
Towards a Systematic Approach to Graph Data
Modeling: Scenario-based Design and Experiences

Mengjia ZHAO∗, Yan LIU†, Peng ZHOU‡
School of Software Engineering, Tongji University

Shanghai, China
Email: ∗1434319@tongji.edu.cn, †yanliu.sse@tongji.edu.cn, ‡1435855@tongji.edu.cn

Abstract—Graph database is recently being adopted by data
analytic systems as an appealing alternative to relational database
for the management of large-scale inherent graph-like data.
A great challenge of leveraging graph database technologies
is to model a problem domain into graph. However, in the
absence of considering application requirements or goals, current
graph data modeling approaches seem to be invalid. This paper
presents an exploration of a systematic approach for graph data
modeling—SuMo. Starting from real world scenarios, require-
ments are transformed into a domain model, which acts as
an intermediate model in SuMo, captures modeling features of
that domain. SuMo defines a set of rules for the subsequent
transformation of this domain model to produce a graph model.
We applied SuMo to the modeling of a data-intensive analytic
system using real datasets as an illustrating example to clarify
our main idea. SuMo is empirically evaluated in terms of
query performance, the experimental results indicate promising
feasibility and efficiency. The major contribution of our work is
a preliminary graph data modeling approach based on scenarios.

Keywords-graph data modeling; data analytic system; scenario-
based modeling; model-driven design

I. INTRODUCTION

Graph database has recently gained popularity rapidly be-
cause of a need to effectively manage large-scale inherent
graph-like data [1]. Social network, biology, semantic web and
health-care are typical application domains that contain such
kind of data [2][3][4]. It has been observed that graph database
is usually preferable to relational database in managing data
of these domains since the latter hardly captures the inherent
graph structure [5]. Motivated by scalability and performance
needs of current applications, graph database is increasingly
adopted by data analytic systems.

The analysis of relationships becomes important when deal-
ing with highly connected data. A graph consists of a finite
set of nodes, and a finite set of edges defining relationships
between these nodes. In graph database, data is stored as graph
and is accessed by queries as graph traversal operations. Com-
pared with the stores of relational database, relationships are
treated as first-class citizens in graph database [6], expressed
in a more straightforward way. Moreover, queries involving
complex and inefficient join operations are transformed into
graph traversals. The execution time of graph traversal is
proportional only to the size of traversed part [6].

DOI reference number: 10.18293/SEKE2016-119

Graph data modeling is the process in which an arbitrary
application domain described as a connected graph of nodes
and edges, it is not a context-free process, but a purposive
abstraction related with application requirements. As it hap-
pens with relational database, the design of relational model
can start from ER model, such kind of “springboard” is also
conducive to the design of graph model.

Guidelines and principles on graph data modeling can be
found from various sources, including books, technical reports,
graph database online community and practitioners’ blogs.
There has also been an involvement of academic papers in the
study of graph data modeling, many works focus on converting
existing data from relational to graph model automatically; a
number of researchers aim at generic graph data modeling ap-
proaches. However, most of these works, simply demonstrated
some rudimentary strategies of graph data modeling, rather
than connecting to practical application requirements. As a
result, practitioners can only find some scattered modeling
guidelines.

Currently, graph data modeling is still based on best prac-
tices and probably unproved guidelines, which are usually
relevant to specific systems [5]. This paper aims to propose
a systematic graph data modeling approach at a “proof of
concept” stage. The primary challenge that come is, how to
analyze requirements of application domain to support graph
data modeling? Translating these requirements to produce a
model brings more challenges.

In this paper, we are exploring a systematic graph data
modeling approach, using scenarios to start out the modeling
process. We suggest an adapted domain modeling approach
with strategies to abstract key concepts from scenarios. A set
of rules are defined for the transformation of domain model
to graph model. Our aim is to match application requirements
and facilitate the design of graph-based analytic systems. We
also provide experiments, in terms of query performance,
showing the advantages of our approach with respect to a naı̈ve
approach. The main contribution of this paper is a sketch of
a systematic graph data modeling approach.

The rest of this paper is organized as follows, Section II
presents related work. The proposed approach is presented in
Section III. A case study is demonstrated in Section IV. We
design and conduct a group of experiments to evaluate our
approach, as well as discuss the results in Section V. The
conclusion and future works are in Section VI.



