of the product through the
use of Minimum Viable Products (MVP). During each turn of
the BML-loop a product hypothesis is formed and measurable
metrics are linked to the hypothesis. The MVP is then built
and the metrics are measured. Based on the outcomes of this
data, the decision is made if the product development should
be continued or another product hypothesis should be tested
based on the experiences learned from the MVP.

As described above, both the HYPEX model and the BML-
loop are data-driven approaches to software development.
Software Analytics, as laid out in [4], highlights this use of
data as well. However, this paradigm of analytics points out
specifically the different types of analyses that are needed for
turning the measured data into insights and eventually into
development decisions. These are depicted in Figure 1. The
model originates from the field of web analytics, but as its
generality seems broad and with its experimental approach it
should suit organizations well as a guidance in the R&D as
an Experiment System phase of StH.

Fig. 1. Paradigm of Analytics (adapted from [4]).

All the aforementioned models include the phases of plan-
ning the data collecting, collecting the data, and analyzing the
results to make decisions and iterating the process over again.
In this sense, data-driven software development can be seen as
an overarching term that typically consists of similar phases.
To get a concrete definition from a technology standpoint and
in the scope of this paper, we have formulated Data-Driven
Software Development as an iterative process as follows.

1) Planning of the data collection. The goals of the analysis
need to be known and the monitored applications and
features should be selected based on them. The required
resources, customer and user permissions and legal
aspects of data collection need to be checked as well.

2) Deployment of data collection. The infrastructure of
technical means to track the applications and collect
post-deployment data needs to be installed.

3) Monitoring of the applications. The technical means can
be internal to the application but also external - depend-
ing on the used run-time and platform technologies.

4) Picking up the relevant data. Monitoring should be
configured to pick the data that is seen useful for the
planned data collection and analysis.

5) Pre-processing – filtering and formatting – the data.
The collected data is typically transferred to a remote
location, but is typically filtered and formatted before
sending to save resources.

6) Sending and/or saving the data. For effective analysis
the data needs to be collected from long enough period
and it needs to be available for the people working
on the analysis. Often this means that hosting of the
data storage is different from the applications. Thus,
the system should transfer the data to storage either by
means of continuous streaming or by saving it first to
local cache and sending bigger amounts of data at the
same time.

7) Cleaning and unification of the data. This process com-
pletes the work done by pre-processing described earlier
but is necessary especially if data is flowing from various
different sources.

8) Storing the data. Typically some database is used for
storing the data.

9) Visualizations and analysis. A tools set helps stakehold-



ers to ask ”what” and ”how much” questions and to
make conclusions.

10) Decision making. The results should lead to actionable
decision for example on: new software development,
user training, or marketing actions.

In this process, data collecting consists of phases 2-6.

B. Challenges of Automatic Usage Data Collecting

Fabijan et al. have described the challenges and limitations
of customer feedback and data collection techniques in their
literature review of software R&D [5]. The scope of their
literature review included also manual and qualitative tech-
niques such as interviews and observations, but the sources and
challenges concerning automatic usage data collecting from
the software product itself were as listed below.

• Incident reports: Available only after an incident.
• Beta testing: Only partially developed interfaces and

functionality.
• Operational and event data: Security issues when such

data is transmitted, potentially high amounts of data.
• A/B testing: Potentially confusing for customers when

exposed to different versions.
Similarly, Sauvola et al. [6] described feedback gathering

and its challenges as a part of software development com-
panies’ R&D efforts. Although their multiple-case study in-
volved also many more feedback types than the automatically
collected usage data, their descriptions of the cases implied
various related challenges. We understood these as follows.

• Permission checks. The authors point out that in some
specific domains the automated data collection from end-
users is highly regulated and thus not executed at all.

• Various sources of feedback. Consolidating the feedback
coming from various customers was seen as a challenge,
and its processing relied heavily on its user’s competence.

• Only incident reports available. Feedback was only
gathered for troubleshooting purposes and not e.g. for
improving existing products.

• Systematic implementations are missing. Although some
mechanisms are in place to collect feedback and even
product data, their implementations lack the systematic
approach.

• Difficulties to store, analyze, and integrate. Even if
feedback was gathered in most of the case companies,
they reported having issues in storing, analyzing and
integrating it back to the developers’ processes.

