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Abstract – Security has become an essential and critical non-
functional requirement of modern software systems, 
especially cyber physical systems. Security patterns aim at 
capturing security expertise in the worked solutions to 
recurring security design problems. This paper presents an 
approach to formally model and analyze six security patterns 
to detect potential incompleteness, inconsistency, and 
ambiguity in the textual descriptions; and to prevent their 
incorrect implementation. These patterns are modeled using 
high level Petri nets in our tool environment PIPE+. 
Simulation is used to analyze various security relevant 
properties. The validated formal models of individual 
security patterns serve as the building blocks for system 
design involving the composition of multiple security 
patterns. 
 
Keywords – security patterns, formal modeling, high level 
Petri nets, validation, simulation 

I. Introduction 

Security has become an essential and critical non-functional 
requirement of modern software systems, especially cyber 
physical systems. However software developers often lack a 
deep understanding of system security issues and their proper 
solutions. Security patterns, evolved from general software 
design patterns, aim at capturing security expertise in the 
worked solutions to recurring security design problems. In 
the past decade, many security patterns and their description 
methods were proposed [1]. A comprehensive repository 
containing 26 (13 structural and 13 procedural) security 
patterns with 3 mini patterns was compiled in [2]. This 
repository collects some best known security patterns and 
provides an excellent starting point for developing secure 
software systems. The structural patterns contain 
descriptions of the structure and interactions of security 
assurance mechanisms, while the procedural patterns provide 
general guidelines for developing secure systems. Thus our 
focus is on structural patterns. Each structural pattern has a 
textual description with some graphical illustration to aid 
understanding. However none of the structural security 
patterns is formally modeled and analyzed since the majority 
of these structural patterns only contain generic descriptions 

of general guidelines and thus are not suitable for precise 
definitions. However some pattern descriptions contain 
enough details for formal modeling. This paper presents an 
approach to formally model and analyze six of the above 
security patterns to detect potential incompleteness, 
inconsistency, and ambiguity in the text descriptions; and as 
a result to prevent their incorrect implementation. The 
validated formal models of individual security patterns serve 
as the building blocks for system design involving the 
composition of multiple security patterns.  

II. Related Work 

Despite many proposed security patterns and their 
descriptions in the past decade, very few work addressed the 
formal modeling and analysis of security patterns.  

In [3], software design pattern template was adapted to 
describe 8 security patterns (1 creational, 2 behavioral, and 5 
structural). The security patterns were modeled using UML 
diagrams, which are translated into Promela programs using 
tool Hydra [4]. The security constraints defined in linear time 
temporal logic formulas are checked using SPIN. A process 
of using the tool chain was presented and demonstrated 
through a simple example on check point pattern.  While 
using UML diagrams can be helpful for implementation, they 
lack precise semantics and thus the analysis results based 
UML model translations may not be convincing. 
Furthermore, no detailed model checking result was given.  
In [5], a formal modeling approach for composing security 
patterns for web-based applications was proposed. This 
approach uses UML to model the security patterns and their 
composition and then transforms the UML model to Alloy (a 
formal specification language based on first order logic) 
formal specification for security property analysis. A case 
study of an on-line banking system was given, which 
involves five software security patterns: single sign on, check 
point, authenticator, policy, and secure proxy. No details of 
transforming a UML model to Alloy specification were given 
except some generic mappings. In [6], an approach of 
translating UML sequence diagrams to process algebra CCS 
was given. Two case studies were given, one involving the 
composition of secure pipe, authentication enforcer, and 
observer patterns and the other involving web security 
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pattern with third party brokered authentication. The 
behaviors of these compositions were first given in sequence 
diagrams, which were manually translated into CCS 
expressions. These CCS expressions serve as the behavior 
models. Various properties are defined using GCTL, which 
are model checked against CCS expressions using model 
checker CWB-NC.  Unfortunately, the CCS expressions only 
capture the message names and control flows without 
considering the data processing and data flow; thus do not 
accurately reflect the complexity of real applications.  

The above works only focus on the composition of security 
patterns while ignore the internal processing of individual 
security patterns. Our work focus on creating formal models 
from the textual descriptions of the internal processing of 
individual security patterns, and can be easily adapted to 
generate formal models from sequence diagrams 
representing security pattern composition. 

