
DOI reference number: 10.18293/SEKE2016-010

Modeling and Analyzing Security Patterns Using High Level Petri Nets

Xudong He
School of Comp. and Inf. Sciences

Florida International University
Miami, FL 33199, USA

Yujian Fu
Department of EECS

Alabama A & M University
Normal, AL 35762, USA

Abstract – Security has become an essential and critical non-
functional requirement of modern software systems,
especially cyber physical systems. Security patterns aim at
capturing security expertise in the worked solutions to
recurring security design problems. This paper presents an
approach to formally model and analyze six security patterns
to detect potential incompleteness, inconsistency, and
ambiguity in the textual descriptions; and to prevent their
incorrect implementation. These patterns are modeled using
high level Petri nets in our tool environment PIPE+.
Simulation is used to analyze various security relevant
properties. The validated formal models of individual
security patterns serve as the building blocks for system
design involving the composition of multiple security
patterns.

Keywords – security patterns, formal modeling, high level
Petri nets, validation, simulation

I. Introduction

Security has become an essential and critical non-functional
requirement of modern software systems, especially cyber
physical systems. However software developers often lack a
deep understanding of system security issues and their proper
solutions. Security patterns, evolved from general software
design patterns, aim at capturing security expertise in the
worked solutions to recurring security design problems. In
the past decade, many security patterns and their description
methods were proposed [1]. A comprehensive repository
containing 26 (13 structural and 13 procedural) security
patterns with 3 mini patterns was compiled in [2]. This
repository collects some best known security patterns and
provides an excellent starting point for developing secure
software systems. The structural patterns contain
descriptions of the structure and interactions of security
assurance mechanisms, while the procedural patterns provide
general guidelines for developing secure systems. Thus our
focus is on structural patterns. Each structural pattern has a
textual description with some graphical illustration to aid
understanding. However none of the structural security
patterns is formally modeled and analyzed since the majority
of these structural patterns only contain generic descriptions

of general guidelines and thus are not suitable for precise
definitions. However some pattern descriptions contain
enough details for formal modeling. This paper presents an
approach to formally model and analyze six of the above
security patterns to detect potential incompleteness,
inconsistency, and ambiguity in the text descriptions; and as
a result to prevent their incorrect implementation. The
validated formal models of individual security patterns serve
as the building blocks for system design involving the
composition of multiple security patterns.

II. Related Work

Despite many proposed security patterns and their
descriptions in the past decade, very few work addressed the
formal modeling and analysis of security patterns.

In [3], software design pattern template was adapted to
describe 8 security patterns (1 creational, 2 behavioral, and 5
structural). The security patterns were modeled using UML
diagrams, which are translated into Promela programs using
tool Hydra [4]. The security constraints defined in linear time
temporal logic formulas are checked using SPIN. A process
of using the tool chain was presented and demonstrated
through a simple example on check point pattern. While
using UML diagrams can be helpful for implementation, they
lack precise semantics and thus the analysis results based
UML model translations may not be convincing.
Furthermore, no detailed model checking result was given.
In [5], a formal modeling approach for composing security
patterns for web-based applications was proposed. This
approach uses UML to model the security patterns and their
composition and then transforms the UML model to Alloy (a
formal specification language based on first order logic)
formal specification for security property analysis. A case
study of an on-line banking system was given, which
involves five software security patterns: single sign on, check
point, authenticator, policy, and secure proxy. No details of
transforming a UML model to Alloy specification were given
except some generic mappings. In [6], an approach of
translating UML sequence diagrams to process algebra CCS
was given. Two case studies were given, one involving the
composition of secure pipe, authentication enforcer, and
observer patterns and the other involving web security

2

pattern with third party brokered authentication. The
behaviors of these compositions were first given in sequence
diagrams, which were manually translated into CCS
expressions. These CCS expressions serve as the behavior
models. Various properties are defined using GCTL, which
are model checked against CCS expressions using model
checker CWB-NC. Unfortunately, the CCS expressions only
capture the message names and control flows without
considering the data processing and data flow; thus do not
accurately reflect the complexity of real applications.

