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Abstract

Recently, defect prediction software is an important re-
search topic in the software engineering field. The demand
for development of good quality software has seen a rapid
growth in the last few years. The software measurement
data collected during the software development process in-
clude valuable information about software projects status,
progress, quality, performance, and evolution. The software
fault prediction in the early phases of software develop-
ment can help and guide software practitioners to focus the
available testing resources on the weaker areas during the
software development. OBJECTIVE: This paper presents
an approach that combines three phases: data preprocess-
ing, attribute selector and learning algorithms using a ge-
netic approach and select the best combination. METHOD:
The framework is comprised of 1) scheme learning gener-
ator. This component evaluates performance of the learn-
ing schemes and suggests the best option according to each
data set analyzed, 2) defect predictor component builds
models according to the evaluated learning schemes and
predicts software defects with new data agreed to the con-
structed model. CONCLUSIONS: The framework has con-
sidered more combinations of learning schemes than other
proposals which select the model configuration manually,
which means that there are more possibilities to find better
learning schemes for each data set. The computational pro-
cessing of the genetic approach was less costly than Song
approach. Finally, The Genetic approach presented an im-
provement of 0.032 equivalent to 3.2% more than Song ap-
proach.

Index terms— software metrics, learning schemes, ge-
netic algorithms, fault prediction models, software quality.
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I. INTRODUCTION

Software fault prediction has been an important research
topic in the software engineering field for more than 30
years [1]. The software measurement data collected dur-
ing the software development process include valuable in-
formation about software projects status, progress, quality,
performance, and evolution. Software fault prediction mod-
els is a significant part of software quality assurance and
commonly used to detect faulty software modules, based
on software measurement data (software metrics) [2], [3],
[4].

Current defect prediction that works on: estimating the
number of defects remaining in software systems, dis-
covering defect associations, and classifying the defect-
proneness of software components, typically into two
classes, defect-prone and non defect-prone [1].

The first approach, employs statistical methods to esti-
mate a number of defects or defect density [5], [6]. The
prediction result can be used as an important measure for
the software developer and can be used to control the soft-
ware process, for example, decide whether to schedule fur-
ther inspections or pass the software artifacts to the next de-
velopment step. The second approach, borrows association
rule mining algorithms from the data mining community to
reveal software defect associations [7]. The third approach,
works classifying software components as defect-prone and
non-defect-prone, means of metric based classification: [8]
and [2]. Being able to predict which components are more
likely to be defect-prone supports better targeted resting re-
sources and therefore improved efficiency. Unfortunately,
classification remains a largely unsolved problem. In or-
der to address this, researchers have been using increas-
ingly learning schemes that include data preprocessing, at-
tribute selector and learning algorithms. The main prob-
lem is how to select the best learning scheme, according to
specific data set?. Actually does not exist a proposal that



uses genetic algorithm with the objective to select the best
learning scheme configuration using a specific data set. The
learning schemes have an important problem, it is how to
select a correct combination of data preprocessing, attribute
selection and learning algorithm for a particular data set.
This novel framework has the capacity to combine different
learning schemes with the objective to find the best solution
according to the parameters selected and the evaluation of
the performance metrics proposed.

The general objetive of this research is to propose a
Defect-Proneness Prediction Framework with two specific
components: learning scheme generator and defect predic-
tor.

The remainder of the article is structured as follows. Sec-
tion 2 presents the background. Section 3 presents the re-
lated work. The proposed framework is presented in Sec-
tion 4. Section 5 genetic approach. Section 6 experimental
setup. Finally, Section 7 conclusions and future work.

II. BACKGROUND

A. Metrics

Defect predictors from static code attribute were used
and defined by McCabe [9] and Halstead [10]. McCabe
and Halstead are module-based metrics, where a module
is the smallest unit of functionality (In other computational
languages, modules may be called function or method).
The static code attributes are useful, easy to use, and widely
used.

Useful. The static code attributes have been used for the
prediction of software projects with similar characteristics
[1], [11]. Easy to use. Static code attribute like lines of
code and the McCabe/Halstead attribute can be automati-
cally and cheaply collected, even for very large systems. By
contrast, other methods, such as manual code reviews, are
labor-intensive. Depending on the review methods. Widely
used. Many researchers use static attribute to guide soft-
ware quality predictions: [1], [12], [13].

Halstead attribute were derived by Maurice Halstead in
1977. He argued that modules that are hard to read are more
likely to be fault prone. Halstead estimates reading com-
plexity by counting the number of operators and operands
in a module. A complete reference [11].

An alternative to Halstead attributes, are the complexity
attributes proposed by Thomas McCabe in 1976. Unlike,
Halstead and McCabe argued that the complexity of path-
ways, between module symbols is more than just a count of
the symbols. A complete reference [11].