II. RELATED WORK

Graph database practitioners and enthusiasts have built
graph data models in their respective domains [7]. After
familiarization of the application domain, they create a basic
skeleton of graph model directly and intuitively. Generally,
these models need further refinements. Many best practices
have emerged in domains of real-time recommendations, fraud
detection, social network, etc [8]. Guidelines for graph data
modeling can be concluded from these use cases. However, a
systematic solution can not be generalized or summarized.

Relational database has been around for many decades and
is the choice for most traditional data-intensive storage and re-
trieval systems. To meet new demands of current applications,
a lot of existing systems choose to migrate data layer from
relational database to a graph-based storage system. In [9], a
methodology was proposed to convert a relational model to a
graph model by exploiting the schema and constraints. [10]
and [11] focus on mapping relational to graph model without
semantically loss, use Primary Keys and Foreign Keys to create
edges between nodes.

A number of researchers have tried to propose generic graph
data modeling approaches. In [5], a model-driven methodology
was proposed for the design of graph database. It starts from
Entity-Relationship (ER) model, translates this conceptual
model into graph model following a specific strategy, aims to
minimize the number of needed access operations in retrieving
data. In our opinion, some purposeful works, like identifying
application goals or requirements, are not involved in [5].

Related work so far can not fully support the modeling
process of an arbitrary graph-based analytic system from
the very start. Our approach tends to concern more about
requirements. We will present our work in the following
sections to explore a systematic, requirement driven approach
for graph data modeling.

III. SUMO: A SCENARIO-BASED APPROACH FOR GRAPH
DATA MODELING

We name our approach “SuMo” referring to graph data
modeling using scenarios. Fig. 1 presents an overview of
SuMo. The modeling processes can be organized in the
following two phases:

A. Phase 1: Scenario-based domain modeling

The main difference between what we do in this phase
and general domain modeling is that, we are “graph-oriented”.
That is to say, every activity we do is purposeful, we set up a
graph in mind at the beginning stage. Discover and Invention,
which are used often in OOD, will abstract domain concepts or
attributes at early stage. Specifically, constraints derived from
scenarios will check the domain entities and their relationships.
In the refinement of domain concepts, Integration and Split-off,
together with the former two strategies might be used.

1) Discovery: Discovery is a basic strategy to recognize the
abstractions used by domain experts. If the scenarios mention
it a lot, the abstraction is usually important.

Figure 1. An overview of SuMo

2) Invention: Through invention, we create artifacts (new
concepts or attributes) that are useful for the application
domain. One of the cases is when dealing with the so-called
“n-ary” relationships.

3) Integration: Remember, domain modeling is directed
against graph database applications. Integration is used to
merge those less important concepts into related ones.

4) Split-off: In contrast, some concepts, which are usually
treated as attributes in general domain modeling, might be
important “indexes” of that domain. According to scenarios
and constraints, we will split off those important attributes to
become new entities.

Besides, we add a specific activity in the adapted do-
main modeling: using operations to identify inter-relationships
within a domain entity. These operations define the relation-
ships between each object of a conceptual class, which is
important to graph model since each node in graph is an object
not a class. By ensuring the correctness of the domain model
we are implicitly improving the graph data model.

B. Phase 2: Model transformation

In this phase, domain entities, attributes, connections and
operations are mapped into different elements of graph model
accordingly. We set up the following rules:

1) Creating nodes by domain classes: Each object of a
domain class will be transformed into a node, attributes of
this object will be properties of the corresponding node. Fig.
2 presents an example of creating nodes by domain classes.

2) Extending nodes by generalization: Generalization indi-
cates that the subclass is considered to be a specialized form of
its superclass. Corresponding node of subclass will be tagged
with the type of superclass, the properties of this node will be
extended accordingly. Fig. 2 presents an example of extending
nodes by generalization.



Person

id
name

Teacher

title

Student

GPA

Figure 2. An example of creating and extending nodes

3) Generating edges by associations: An association is a
relationship of two (or more) domain classes that describes
links between their object instances. Aggregation and compo-
sition are specialized forms of association. We will name the
relationship semantically in the transformation of aggregation
and composition. Importantly, multiplicity of associations will
be retained in graph model. Fig. 3 presents an example of
generating edges by associations.

4) Appending edges by operations: Operations in SuMo is
used to describe relationships between objects of a domain
class, will be transformed into edges connecting same type of
nodes. These edges help to build a strongly connected graph,
reduce the length of paths between same type of nodes and
the number of access operations when walking in these nodes.
Fig. 4 presents an example of appending edges by operations.