The above works only focus on the composition of security
patterns while ignore the internal processing of individual
security patterns. Our work focus on creating formal models
from the textual descriptions of the internal processing of
individual security patterns, and can be easily adapted to
generate formal models from sequence diagrams
representing security pattern composition.

III. Modeling Security Patterns

A. High Level Petri Nets

A high level Petri net [7] has a net structure N = (P, T, F),
which is a finite bipartite graph consisting of two kinds of
nodes P ∪ T, and the set of directed edges F ⊆ P ×T ∪ T ×
P. P is called the set of places, which are visually represented
by circles; and T is called the set of transitions, which are
visually represented by bars or boxes. The net structure (P,
T, F) defines the syntax of a Petri net and models the control
structure of a system. To define the static semantics, we need
several semantic domains. First, we need a semantic domain
of Types, which defines what are allowable tokens in each
place. Elements of Types can be simple or composite,
including Cartesian products and power set constructions.
Second, we need a semantic domain Labels, which define
permissible token flows. A label may contain variables to be
instantiated under dynamic semantics. Third, we need a
semantic domain of Formulas, which define the pre-
conditions and post-conditions of transitions. A formula may
contain variables to be instantiated under dynamic semantics.
Finally, we need a semantic domain Tokens to define all valid
tokens. The above semantic domains are defined in terms of
an algebraic specification Spec = (S, Op, Eq) with a family of
sorts (types) S, the corresponding operations Op, and a set of
equations Eq defining the meaning of the operations. Based
on the above semantic domains, we can define the following
semantic mappings:
(1) ϕ: P → Types associates each place p in P with a type in

Types. In a HLPN net, places are often called predicates
to highlight their roles as in predicate logic.

(2) L: F → Labels is a sort-respecting labeling of arcs.

(3) R: T → Formulas is a well-defined constraining
mapping, which associates each transition t in T with a
first order logic formula defining the meaning of the
transition. Each formula R(t) can be normalized into
Pre-cond(t) ∧ Post-cond(t). Pre-cond(t) defines the
selection criterion of incoming tokens and Post-cond(t)
defines the tokens to be produced.

(4) 𝑀𝑀0: P → Tokens is a sort-respecting initial marking. The
initial marking assigns a multi-set of tokens to each place
p in P.

Thus a HLPN net is PN = (P, T, F, Spec,ϕ, L, R, 𝑀𝑀0) and its
dynamic semantics is defined by all execution sequences
𝑀𝑀0[𝑇𝑇1/𝛼𝛼1 > 𝑀𝑀1[𝑇𝑇2/𝛼𝛼2 > ⋯ 𝑀𝑀𝑛𝑛[𝑇𝑇𝑛𝑛+1/𝛼𝛼𝑛𝑛+1 > ⋯ , in which
each Ti is an execution step consisting of a set of non-conflict
firing transitions. We have developed a tool environment
PIPE+ [8] to create and analyze HLPNs. Our analysis
techniques include simulation, model checking (SPIN),
bounded model checking (Z3), and term rewriting (Maude).
The integrations with external tools currently only support
basic functionalities and are being enhanced. The latest
source code is available at https://bitbucket.org/ptnet/pipe.

B. Security Patterns

Structural patterns contain descriptions of the structure and
interactions of security assurance mechanisms, and thus they
are suitable for formal modeling and analysis. In this paper,
six structural patterns [2] are modeled and analyzed,
including account lockout, authenticated session, client data
storage, encrypted storage, password authentication, and
password propagation. Many of these patterns involve
encryption and decryption, session identification, web
resource, and timing constraints such as duration and time
out. We can only simplify the most of the above entities
during the modeling without considering actual encryption
and decryption algorithms and session identifier generation.
We model a simple clock mechanism to deal with timing
constraints. Most of these patterns contain some brief
procedural descriptions of user and system interactions
complemented with illustrative diagrams. Often the
descriptions are not complete and not precise, which are
common problems with natural language descriptions.
During the modeling process, we need to make hidden
assumptions explicit such as the uniqueness of session and
user identifications. Although each model can be built with
our tool PIPE+ in a few hours after carefully studying the
requirements descriptions, it often takes several iterations to
get them right, i.e. they capture the requirements correctly to
the best of our understanding. However, we have not
obtained the approval of the security domain experts.