B. Data sets

The most frequent data sets used by software fault pre-
diction researchers are: CM1, JM1, KC1, KC2, KC3, KC4,
MW1, MC1, MC2, PC1, PC2, PC3, PC4, PC5, AR1, AR3,
AR4 and AR6. These data sets have been evaluated respect
to metrics, number of attribute, number of modules among
other parameters [1].

C. Learning Schemes

The Learning schemes are composed by: data prepro-
cessing, attribute selector and learning algorithms [1]. Data
preprocessing: It is very important to build learners. The
data are pre-processed, such as removing outliers, handling
missing values, and discretizing or transforming numeric at-
tribute. Attribute selection: It is important when the data
set may not have originally been intended for defect predic-
tion. Not all the attributes may be helpful for defect predic-
tion. Attribute selection methods can be categorized as fil-
ters or wrappers [15]. Learning algorithms: Once attribute
selection has been completed, the best attribute subset are
processed. Then the data set represents those attribute sub-
set and the learning algorithm are used to build the learner.

III. RELATED WORK

Traditionally, many researchers have explored issues like
the relative metrics of McCabe’s cyclomatic complexity,
Halstead’s software science measures, and lines of code
counts for building defect predictors. However, Menzies et
al. [11], published a study in 2007 in which they compared
the performance of two machine learning techniques (Rule
Induction and Naive Bayes) to predict software components
containing defects. To do this, they used the NASA MDP
repository, which, at the time of their research, contained 10
separate data sets. They claimed that “such debates are ir-
relevant since how the attributes are used to build predictors
is much more important than which particular attributes are
used” and “the choice of learning method is far more im-
portant than which subset of the available data is used for
learning”

Song et al. [1] published a study in which they proposed
a fault prediction framework based on Menzies study but
analyzing only 12 learning schemes. They argued that al-
though “how is more important than which”. The choice of
which attribute subset is used for learning is not only cir-
cumscribed by the attribute subset itself and available data,
but also by attribute selectors, learning algorithms, and data
preprocessors. It is well known that there is an intrinsic
relationship between a learning method and an attribute se-
lection method.



Malhotra [14] published a systematic review in which
she proposed as future work “There are very few studies
that examine the effectiveness of evolutionary algorithms”.
She points out “The future studies may focus on the predic-
tive accuracy of evolutionary algorithms for software fault
prediction”.

The aim of this paper is to build a framework that gen-
erates learning schemes using genetic algorithms. Previous
works have analyzed relationships between data preprocess-
ing, attribute selection and learning algorithms. They have
used a few combinations, mainly because the evaluation of
the learning schemes is processed manually, selecting the
combinations. The novel proposed framework tries to se-
lect the best combination per data set, according to AUC
value(maximum value).

IV. PROPOSED FRAMEWORK

It is very important before building defect prediction
model(s) to decide which learning schemes should be used
to construct the model. Thus, the predictive performance of
learning scheme should be determined for future data. This
novel framework is based on Song framework [1]. The pro-
posed framework uses the methodology of Song except how
this select the learning schemes. The novel framework con-
sists of two components: 1) Learning Schemes Generator
and 2) Defect Prediction. Figure 1, contains the details.

Figure 1. Fault prediction framework with ge-

netic implementation

A. Learning Schemes Generator

The Learning Schemes Generator is a fundamental part
of the software defect prediction framework. At this stage,

different learning schemes are evaluated, the best one is
selected. A Genetic algorithm is used to select the best
learning scheme for each data set analyzed based on their
AUC. The historical data (represented by 90% of the origi-
nal data) was divided into training and test data applying a
MxN cross-validation based on [1].

The main steps of the Learning Scheme Generator are:

• Each data set is divided into two parts: One part is used
as historical data and the other part is viewed as the
new data. The historical data are represented by 90%
of the original data, while the new data are represented
by 10% of the original data.

• The historical data is divided into training set and test
set, using a MxN cross-validation.

• The learning scheme elements (data preprocessing, at-
tribute selector and learning algorithm) are selected by
a genetic approach considering the fitness function.

• Data preprocessing is applied to both: training and test
set. The test set is selected by the genetic algorithm.
The result is training data(’) and test data(’) (see Fig-
ure 1).

• Attribute selector is applied to only training set and
the best subset of attribute is applied to training and
test set. The result is training data(”) and test data(”)
see Figure 1. The attribute subset is computed in-
teractively using a Filter strategy with NxM cross-
validation different than Song, who used Wrapper
evaluation. The difference is that Wrapper is compu-
tationally more costly. This a task of the genetic ap-
proach.