III. Modeling Security Patterns 

A. High Level Petri Nets 

A high level Petri net [7] has a net structure N = (P, T, F), 
which is a finite bipartite graph consisting of two kinds of 
nodes P ∪ T, and the set of directed edges F ⊆ P ×T ∪ T × 
P. P is called the set of places, which are visually represented 
by circles; and T is called the set of transitions, which are 
visually represented by bars or boxes. The net structure (P, 
T, F) defines the syntax of a Petri net and models the control 
structure of a system. To define the static semantics, we need 
several semantic domains. First, we need a semantic domain 
of Types, which defines what are allowable tokens in each 
place. Elements of Types can be simple or composite, 
including Cartesian products and power set constructions. 
Second, we need a semantic domain Labels, which define 
permissible token flows. A label may contain variables to be 
instantiated under dynamic semantics.  Third, we need a 
semantic domain of Formulas, which define the pre-
conditions and post-conditions of transitions. A formula may 
contain variables to be instantiated under dynamic semantics. 
Finally, we need a semantic domain Tokens to define all valid 
tokens. The above semantic domains are defined in terms of 
an algebraic specification Spec = (S, Op, Eq) with a family of 
sorts (types) S, the corresponding operations Op, and a set of 
equations Eq defining the meaning of the operations. Based 
on the above semantic domains, we can define the following 
semantic mappings: 
(1) ϕ: P → Types associates each place p in P with a type in 

Types. In a HLPN net, places are often called predicates 
to highlight their roles as in predicate logic.  

(2) L: F → Labels is a sort-respecting labeling of arcs.  

(3) R: T → Formulas is a well-defined constraining 
mapping, which associates each transition t in T with a 
first order logic formula defining the meaning of the 
transition. Each formula R(t)  can be normalized into 
Pre-cond(t) ∧ Post-cond(t). Pre-cond(t) defines the 
selection criterion of incoming tokens and Post-cond(t) 
defines the tokens to be produced. 

(4) 𝑀𝑀0: P → Tokens is a sort-respecting initial marking. The 
initial marking assigns a multi-set of tokens to each place 
p in P. 

Thus a HLPN net is PN = (P, T, F, Spec,ϕ, L, R, 𝑀𝑀0) and its 
dynamic semantics is defined by all execution sequences 
𝑀𝑀0[𝑇𝑇1/𝛼𝛼1 > 𝑀𝑀1[𝑇𝑇2/𝛼𝛼2 > ⋯ 𝑀𝑀𝑛𝑛[𝑇𝑇𝑛𝑛+1/𝛼𝛼𝑛𝑛+1 > ⋯ , in which 
each Ti is an execution step consisting of a set of non-conflict 
firing transitions. We have developed a tool environment 
PIPE+ [8] to create and analyze HLPNs. Our analysis 
techniques include simulation, model checking (SPIN), 
bounded model checking (Z3), and term rewriting (Maude). 
The integrations with external tools currently only support 
basic functionalities and are being enhanced. The latest 
source code is available at https://bitbucket.org/ptnet/pipe.    

B. Security Patterns 

Structural patterns contain descriptions of the structure and 
interactions of security assurance mechanisms, and thus they 
are suitable for formal modeling and analysis. In this paper, 
six structural patterns [2] are modeled and analyzed, 
including account lockout, authenticated session, client data 
storage, encrypted storage, password authentication, and 
password propagation. Many of these patterns involve 
encryption and decryption, session identification, web 
resource, and timing constraints such as duration and time 
out. We can only simplify the most of the above entities 
during the modeling without considering actual encryption 
and decryption algorithms and session identifier generation. 
We model a simple clock mechanism to deal with timing 
constraints. Most of these patterns contain some brief 
procedural descriptions of user and system interactions 
complemented with illustrative diagrams. Often the 
descriptions are not complete and not precise, which are 
common problems with natural language descriptions. 
During the modeling process, we need to make hidden 
assumptions explicit such as the uniqueness of session and 
user identifications. Although each model can be built with 
our tool PIPE+ in a few hours after carefully studying the 
requirements descriptions, it often takes several iterations to 
get them right, i.e. they capture the requirements correctly to 
the best of our understanding. However, we have not 
obtained the approval of the security domain experts.  

https://bitbucket.org/ptnet/pipe
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Due to space limit, we only provide the detailed description 
of the authenticated session security pattern (the most 
complex pattern with a most complete procedural description 
among the six). The models of other patterns can be found at 
http://users.cis.fiu.edu/~hex/PIPE+.html. 