https://bitbucket.org/ptnet/pipe

3

Due to space limit, we only provide the detailed description
of the authenticated session security pattern (the most
complex pattern with a most complete procedural description
among the six). The models of other patterns can be found at
http://users.cis.fiu.edu/~hex/PIPE+.html.

Authenticated Session Pattern
An authenticated session allows a user to access multiple
access-restricted pages on a website only authenticating once
on the first page request. The process of authenticated session
[2] contains the following steps:
Scenario 1 – Page request without valid authentication
(1) The client requests a protected page from the server,

passing the session identifier;
(2) The underlying session mechanism retrieves the session

data and invokes the protected page object;
(3) The protected page invokes the authentication

checkpoint;
(4) The authentication checkpoint determines that the

authenticated identity field is empty or that the last
access time exceeds the session timeout window;

(5) The requested page URL and submitted data is stored in
the session object as the page originally requested;

(6) The authentication checkpoint redirects the client to the
login screen.

Login
The following interactions occur in the login procedure:
(1) The client requests the login page, submitting a

username and password. The session identifier is passed
as part of the request;

(2) The underlying session mechanism retrieves the session
data and invokes the login page object;

(3) The login object validates the username and password;
(4) If unsuccessful, the unsuccessful login page (“try

again”) is returned to the user;
(5) If successful, the identity provided is stored in the

authenticated identity field, and the current time in the
last access time;

(6) The user is redirected to the page originally requested
(stored in the session data).

Scenario 2 – Page request with valid authentication
The following interactions occur on a page request with valid
authentication:
(1) The client requests a protected page from the server,

passing the session identifier;
(2) The underlying session mechanism retrieves the session

data and invokes the protected page object;
(3) The protected page invokes the authentication

checkpoint;
(4) The authentication checkpoint validates the

authenticated identity field in the session data and

ensures that the last access time does not exceed the
timeout period;

(5) The authentication checkpoint stores the current time as
the last access time;

(6) The authentication checkpoint returns to the protected
page object, which composes and delivers the requested
page to the client.

Logout
The following interactions occur in the logout procedure:
(1) The client requests the logout page from the server,

passing the session identifier;
(2) The underlying session mechanism retrieves the session

data and invokes the logout object;
(3) The logout object clears the authenticated user id field in

the session;
(4) The logout object returns a “logged out” notification

page or redirects the browser to the home page.
The above procedural descriptions are complemented with an
illustrative diagram in Fig. 1:

Fig.1 – The Authenticated Session Diagram

HLPN Model of the Authenticated Session Pattern
The HLPN model of the authenticated session pattern is
shown in Fig. 2, where the type definitions of places and
constraints of transitions are provided. For example, a web
request is defined as consisting of a session id (Sid), and a
web page number (Page#). The actual types of the above
abstract entities are defined as integers. Since there can be
multiple requests, a power set type is defined for place Wreq.
Please note, an arc label connecting to a place of a power set
type is represented as {x} to indicate the access of a single
token. Likewise, a user account (Acct) is abstracted as a tuple
containing a user name (Uid) and a password (Psw), both are
defined as strings.