• Data availability and transparency. The information
about the collected data types as well as who and for
what was it used was difficult to spread around the case
companies. A reason for this, for example, was that the
different parts of the development organization can see
the data collecting as a risk as its use for new product
development can cannibalize the current product markets.

• Channels are not working. As no systematic and
organization-wide ways of feedback collecting were
present, the feedback gathered in one place was regarded

useless although it could have been in high value in the
next place.

III. EVALUATION CRITERIA FOR USAGE DATA
COLLECTING APPROACHES

The challenges of usage data collecting are now extracted
into evaluation criteria, which are fine-tuned based on the
discussions with the case company. The challenges and limita-
tions of usage data collecting can be consolidated as follows:

• The amount of use cases for the collected data. The
number of use cases can be either too low or too
high. Although there could be various uses for the same
collected data, it might be used blindly to serve only
a single purpose. On the other hand, the whole data
collecting can face the critical challenge of trying to serve
so many purposes and people that in the end it performs
sufficiently to none of them.

• The timeliness of the collected data. Depending on the
intended use, the timeliness of the data can form limita-
tions to the collecting approach as well as to the source of
data. For example, incident reports can be available only
after incidents happen, and thus the use of such source
has its natural challenges.

• Continuous confusion for the users. As mentioned, one
of the well-known practices in the field of web develop-
ment is A/B testing. Its implementation needs carefully
planning, though. The more continuous the collecting is,
the higher the risk of continuously introducing partially
developed interfaces and functionality to users, who can
find this troubling after a while. In addition, the collecting
can affect the performance of the system.

• Laws, regulations, and permissions. Especially when the
same data collecting approach is to be used in various
different domains and countries, the related laws and
regulations are going to be different for each situation.
These checks for the data collection’s legality take dif-
ferent amounts of time in each case thus enabling the
data collecting in different cases at different times.

• Privacy and security. In addition to the overall permis-
sion checks, the security and privacy issues need to be
addressed sufficiently by the collecting approach.

• Various sources for the data collecting. A high amount
of sources creates a twofold challenge. The unification of
the different types of data has to happen in a phase of its
own (cf. phase 7 in Section II-A), or then the analyzer
(cf. phase 9) has to have the capabilities to present and
process the different types of data.

• Lack of a systematic approach to collecting. If a system-
atic approach is missing for the collecting, it is obvious
that each phase of the data-driven software development
is going to present new difficulties and challenges (e.g.
difficulties to store, analyze, integrate etc.). These might
be different in each case and they depend on the involved
persons and their capabilities.

• Availability, transparency, and usability of the collected
data. Even if the organization had first decided on what



kind of things they want to use the collected data, there
are challenges also in how to make the data available,
attractive, and usable for the right people. Thus, both the
channels for distributing but also the tools for example
for visualizing it (i.e. make the data usable) have to be
sufficient enough for the selected audience.

We also analyzed these challenges from the perspective of
the case company and used them as the basis of designing the
evaluation criteria of usage data collecting approaches. The
organization listed the challenges they felt were related to their
case after discussing the overall topic of usage data collecting
with us. Although each of the challenges they listed was found
already from the list above, their descriptions of the challenges
bring understanding to a more concrete level, which we try to
emphasize with the examples linked to each criterion.

• Timeliness. When can the data be available? Does it have
a support for real-time?

• Targets. Who should benefit from the data? What is the
intended use? Does the approach support many targets?
Does it produce different types of data or only one? ”Do
we want results for troubleshooting or for new product
development?”

• Effort level. What kind of a work effort is needed from
the developers to implement the approach. ”How does the
selected technology affect the production code? What is
the work effort needed for the implementation?”

• Overhead. What kind of drawbacks are acceptable? ”How
does the collecting approach affect the implementation
environment, e.g. downtime and performance?”

• Sources. What sources of data can be used? Does the ap-
proach support many source platforms? ”Different kinds
of technological environments – Where to focus our
implementation efforts?”

• Configurability. How configurable the technological ap-
proach is? Can the collecting be switched on and off
easily? Can it change between different types of data to
collect? ”Is the collecting easy to switch on and off? Is
the approach producing data in the right level of details?”

• Security. Can the organization who developed the collect-
ing technology be trusted with the collected data? Is the
data automatically stored by the same organization?

• Reuse. How can the technology be reused? Is it always a
one-time solution or can it be reused as it is straightfor-
wardly with another target application?