Authenticated Session Pattern 
An authenticated session allows a user to access multiple 
access-restricted pages on a website only authenticating once 
on the first page request. The process of authenticated session 
[2] contains the following steps: 
Scenario 1 – Page request without valid authentication 
(1) The client requests a protected page from the server, 

passing the session identifier; 
(2) The underlying session mechanism retrieves the session 

data and invokes the protected page object; 
(3) The protected page invokes the authentication 

checkpoint; 
(4) The authentication checkpoint determines that the 

authenticated identity field is empty or that the last 
access time exceeds the session timeout window; 

(5) The requested page URL and submitted data is stored in 
the session object as the page originally requested; 

(6) The authentication checkpoint redirects the client to the 
login screen. 

Login 
The following interactions occur in the login procedure: 
(1) The client requests the login page, submitting a 

username and password. The session identifier is passed 
as part of the request; 

(2) The underlying session mechanism retrieves the session 
data and invokes the login page object; 

(3) The login object validates the username and password; 
(4) If unsuccessful, the unsuccessful login page (“try 

again”) is returned to the user; 
(5) If successful, the identity provided is stored in the 

authenticated identity field, and the current time in the 
last access time; 

(6) The user is redirected to the page originally requested 
(stored in the session data). 

 
Scenario 2 – Page request with valid authentication 
The following interactions occur on a page request with valid 
authentication: 
(1) The client requests a protected page from the server, 

passing the session identifier; 
(2) The underlying session mechanism retrieves the session 

data and invokes the protected page object; 
(3) The protected page invokes the authentication 

checkpoint; 
(4) The authentication checkpoint validates the 

authenticated identity field in the session data and 

ensures that the last access time does not exceed the 
timeout period; 

(5) The authentication checkpoint stores the current time as 
the last access time; 

(6) The authentication checkpoint returns to the protected 
page object, which composes and delivers the requested 
page to the client. 

Logout 
The following interactions occur in the logout procedure: 
(1) The client requests the logout page from the server, 

passing the session identifier; 
(2) The underlying session mechanism retrieves the session 

data and invokes the logout object; 
(3) The logout object clears the authenticated user id field in 

the session; 
(4) The logout object returns a “logged out” notification 

page or redirects the browser to the home page. 
The above procedural descriptions are complemented with an 
illustrative diagram in Fig. 1:  

 
Fig.1 – The Authenticated Session Diagram 

 
HLPN Model of the Authenticated Session Pattern 
The HLPN model of the authenticated session pattern is 
shown in Fig. 2, where the type definitions of places and 
constraints of transitions are provided. For example, a web 
request is defined as consisting of a session id (Sid), and a 
web page number (Page#). The actual types of the above 
abstract entities are defined as integers. Since there can be 
multiple requests, a power set type is defined for place Wreq. 
Please note, an arc label connecting to a place of a power set 
type is represented as {x} to indicate the access of a single 
token. Likewise, a user account (Acct) is abstracted as a tuple 
containing a user name (Uid) and a password (Psw), both are 
defined as strings. 
 
The model captures the authentication mechanism with the 
assumption of the uniqueness of user name, which was 
implicitly assumed in the original pattern description. Page 
data are defined as strings and their actual uses are not 
modeled. In this model, system actions in the authentication 
process are modeled with transitions. Transition Retrieve 

http://users.cis.fiu.edu/%7Ehex/PIPE+.html
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captures the steps (1) and (2) in Scenarios 1 and 2. Transition 
Check1 models the steps (3) to (6) in Scenario 1. Transitions 
AuthF and AuthS define the login activities. Transition 
Check2 specifies the steps (3) to (6) in Scenario 2. Transition 
Timeout models step (4) in Scenarios 1 and 2. Transition 
Logout models the logout activities. Transition Inc is used to 
model the increment of clock. du is a constant denoting the 
duration for timeout from the last access. For example, the 
constraint of transition Check1 contains the precondition 
𝑜𝑜[2] = "𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛" or 𝑜𝑜[3] + 𝑑𝑑𝑑𝑑 > 𝑐𝑐 (the first time request or 
expired session).  
 