IV. CASE STUDY

We applied SuMo to the modeling of a Criminal Network
Analysis (CNA) system. In this section, we choose a scenario
of “route tracking” as an example. The primary goal of “route
tracking” is to support detecting criminal organizations. We
will present how SuMo is used to generate a graph model.

A. Phase 1: Scenario-based domain modeling

The original scenario of “route tracking” is adapted to the
following one for the reason of confidentiality, all the critical
information for modeling is retained.

Figure 3. An example of generating edges by associations

Chapter

chapter_num

getNextChapter

Figure 4. An example of appending edges by operations

Peter and his team are users of our system, they are tracking
one of the suspicious people whose name is Bob. In order to
find out other people in Bob’s criminal organization, Peter
tracks Bob’s travel route or multi-step route. Based on working
experience, Peter supposes that Bob’s fellows in crime mainly
lie in those people who take same flight/train or have same
route with Bob on the same day or within a few days.

Based on the above scenario, we collected the following
constraints that should be considered in domain modeling:

• Traveling by flight or by train are homologous.
• One city may have several airports and railway stations,

but travel route only concerns about the city.
• Multi-step route indicates that, the departure city of

PersonA’s next travel is the destination city of his or her
last travel, such as “city1-city2, city2-city3”.

• Date is an important index in route tracking.
To demonstrate the abstraction of domain concepts, let’s

follow two activities (marked by ? and ]) in Fig. 1, details of
capturing domain concepts using modeling strategies proposed
in Section III-A are presented in Table I. The domain model
we generated is as Fig. 5 shows. We identified two operations
of Travel: getNextTravel searches the next travel this
person took, getNextTrace seeks the next travel of this
person satisfies that: the departure city of one’s next travel is
the destination city of his or her last travel.

B. Phase 2: Model transformation

Based on the domain model in Fig. 5, we use the rules
defined in Section III-B to generate our graph model, we
call it S-Model for short. Fig. 6 illustrates an instance of
S-Model. Some properties of node Day are omitted due to
the limited space. Every person will have a travel chain
in chronological order, multi-step routes are expressed in a
certain graph pattern.

TABLE I. Demonstration of how to abstract domain concepts
Activity Domain concepts/attributes Strategy used

Marked by ?

Person Discovery
Flight Discovery
Train Discovery
Flight_Travel Invention
Train_Travel Invention

Marked by ]

departure_city Invention (integrate into Flight_Travel, Train_Travel)
destination_city Invention (integrate into Flight_Travel, Train_Travel)
travel_route Invention (integrate into Flight_Travel, Train_Travel)
Travel Invention
Day Split-off

FlightTravel

flight_num

Travel

travel_date
travel_route
departure_city
destination_city

getNextTravel
getNextTrace

1 0..* 1

Day

date
year
month
day

getNextDay

has_travel travel_date
Person

pid
name

TrainTravel

train_num

0..*

Figure 5. Domain model of route tracking



Figure 6. An instance of S-Model

For comparison, we build another graph model (N-Model)
following a naı̈ve approach (tuples are mapped to nodes
and Foreign Keys are to edges) commonly used in mapping
relational model to graph model.

V. EVALUATION AND RESULTS

We now present the experiments to evaluate SuMo in terms
of query performance comparing with the naı̈ve approach.
All the experiments were executed in a machine with an
Intel Core i5 processor, 2.8 GHz and 8 Gigabytes of RAM
memory. We used Neo4j Community Edition 2.3.0 and set
JVM heap to 4096K. All the queries are written in Cypher,
a declarative graph query language provided by Neo4j. The
datasets illustrated in Section IV were used to conduct our
experiments, for the reason of confidentiality, part of the real
data were allowed to be used (427,127 travel records).

Based on the scenario described in Section IV, we grouped
7 query sets including 4 simple query sets (set1-set4) and 3
rather complex query sets (set5-set7). Each set has 5 different
queries that are homogeneous with respect to function and
complexity. We chose input randomly, executed each query in
all sets 10 times, measured the average execution time.

A. Simple queries

Fig. 7 presents the performance of simple queries (set1-
set4). The S-Model performs consistently better than the N-
Model for all of the queries, significantly outperforming in
set3 and set4 that concern about travel_route. This is
due to S-Model scans less subgraphs than the N-Model which
spends more time in mapping airports or train stations to cities.