The model captures the authentication mechanism with the
assumption of the uniqueness of user name, which was
implicitly assumed in the original pattern description. Page
data are defined as strings and their actual uses are not
modeled. In this model, system actions in the authentication
process are modeled with transitions. Transition Retrieve

http://users.cis.fiu.edu/%7Ehex/PIPE+.html

4

captures the steps (1) and (2) in Scenarios 1 and 2. Transition
Check1 models the steps (3) to (6) in Scenario 1. Transitions
AuthF and AuthS define the login activities. Transition
Check2 specifies the steps (3) to (6) in Scenario 2. Transition
Timeout models step (4) in Scenarios 1 and 2. Transition
Logout models the logout activities. Transition Inc is used to
model the increment of clock. du is a constant denoting the
duration for timeout from the last access. For example, the
constraint of transition Check1 contains the precondition
𝑜𝑜[2] = "𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛" or 𝑜𝑜[3] + 𝑑𝑑𝑑𝑑 > 𝑐𝑐 (the first time request or
expired session).

Fig.2 – HLPN model of Authenticated Session

ϕ(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊) = ℘(𝑆𝑆𝑆𝑆𝑆𝑆 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃#),
ϕ(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊) = ℘(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃# × 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷),
ϕ(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) = ℘(𝑆𝑆𝑆𝑆𝑆𝑆 × 𝑈𝑈𝑈𝑈𝑈𝑈 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 × 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷),
ϕ(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) = ℘(𝑆𝑆𝑆𝑆𝑆𝑆 × 𝑈𝑈𝑈𝑈𝑈𝑈 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 × 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷),
ϕ(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) = ℘(𝑈𝑈𝑈𝑈𝑈𝑈 × 𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑆𝑆𝑆𝑆𝑆𝑆),
ϕ(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) = ℘(𝑈𝑈𝑈𝑈𝑈𝑈 × 𝑃𝑃𝑃𝑃𝑃𝑃),
ϕ(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,
ϕ(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) = ℘(𝑆𝑆𝑆𝑆𝑆𝑆 × 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷),
ϕ(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) = 𝑆𝑆𝑆𝑆𝑆𝑆,
𝑅𝑅(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) = 𝑠𝑠[1] = 𝑥𝑥[1] ∧ 𝑤𝑤[1] = 𝑥𝑥[2]
 ∧ 𝑜𝑜 = < 𝑠𝑠[1], 𝑠𝑠[2], 𝑠𝑠[3], 𝑤𝑤[2] > ,
𝑅𝑅(𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒1) = 𝑜𝑜[2] = "𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛" ∨ 𝑜𝑜[3] + 𝑑𝑑𝑑𝑑 ≤ 𝑐𝑐
𝑅𝑅(𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒2) = (𝑜𝑜[2]≠"𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛" ∧ o[3] + du >c)
 ∧ s=<o[1],o[2], c, o[4]> ∧ 𝑦𝑦[1] = 𝑜𝑜[1]
 ∧ 𝑦𝑦[2] = 𝑜𝑜[4],
𝑅𝑅(𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝐹𝐹) = 𝑥𝑥[3] = 𝑠𝑠[1]∧ ∄u∈A.(u[1]=x[1]∧u[2]=x[2]),
 ∧ msg = “try again”,
𝑅𝑅(𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑆𝑆) = 𝑥𝑥[1] = 𝑢𝑢[1] ∧ 𝑥𝑥[2] = 𝑢𝑢[2] ∧ 𝑥𝑥[3] = 𝑠𝑠1[1]
 ∧ s1[4] ≠ "𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛"∧ 𝑠𝑠2 =< 𝑠𝑠1[1], 𝑥𝑥[1], 𝑐𝑐, 𝑠𝑠1[4] >
 ∧ 𝑦𝑦[1] = 𝑠𝑠1[1] ∧ 𝑦𝑦[2] = 𝑠𝑠1[4],
𝑅𝑅(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) = s[3] + du ≤ c
 ∧ P2=P1\{p|∀p∈P1.(p[1]=s[1])},
𝑅𝑅(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) = 𝑥𝑥[1] = 𝑠𝑠[1]
 ∧ P2=P1\{p|∀p∈P1.(p[1]=s[1])},
𝑅𝑅(𝐼𝐼𝐼𝐼𝐼𝐼) = 𝑐𝑐2 = 𝑐𝑐1 + 10.