 
Fig.2 – HLPN model of Authenticated Session 

 
ϕ(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊) = ℘(𝑆𝑆𝑆𝑆𝑆𝑆 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃#), 
ϕ(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊) = ℘(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃# × 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷), 
ϕ(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) = ℘(𝑆𝑆𝑆𝑆𝑆𝑆 × 𝑈𝑈𝑈𝑈𝑈𝑈 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 × 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷), 
ϕ(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) = ℘(𝑆𝑆𝑆𝑆𝑆𝑆 × 𝑈𝑈𝑈𝑈𝑈𝑈 ×  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 × 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷), 
ϕ(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) = ℘(𝑈𝑈𝑈𝑈𝑈𝑈 × 𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑆𝑆𝑆𝑆𝑆𝑆), 
ϕ(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) = ℘(𝑈𝑈𝑈𝑈𝑈𝑈 × 𝑃𝑃𝑃𝑃𝑃𝑃), 
ϕ(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 
ϕ(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) = ℘(𝑆𝑆𝑆𝑆𝑆𝑆 × 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷), 
ϕ(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) =  𝑆𝑆𝑆𝑆𝑆𝑆, 
𝑅𝑅(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) = 𝑠𝑠[1] = 𝑥𝑥[1] ∧ 𝑤𝑤[1] = 𝑥𝑥[2] 
               ∧ 𝑜𝑜 = < 𝑠𝑠[1], 𝑠𝑠[2], 𝑠𝑠[3], 𝑤𝑤[2] > , 
𝑅𝑅(𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒1) = 𝑜𝑜[2] = "𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛" ∨  𝑜𝑜[3] + 𝑑𝑑𝑑𝑑 ≤ 𝑐𝑐  
𝑅𝑅(𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒2) = (𝑜𝑜[2]≠"𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛" ∧ o[3] + du >c)  
             ∧ s=<o[1],o[2], c, o[4]> ∧ 𝑦𝑦[1] = 𝑜𝑜[1]  
             ∧ 𝑦𝑦[2] = 𝑜𝑜[4], 
𝑅𝑅(𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐹𝐹) = 𝑥𝑥[3] = 𝑠𝑠[1 ]∧ ∄u∈A.(u[1]=x[1]∧u[2]=x[2]),   
           ∧ msg = “try again”, 
𝑅𝑅(𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑆𝑆) = 𝑥𝑥[1] = 𝑢𝑢[1]  ∧ 𝑥𝑥[2] = 𝑢𝑢[2] ∧  𝑥𝑥[3] = 𝑠𝑠1[1] 
            ∧ s1[4] ≠ "𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛"∧ 𝑠𝑠2 =< 𝑠𝑠1[1], 𝑥𝑥[1], 𝑐𝑐, 𝑠𝑠1[4] > 
            ∧ 𝑦𝑦[1] = 𝑠𝑠1[1]  ∧ 𝑦𝑦[2] = 𝑠𝑠1[4], 
𝑅𝑅(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) = s[3] + du ≤ c  
            ∧ P2=P1\{p|∀p∈P1.(p[1]=s[1])}, 
𝑅𝑅(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) =  𝑥𝑥[1] = 𝑠𝑠[1]  
            ∧ P2=P1\{p|∀p∈P1.(p[1]=s[1])}, 
𝑅𝑅(𝐼𝐼𝐼𝐼𝐼𝐼) =  𝑐𝑐2 = 𝑐𝑐1 + 10. 

IV. Analyzing Security Pattern Models 

Properties of security patterns are defined using first order 
linear time temporal logic (LTL) [9], which is an extension 
of classic first order logic with temporal operators.  
Predicates in LTL are places and transitions in HLPN. A LTL 
formula is evaluated under a HLPN model. It should be noted 
that only correctness properties of the security models are 
specified and analyzed in this paper. General security 
properties such as confidentiality, integrity, and availability 
are not directly studied in this paper, which cannot be 
specified using temporal logic [10]. 

A. Specifying Correctness Properties 

We have identified and specified three to four correctness 
properties for all six patterns. In this section, we show how 
to formulate various correctness related properties in the 
authenticated session pattern. We have identified the 
following properties: 
(a) The initial web access request to a protected resource 

must pass authentication. This property is a little tricky 
to specify. An initial web access implies a session object 
without an authenticated user identifier (empty field), 
thus the firing of transition Check1. Furthermore the 
actual access requires the firing of transition AuthS: 
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑖𝑖, "𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛",∗,∗)⇒◊ 𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒1(𝑖𝑖, "𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛",∗,∗, 𝑐𝑐), 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖, 𝑑𝑑)⇒⟐ 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑆𝑆(𝑖𝑖, 𝑢𝑢,∗, 𝑑𝑑, 𝑐𝑐), 
where ⟐ is a past temporal operator; 