• Learning algorithm are build with a training set, and
evaluated with a test set. This a task of the genetic
approach.

B. Defect Prediction

The defect prediction is part of the proposed frame-
work, consists of predictor construction and defect predic-
tion. The inputs in this stage are: newData, is a data set that
represents the new datas. It represents the 10% of the whole
data. The other input is the HistoricalData that represents a
data set with the other 90% data. Finally, the last input is
the learned scheme selected by genetic algorithm. The fi-
nal results are a log file with two labels: actual value and
predicted value.

The main steps of the defect prediction are:

• This component uses the learning scheme selected by
genetic algorithm in the previous stage.



• A predictor is build with the selected learning scheme.
The whole historical data is used (not apply NxM
cross-validation). All the historical data is used to
build the predictor, it is expected that the constructed
predictor has stronger generalization ability.

• After the predictor is build, new data are preprocessed
in the same way as historical data, then the constructed
predictor can be used to predict software defect with
preprocessed new data.

C. Difference between the approach proposed and
Song approach

The approach proposed is based on Song methodology
[1]. The contributions of this novel proposal are:

• Song framework only works with 12 learning schemes.
The proposed framework works with more combina-
tions. Our maximum search space is: Data prepro-
cessing = 7, attribute selector = 40 and learning algo-
rithms = 41 in total (7*40*41) = 11480. Selecting au-
tomatically the best learning scheme per data set, while
Song framework selects the learning scheme manually
working with backward elimination and forward selec-
tion.

• Song framework works with Wrapper in the attribute
selection. This computationally is very costly. The
proposed framework works with Filter using NxM
cross-validation.

• Song framework has a scheme evaluation component.
The outcome of this component is a performance re-
port. The proposed framework has a generator of
schemes and the outcome is the best scheme learning
per data set processed.

V. GENETIC SETUP

The genetic approach to be explained in the following
sections: Chromosome, Operators and Fitness Function.

A. Chromosome

The chromosome is represented by a binary chain of 0s
and 1s. The representation is a triple of < DP,AS,LA >
that genetically is modified. The first part of the chromo-
some represents the data pre-processing. For the data pre-
processing(DP) there are 7 possibilities, represented by a
binary chain of 23 = 3 bits. Additionally, for the attribute
selector(AS), there are a maximum of 40 metrics (Hasteald,
McCabe and LOC), representing a binary chain maximum

of 26 = 6 bits. A bit with value 1 represent that this met-
ric is present in the data set, while a bit with value 0 that
it is not represented. Finally for the learning algorithms
(LA) there are 41 different possibilities, representing a bi-
nary chain maximum of 26 = 6 bits.

B. Operators

The operators of selection, reproduction, crossover and
mutation used were applied using the following configura-
tion: (Population size = 50, Generations = 100, Crossover
probability = 0.6, Mutation probability = 0.1 and Elitism
2%

C. Fitness Function

The Fitness was defined: f(x) = AUC value. AUC
value (min 0 - max 1) is defined by X-Axis and Y-Axis.
It is an Area Under Curve. Y-Axis is represented by True
Positive Rate or Sensitivity and X-Axis is represented by
False Positive Rate or (1-Specificity).

VI. EXPERIMENTAL SETUP

A. Data sets

The data sets used were taken from the public NASA
MDP repository. This study used 10 data sets: CM1, KC3,
MW1, PC1, PC2, PC3, PC4, KC1, MC1 and MC2.

B. Performance Measures

This study has used the metric AUC for the comparison
between approaches. Table 1 shows a complete description
about this metric.

Table 1. Metrics

Name Description Representation
TPR Sensitivity TP/(TP + FN)
FPR 1- Specificity 1� (TN/(TN + FP ))
AUC Area Under Curve Plot Specificity (X-axis)

Plot Sensitivity (Y-axis)

However, AUC was selected for the comparison to re-
spect other approaches [1].

C. Learning Schemes

The learning schemes used in this study were:

• Data Preprocessing (DP): Replace Missing Values,
Math Expression, RandomSubset, Remove, Standard-
ize, Numeric transform and Numeric to nominal.



• Attribute selector (AS): This selection is a task of the
genetic approach. A subset of metrics or predictors
variables are selected according to the genetic selec-
tion.

• Learning Algorithm (LA): The families are: Bayes (9),
Functions (9), Rules (9) and Trees (14). A complete
reference [15]

D. Baseline and Comparison

The Song study [1] (Song-Approach) was selected as
baseline for this article. The mean of Backward Selection
(BS) algorithm and the mean of Forward Elimination (FE)
algorithm were calculated and the best result compared with
the Genetic approach (G-Approach). Table 2 shows the
comparison results with the same decimal representation
[1].