IV. Analyzing Security Pattern Models

Properties of security patterns are defined using first order
linear time temporal logic (LTL) [9], which is an extension
of classic first order logic with temporal operators.
Predicates in LTL are places and transitions in HLPN. A LTL
formula is evaluated under a HLPN model. It should be noted
that only correctness properties of the security models are
specified and analyzed in this paper. General security
properties such as confidentiality, integrity, and availability
are not directly studied in this paper, which cannot be
specified using temporal logic [10].

A. Specifying Correctness Properties

We have identified and specified three to four correctness
properties for all six patterns. In this section, we show how
to formulate various correctness related properties in the
authenticated session pattern. We have identified the
following properties:
(a) The initial web access request to a protected resource

must pass authentication. This property is a little tricky
to specify. An initial web access implies a session object
without an authenticated user identifier (empty field),
thus the firing of transition Check1. Furthermore the
actual access requires the firing of transition AuthS:
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑖𝑖, "𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛",∗,∗)⇒◊ 𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒1(𝑖𝑖, "𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛",∗,∗, 𝑐𝑐),
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖, 𝑑𝑑)⇒⟐ 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑆𝑆(𝑖𝑖, 𝑢𝑢,∗, 𝑑𝑑, 𝑐𝑐),
where ⟐ is a past temporal operator;

(b) The successive web access requests to a protected
resource within the current session must pass session
data validation:
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑖𝑖, 𝑢𝑢 , 𝑐𝑐,∗) ∧ 𝑐𝑐 + 𝑑𝑑𝑑𝑑 > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐⇒
 ◊𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒2(𝑖𝑖, 𝑢𝑢,∗,∗, 𝑐𝑐);

(c) The authenticated session expires after a preset inactive
time period:
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑢𝑢, 𝑡𝑡, 𝑑𝑑)∧ 𝑐𝑐 ≥ 𝑡𝑡 + 𝑑𝑑𝑑𝑑 ⇒ ◊¬𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑢𝑢, 𝑡𝑡, 𝑑𝑑)

(d) Session data are cleared to prevent an attacker to revisit
cached pages:
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑢𝑢, 𝑡𝑡, 𝑑𝑑)∧ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑖𝑖)⇒◊ ¬𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑢𝑢, 𝑡𝑡, 𝑑𝑑)

In the above formulas 𝑖𝑖, 𝑢𝑢, 𝑐𝑐, 𝑑𝑑, 𝑡𝑡 are free variables, * denotes
any legal value. 𝑑𝑑𝑑𝑑 is a constant. Most of the above
properties are liveness properties.

B. Analyzing Properties

Liveness properties in general are very difficult to verify
using model checking since they cannot be proved or refuted
using finite execution sequences. Furthermore, all the models
of the six patterns use power sets of tuples consisting of
integers and strings, and some are clearly infinite state
models, thus cannot be directly model checked without
applying some abstraction techniques to simplify them. Since
model checking is not applicable, we seek weaker assurance

5

through finding finite sequence witnesses through
simulation. Thus we turn the verification of the above
liveness properties into an easier reachability checking
problem. One problem with reachability checking is that it
depends on the given initial marking. Fortunately, our
reachability checking does not depend on the specific values
of the free variables appearing in the formulas as long as
certain relationships between these variables are kept. This is
similar to the idea of predicate abstraction in model checking,
where a generic variable can be replaced with a Boolean
variable as long as the correct relationship is maintained. As
a result, we can use any randomly generated initial marking
satisfying the variable relationships to ensure the validity of
the reachability checking. It should be noted that the above
properties have been validated but not verified. The simulator
has shown that there is a transition firing sequence from an
initial marking satisfying any of the above properties; but has
not shown that every transition sequence satisfies the above
properties. Even these weaker results can be extremely
valuable in detecting incomplete and faulty requirements,
and eliminating many design errors.