(b) The successive web access requests to a protected 
resource within the current session must pass session 
data validation: 
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑖𝑖, 𝑢𝑢 , 𝑐𝑐,∗) ∧ 𝑐𝑐 + 𝑑𝑑𝑑𝑑 > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐⇒ 
             ◊𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒2(𝑖𝑖, 𝑢𝑢,∗,∗, 𝑐𝑐); 

(c) The authenticated session expires after a preset inactive 
time period: 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑢𝑢, 𝑡𝑡, 𝑑𝑑)∧ 𝑐𝑐 ≥ 𝑡𝑡 + 𝑑𝑑𝑑𝑑 ⇒ ◊¬𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑢𝑢, 𝑡𝑡, 𝑑𝑑) 

(d) Session data are cleared to prevent an attacker to revisit 
cached pages: 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑢𝑢, 𝑡𝑡, 𝑑𝑑)∧ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑖𝑖)⇒◊ ¬𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑢𝑢, 𝑡𝑡, 𝑑𝑑)       

In the above formulas 𝑖𝑖, 𝑢𝑢, 𝑐𝑐, 𝑑𝑑, 𝑡𝑡 are free variables, * denotes 
any legal value. 𝑑𝑑𝑑𝑑 is a constant. Most of the above 
properties are liveness properties. 

B. Analyzing Properties 

Liveness properties in general are very difficult to verify 
using model checking since they cannot be proved or refuted 
using finite execution sequences. Furthermore, all the models 
of the six patterns use power sets of tuples consisting of 
integers and strings, and some are clearly infinite state 
models, thus cannot be directly model checked without 
applying some abstraction techniques to simplify them. Since 
model checking is not applicable, we seek weaker assurance 
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through finding finite sequence witnesses through 
simulation. Thus we turn the verification of the above 
liveness properties into an easier reachability checking 
problem. One problem with reachability checking is that it 
depends on the given initial marking. Fortunately, our 
reachability checking does not depend on the specific values 
of the free variables appearing in the formulas as long as 
certain relationships between these variables are kept. This is 
similar to the idea of predicate abstraction in model checking, 
where a generic variable can be replaced with a Boolean 
variable as long as the correct relationship is maintained. As 
a result, we can use any randomly generated initial marking 
satisfying the variable relationships to ensure the validity of 
the reachability checking. It should be noted that the above 
properties have been validated but not verified. The simulator 
has shown that there is a transition firing sequence from an 
initial marking satisfying any of the above properties; but has 
not shown that every transition sequence satisfies the above 
properties. Even these weaker results can be extremely 
valuable in detecting incomplete and faulty requirements, 
and eliminating many design errors. 

Table 1 summarizes the size of the six models and the 
number of properties specified and validated.  

Table 1 – The Size Metrics of the Models 
 Place Transition Arc Property 
Account Lockout 6 6 22 4 
Auth. Session 9 8 38 4 
Client Data Storage 7 6 19 4 
Encrypted Storage 7 4 17 4 
Password Auth. 6 3 12 3 
Password Prop. 12 7 25 4 

 
Table 2 provides the validation results of properties of the 
authenticated session, which are representative for other 
patterns. The main parameter is the number of user accounts 
in the initial markings. The time (ms) is the mean of five runs 
due to the random firings of enabled transitions such that 
each run may yield a different running time. Property (a) 
depends heavily on the user account number and thus takes 
more time. The experiments are run on Intel® Core(TM) i7-
4770S CPU @ 3.10 GHz with 8 GB RAM. 

Table 2 – Validation Results 
 Token Time Token Time Token Time 

(a) 10 7 1000 255 10000 38749 
(b) 10 1 1000 115 10000 124 
(c) 10 3 1000 3 10000 3 
(d) 10 0 1000 0 10000 0 

V. Concluding Remarks 

In this paper, we applied high level Petri nets to formally 
model and analyze six well-known security patterns. 

Building a formal model from given textual descriptions is 
often quite difficult due to the incompleteness and ambiguity 
of such descriptions, and thus error prone. Identifying and 
correctly specifying relevant properties is another major 
challenge. Formally verifying whether a formal model 
satisfying the specified properties is very hard due to the 
complexity of the models that often results in state explosion 
problem. We have shown the usefulness of reachability 
analysis based on simulation as a supplemental validation 
technique. The validated security patterns form the basis for 
composing multiple security patterns as well as integrating 
security patterns with other system components. 
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