IV. TECHNOLOGICAL APPROACHES FOR USAGE DATA
COLLECTION

Next, we will go through a few technological approaches for
the automated collecting of usage data. The abstract viewpoint
is selected to not get stuck with the specific tools that happen
to be around in 2016. Rather, the goal is to gain deeper
understanding in how such tools and possible approaches work
and how that is reflected in selecting them.

A. Manual Implementation

In the manual implementation the developer adds extra
statements to the relevant locations of the software. On one
hand, this highlights the flexibility of the approach – it does
not limit the timeliness, targets, sources, or security in any
way. On the other hand, adoption to new targets and sources
would require significant rework making the reuse practically
impossible. However, if additional functionalities such as run-
time flags are added to the statements, switching the collecting
on and off becomes significantly easier. This increasing con-
figurability correspondingly increases the already high level
of work effort needed for the implementation though. As a
benefit, the approach almost guides the developer to collect
data only from the intended sources, minimizing the overhead
to the performance and of irrelevant data.

To conclude, there are only few real limitations with this
approach. The needed work effort is high though, so e.g. if
the code base is vast the approach can be come inappropriate.
Therefore, we conclude that the approach is best suited either
for the first few try outs with data collecting or for cases where
the target and the source are particularly well focused.

B. Automatic Instrumenting with a Separate Tool

There are multiple tools, e.g. GEMS [7], that can automati-
cally instrument the code for various data logging, quality as-
surance and performance monitoring purposes. This approach
frees the programmers from the manual work and reduces
the probability for errors lowering the effort significantly.
Similarly, the reuse possibilities of the data collection should
be high with automated tools since they are developed to work
with different target applications in the first place.

However, the automatic tools are typically focused on only
one type of source or target. Therefore, the overhead is likely
to grow rapidly as the source cannot be set as specifically as
with the manual approach. There are exceptions to this as well,
and for example the framework presented in [8] balances its
monitoring coverage with overhead automatically. Although
these problems in general can be reduced by using highly
configurable instrumentation tools when available, these crite-
ria, along with security and timeliness, are almost completely
intertwined with the specific tool selected. This highlights
the inflexibility of the technological approach. The ideal case
for this approach could be one with high importance in low
implementation effort, such as a case with a huge code base,
and with targets that need monitoring from the whole target
application or even from many similarly developed target
applications.

C. Aspect-Oriented Approach

Aspect-oriented approach is something of a mixture from
the automatic instrumentation and the manual implementation.
The research presented in [9] and [10] use aspect-oriented
programming as a tool for code instrumentation. Further
on, the use of aspect-oriented programming for usage data
collection has been proposed in [11]. Additionally, in [12]
the separation of similar monitoring code from the actual



system code is highlighted, which could perhaps respond to
the challenge of various data sources.

One important benefit of aspect-orientation is its expressive
power. While automatic instrumentation is typically triggered
by entering (or leaving) a function, the aspects can include
more complex conditions for executing the data collection
code. Aspect-based instrumentation allows the instrumentation
to be system and application specific, which focus the col-
lecting better on the relevant targets. This should also lead to
optimized balance between the additional overhead and quality
of the data.

The expressive power of AOP makes the approach similar to
the manual implementation in its flexibility to create solutions
that can be optimized by their timeliness, configurability, and
security to suit any situation. On the other hand, the work
effort needed for the implementation is not as high since the
instrumentation is automated. However, learning to use AOP
surely takes its toll if the developer is not familiar with the
paradigm otherwise.

From the perspective of reuse, the aspect-oriented approach
has both its limitations as well as benefits. If the different
target applications are developed in such a similar fashion
that the targeted data collecting places use the same syntax,
the reuse should be very straightforward. Obviously, this sets
a strict limitation to the reuse. On a more general level,
the approach is depended on an available AOP library for
the specific target application’s programming language. If
the language changes between the sources, i.e. the target
applications, the reuse becomes much more difficult. This
approach suits particularly well cases which need the same
kind of system wide monitoring as the tool instrumentation’s
ideal case, but which at the same time require more flexibility
from the collecting. An available AOP library for the case’s
programming language is obviously a critical limitation.