Table 1 summarizes the size of the six models and the
number of properties specified and validated.

Table 1 – The Size Metrics of the Models
 Place Transition Arc Property
Account Lockout 6 6 22 4
Auth. Session 9 8 38 4
Client Data Storage 7 6 19 4
Encrypted Storage 7 4 17 4
Password Auth. 6 3 12 3
Password Prop. 12 7 25 4

Table 2 provides the validation results of properties of the
authenticated session, which are representative for other
patterns. The main parameter is the number of user accounts
in the initial markings. The time (ms) is the mean of five runs
due to the random firings of enabled transitions such that
each run may yield a different running time. Property (a)
depends heavily on the user account number and thus takes
more time. The experiments are run on Intel® Core(TM) i7-
4770S CPU @ 3.10 GHz with 8 GB RAM.

Table 2 – Validation Results
 Token Time Token Time Token Time

(a) 10 7 1000 255 10000 38749
(b) 10 1 1000 115 10000 124
(c) 10 3 1000 3 10000 3
(d) 10 0 1000 0 10000 0

V. Concluding Remarks

In this paper, we applied high level Petri nets to formally
model and analyze six well-known security patterns.

Building a formal model from given textual descriptions is
often quite difficult due to the incompleteness and ambiguity
of such descriptions, and thus error prone. Identifying and
correctly specifying relevant properties is another major
challenge. Formally verifying whether a formal model
satisfying the specified properties is very hard due to the
complexity of the models that often results in state explosion
problem. We have shown the usefulness of reachability
analysis based on simulation as a supplemental validation
technique. The validated security patterns form the basis for
composing multiple security patterns as well as integrating
security patterns with other system components.

Acknowledgements

This work was partially supported by the NSF under grant
HRD-0833093 and by the AFRL under agreement number
FA8750-15-2-0106. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.

References

[1] N. Yoshioka, H. Washizaki, and K. Maruyama: “A survey
of security patterns”, Progress in Informatics, no. 5, 35-47,
2008.

[2] D. M. Kienzle, M. C. Elder, D. Tyree, and J. Edwards-
Hewitt: “Security Patterns Repository Version 1.0”, 2006.

[3] S. Konrad, B. Cheng, L. Campbell, and R. Wassermann:
“Using Security Patterns to Model and Analyze Security
Requirements”, International Workshop on Requirements
of High Assurance Systems, 2003.

[4] W. E. McUmber and B. H. C. Cheng: “A general
framework for formalizing UML with formal languages”,
Proceedings of IEEE International Conference on
Software Engineering, Toronto, Canada, May 2001.

[5] A. Dwivedi and S. Rath: “Formalization of Web Security
Patterns”, INFOCOMP, v. 14, no. 1, p. 14-25, June 2015.

[6] J. Dong, T. Peng, and Y. Zhao: “Automated verification
of security pattern compositions”, Information and
Software Technology, vol. 52, 2010, 274–295.

[7] X. He: “A Comprehensive Survey of Petri Net Modeling
in Software Engineering”, International Journal of
Software Engineering and Knowledge Engineering, vol.
23, no. 5, 2013, 589-626.

[8] S. Liu, R. Zeng, X. He: “PIPE+ - A Modeling Tool for
High Level Petri Nets”, Proc. of International Conference
on Software Engineering and Knowledge Engineering,
Miami, July 2011, 115 - 121.

[9] Z. Manna and A. Pnueli: “The Temporal Logic of
Reactive and Concurrent Systems – Specification”
Springer-Verlag, Berlin, 1992.

[10] M. Clarkson and F. Schneider: “Hyperproperties”,
Journal of Computer Security, vol. 18 (2010) 1157–1210.

	I. Introduction
	II. Related Work
	III. Modeling Security Patterns
	A. High Level Petri Nets
	Authenticated Session Pattern

	IV. Analyzing Security Pattern Models
	A. Specifying Correctness Properties
	B. Analyzing Properties

	V. Concluding Remarks