B. Complex queries

Considering complex queries (set5-set7), we found they can
hardly be achieved only by Cypher in N-Model because these

0

50

100

150

Q1 Q2 Q3 Q4 Q5

ex
ec
ut
io
n
tim

e
(m

s)

Query set1 S-Model

N-Model

0
20
40
60
80

100
120

Q6 Q7 Q8 Q9 Q10

ex
ec
ut
io
n	
tim

e
(m

s)

Query set2

0
500

1000
1500
2000
2500
3000

Q11 Q12 Q13 Q14 Q15

ex
ec
ut
io
n	
tim

e
(m

s)

Query set3

0

2000

4000

6000

8000

10000

Q16 Q17 Q18 Q19 Q20

ex
ec
ut
io
n	
tim

e
(m

s)

Query set4

Figure 7. Performance of simple queries

0

500

1000

1500

2000

2500

3000

3500

Q 21 Q22 Q23 Q24 Q25

ex
ec

ut
io

n 
tim

e
(m

s)

Query set5

0

50

100

150

200

250

300

Q26 Q27 Q28 Q29 Q30

ex
ec

ut
io

n 
tim

e
(m

s)

Query set6 Min Outlier

Max Outlier

0

100

200

300

400

500

600

Q31 Q32 Q33 Q34 Q35

ex
ec

ut
io

n 
tim

e
(m

s)

Query set7 

Figure 8. Performance of set5-set7 in S-Model

queries seek multi-step routes. Generally, we need some off-
line processing to get them done in relational model. N-Model
is directly mapped from relational model, the difficulty in
dealing with these rather complex queries is similar. In S-
Model, these queries can be accomplished in normal graph
traversals. The performance of set5-set7 is shown in Fig. 8.
The outliers fall in an acceptable range.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented an exploration of a system-
atic graph data modeling approach based on scenarios. Our
preliminary approach contains an adapted modeling phase
involving specific strategies for capturing domain concepts.
Rules for converting domain model to graph model are defined
in the phase of model transformation. The experimental results
obtained are promising regarding SuMo’s potential to be
used in real development. In future work, we will consider
generating properties of edges in the model transformation
phase. We also intend to refine the domain modeling phase by
providing templates of scenarios.

REFERENCES

[1] R. Angles, “A comparison of current graph database models,” in
Proceedings of the 2012 IEEE 28th International Conference on Data
Engineering Workshops. IEEE Computer Society, 2012, pp. 171–177.

[2] C. Cattuto, M. Quaggiotto, A. Panisson, and A. Averbuch, “Time-
varying social networks in a graph database: a neo4j use case,” in First
International Workshop on Graph Data Management Experiences and
Systems. ACM, 2013, p. 11.

[3] A. Gonzalez-Beltran, E. Maguire, P. Georgiou, S.-A. Sansone,
and P. Rocca-Serra, “Bio-graphiin: a graph-based, integrative and
semantically-enabled repository for life science experimental data,”
EMBnet. journal, vol. 19, no. B, pp. pp–46, 2013.

[4] Y. Park, M. Shankar, B.-H. Park, and J. Ghosh, “Graph databases for
large-scale healthcare systems: A framework for efficient data manage-
ment and data services,” in 2014 IEEE 30th International Conference
on Data Engineering Workshops (ICDEW). IEEE, 2014, pp. 12–19.

[5] R. De Virgilio, A. Maccioni, and R. Torlone, “Model-driven design of
graph databases,” Conceptual Modeling, pp. 172–185, 2014.

[6] I. Robinson, J. Webber, and E. Eifrem, “Graph databases,” 2013.
[7] “Neo4j GraphGist,” https://github.com/neo4j-contrib/graphgist/wiki, ac-

cessed: Nov. 21, 2015.
[8] “Neo4j Top 7 Use Cases,” http://neo4j.com/use-cases/, accessed: Jan. 5,

2016.
[9] R. De Virgilio, A. Maccioni, and R. Torlone, “Converting relational

to graph databases,” in First International Workshop on Graph Data
Management Experiences and Systems. ACM, 2013, p. 1.

[10] D. W. Wardani and J. Kiing, “Semantic mapping relational to graph
model,” in 2014 International Conference on Computer, Control, Infor-
matics and Its Applications (IC3INA). IEEE, 2014, pp. 160–165.

[11] D. W. Wardani and J. Kung, “Semantic mapping relational to a directed
property hypergraph model,” in 2015 IEEE International Conference
on Computer and Information Technology; Ubiquitous Computing and
Communications; Dependable, Autonomic and Secure Computing; Per-
vasive Intelligence and Computing (CIT/IUCC/DASC/PICOM). IEEE,
2015, pp. 152–159.