D. Alternative Implementation of a UI Library

An alternative implementation of a user-interface (UI) li-
brary can be set to automatically collect usage data. Because
the user interaction is usually implemented with standard
UI libraries, their components can be altered so that they
include the collection of usage data within them. Similarly to
automatic instrumentation, this approach frees the developers
from the repetitive implementation efforts. Correspondingly,
the issues are similar as well – data is easily collected also
from unnecessary sources causing extra performance overhead
and difficulties to the analysis phase. Although usage data is
mainly linked to the UI and the types of data a UI library
includes, some targets need integration with data types that
are beyond the reach from these altered UI libraries.

On a more positive note, the approach has no limitations
to the security or timeliness, and the configurability can be
increased much like in the manual approach. As a matter of
fact, this can be even easier if a differently altered UI library
is deployed according to each requirements of a new case.
The reuse of the implementations with this approach can be

TABLE I
SUMMARY OF THE TECHNOLOGICAL APPROACH EVALUATIONS.

Technologies
Criteria Man.ins. Tool ins. AOP UI E.E.

Timeliness + - + + -
Targets + - + - -
Effort - + + + +

Overhead + - + - -
Sources + - - - -
Config. + - + + -
Security + - + + -
Reuse - + - - +

extremely easy, but new versions of the standard UI libraries
create great issues as well.

E. Execution Environment

The data collection can also be done by the environment
without any modification to the application. For languages like
Java and JavaScript the virtual machine is an execution envi-
ronment where method and function calls can be monitored
by instrumenting critical places. One example of such systems
is Patina [13] where the user input like cursor movements and
key-presses are monitored. In these approaches, the implemen-
tation effort is often low, but the produced data requires a
lot of post processing and there may significant performance
penalties since it will reduce possibilities for advanced just-
in-time compilation.

This approach often has a limited set sources and targets,
but within that limited scope reuse is good. Similar to the
automatic instrumentation tools, the configurability, security,
and timeliness of the approach are intertwined heavily with
the specific implementation, i.e. tool, that is implemented.

V. SELECTION FRAMEWORK FOR AUTOMATED USAGE
DATA COLLECTING TECHNOLOGIES

We have summarized the evaluations of the technological
approaches into the basis of the selection framework, i.e. Table
I, giving each approach either a plus if it has a positive impact
or if it does not restrict the implementation. An approach is
marked with a minus sign if it limits the selection or the use
of a data collecting implementation according to each criteria.

The first thing to do when selecting a technological ap-
proach to usage data collecting, is to rapidly explore the
case to get a grasp of the most critical limitations to the
technological approaches. These include things such as the
size of the code base, availability of automated tools and AOP
libraries for the target application’s language and platform, and
access to the UI libraries and execution environments.

If any critical limitations are faced, the next step is to reject
the unsuitable approaches accordingly. For example, if there
are many security issues related to the data being collected or
if data needs to be sent in real-time, the 3rd party tools used in
approaches B and E might have critical limitations that cannot
be avoided.

The following step is to prioritize the evaluation criteria.
In addition to the explored case information, one should find



Fig. 2. Selection Framework for Technological Approaches.

out the goals different stakeholders have for the usage data
collecting as these can have a major impact on the approach
selection. If the goals are clearly stated, and the aim is e.g. to
simply find out which of two buttons is used the most, manual
instrumentation can work sufficiently. However, if the goal is
stated anything like ”to get an overall view of how the system
is used” or if the goal is not stated at all, the more automated
and more configurable approaches most likely become more
appealing. Therefore, one of the most crucial things to find
out in this step is to understand what different stakeholders
want to accomplish with the collected data.

After this, the final step is to evaluate the remaining
approaches. The plus and minus signs used in Table I work
as guidelines in this, but their emphasis obviously varies on a
case to case basis. To summarize, the selection framework is
illustrated in Figure 2.

The further evaluation of how the selection framework
performs is clear choice for future work. The setting with the
case company is interesting for them, but it is attractive also
academically as it provides an environment to study the ”full-
stack” that will be needed for the whole data-driven software
development process in the end.

VI. CONCLUSIONS

In this paper, the main research problem was how to select
the right technological approach for automated collecting
of usage data. Literature reviews were performed to gain
understanding of the context of the collecting processes and
its challenges. These helped us form evaluation criteria for
the technological approaches. We then described different ap-
proaches and evaluated them with the aforementioned criteria,
which were then refined into the selection framework.

To summarize, the main contributions of this paper included
literature reviews of the data-driven software development
and of the challenges of collecting usage data, forming the
evaluation criteria based on the studied challenges, descrip-
tion and evaluation of different technological approaches,
and designing the selection framework for the technological
approaches. The selecting of data collecting technologies is not

a straightforward challenge but it needs to be addressed each
time an organization wants to start the data-driven software
development. Obviously, various contemporary tool evalua-
tions are available both in academic literature and especially
in practitioner publications, e.g. blogs. However, the abstract
perspective of this study to the technological approaches rather
than today’s tools should be valuable also in the long run.

Finally, the criteria described in this paper gives practi-
tioners a good basis for the evaluation, but it works only as
a guideline and case specific variations account heavily on
the actual decisions. However, it provides them with a well-
considered starting point in their journey towards ever more
data-driven decision making.

ACKNOWLEDGMENT

This work is supported by Tekes (http://www.tekes.fi/) and
Digile’s Need for Speed program (http://www.n4s.fi/en/).

REFERENCES

[1] E. Ries, The lean startup: How today’s entrepreneurs use continuous
innovation to create radically successful businesses. Crown Books,
2011.

[2] H. H. Olsson, H. Alahyari, and J. Bosch, “Climbing the” stairway
to heaven”–a mulitiple-case study exploring barriers in the transition
from agile development towards continuous deployment of software,”
in Software Engineering and Advanced Applications (SEAA), 2012 38th
EUROMICRO Conference on. IEEE, 2012, pp. 392–399.

[3] H. H. Olsson and J. Bosch, “From opinions to data-driven software
r&d: A multi-case study on how to close the ’open loop’ problem,” in
Software Engineering and Advanced Applications (SEAA), 2014 40th
EUROMICRO Conference on. IEEE, 2014, pp. 9–16.

[4] R. P. Buse and T. Zimmermann, “Information needs for software devel-
opment analytics,” in Proceedings of the 34th international conference
on software engineering. IEEE Press, 2012, pp. 987–996.

[5] A. Fabijan, H. H. Olsson, and J. Bosch, “Customer feedback and data
collection techniques in software r&d: a literature review,” in Software
Business. Springer, 2015, pp. 139–153.

[6] T. Sauvola, L. E. Lwakatare, T. Karvonen, P. Kuvaja, H. H. Olsson,
J. Bosch, and M. Oivo, “Towards customer-centric software develop-
ment: A multiple-case study,” in Software Engineering and Advanced
Applications (SEAA), 2015 41st Euromicro Conference on. IEEE, 2015,
pp. 9–17.

[7] P. K. Chittimalli and V. Shah, “GEMS: A Generic Model Based
Source Code Instrumentation Framework,” in Proceedings of the Fifth
IEEE International Conference on Software Testing, Verification and
Validation. IEEE Computer Society, 2012, pp. 909–914.

[8] J. Ehlers and W. Hasselbring, “A self-adaptive monitoring framework for
component-based software systems,” in Software Architecture. Springer,
2011, pp. 278–286.

[9] W. Chen, A. Wassyng, and T. Maibaum, “Combining static and dynamic
impact analysis for large-scale enterprise systems,” in Product-Focused
Software Process Improvement. Springer, 2014, pp. 224–238.

[10] A. Chawla and A. Orso, “A generic instrumentation framework
for collecting dynamic information,” SIGSOFT Softw. Eng. Notes,
vol. 29, no. 5, pp. 1–4, Sep. 2004. [Online]. Available:
http://doi.acm.org/10.1145/1022494.1022533

[11] S. Suonsyrjä and T. Mikkonen, “Designing an unobtrusive analytics
framework for monitoring java applications,” in Software Measurement.
Springer, 2015, pp. 160–175.

[12] M. Vierhauser, R. Rabiser, P. Grünbacher, K. Seyerlehner, S. Wallner,
and H. Zeisel, “Reminds: A flexible runtime monitoring framework for
systems of systems,” Journal of Systems and Software, vol. 112, pp.
123–136, 2016.

[13] J. Matejka, T. Grossman, and G. Fitzmaurice, “Patina: Dynamic
heatmaps for visualizing application usage,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, ser.
CHI ’13. New York, NY, USA: ACM, 2013, pp. 3227–3236. [Online].
Available: http://doi.acm.org/10.1145/2470654.2466442