Table 2. AUC-Average

Data
set

Attributes Modules Song-
Approach

G-
Approach

CM1 38 344 0.634 (1) 0.728 (3)

KC3 40 200 0.689 (10) 0.679 (17)

MW1 38 759 0.635 (7) 0.697 (2)

PC1 38 264 0.711 (15) 0.727 (8)

PC2 37 1585 0.684 (11) 0.635 (14)

PC3 38 1125 0.687 (18) 0.718 (16)

PC4 38 1399 0.789 (13) 0.829 (6)

KC1 22 2096 0.697 (4) 0.778 (20)

MC1 39 9277 0.828 (19) 0.858 (12)

MC2 40 127 0.654 (5) 0.679 (9)

Table 2 shows that G-Approach had a better perfor-
mance according to AUC metric. The G-Approach pre-
sented an average of 0.732 while Song-Approach presented
an average of 0.700. The difference between G-approach
and Song-approach has been an improvement of 0.032
equivalent to 3.2%. The order of the runs are represented
by tiny numbers (see Table 2).

E. Statistical Analysis and Discussion

Figure 2 shows that Genetic approach is better than Song
approach per each data set except PC2 and KC3, where the
model proposed presented less performance. The MC1 data
set has presented the best performance with AUC = 0.85.
Additionally, other datasets where the Genetic approach
presented better performance were: MW1, PC1, PC3, PC4,
KC1, MC1 and MC2.

The data sets with the worst performance in the Genetic
approach were: PC2 with a difference of 0.045 respect to
Song approach and KC3 with a difference of 0.01 respect to
Song. The data set that presented with the Genetic approach

the best performance was CM1 with a difference of 0.094.
(see Figure 2).

The order of runs was random. Twenty runs was exe-
cuted using the model proposed in section IV.

The first factor used was the framework. This factor has
been represented by two levels (Genetic and Song). Other-
wise, the second factor was the data set and has been rep-
resented by ten levels: CM1, KC3, MW1, PC1, PC2, PC3,
PC4, KC1, MC1 and MC2.

Figure 2. Performance Frameworks

The hypotheses were:

• Hypothesis 1: test the relationship between frame-
works according to their performance
H0frm: Are there significant difference between
frameworks respect to AUC? H1frm: Are there not
significant difference between frameworks respect to
AUC?

• Hypothesis 2: test the relationship between data sets
according to their performance H0ds: Are there sig-
nificant difference between data sets respect to AUC?
H1ds: Are there not significant difference between
data sets respect to AUC?

Wilcoxon signed rank test was applied for the first hy-
pothesis. A significant difference was found in H0frm.
This means that H0frm is rejected and exist a difference
statistically significant. The pvalue reported was pvalue =
0.04883 < ↵ = 0.05. This represented that Genetic ap-
proach was better than Song approach, 0.7328 and 0.7004
respectively. Further, the Genetic approach was computa-
tionally less costly than Song approach, because the ge-
netic approach has implemented the evaluation with the fil-
ter strategy while Song approach has implemented the eval-
uation with the wrapper strategy.

The second hypothesis was evaluated with an one-way
anova study. The first step of this study has been the
study of normality, homogeneity of variances and inde-
pendence assumption. Shapiro-Wilk and Bartlett test were



applied. The results for both test were: normality test,
pvalue = 0.9051 > ↵ = 0.05 and homogeneity of vari-
ances test pvalue = 0.898 > ↵ = 0.05 (framework) and
pvalue = 0.90 > ↵ = 0.05 (data set). The independence
principle was assumed. This means not violation of nor-
mality assumption. Then the next step was the validation of
pvalue for Hds. A significant difference was found into Hds,
this reported a pvalue = 0.0496 < ↵ = 0.05. This means
that H0ds is rejected and a Fisher Test can be applied. The
Fisher test presented the following results:

Table 3. Group of data sets

Group DataSets
Group 1 MC1
Group 2 PC4
Group 3 PC1,KC1
Group 4 CM1, PC3
Group 5 KC3,MW1, PC2,MC2

Table 3 shows the groups with significant difference. All
the data sets from different groups have presented signifi-
cant difference. The group with more data sets is the group-
5, and the rest of the groups have been represented with one
or two data sets. An important issue is the interval represen-
tation. For example, Genetic approach presented an AUC
value: min = 0.635, max = 0.858 while Song approach pre-
sented an AUC values: min = 0.635, max = 0.828.

VII. CONCLUSIONS AND FUTURE WORK

The framework has included more combinations of
learning schemes than other proposals. This means, there
are more possibilities to find better learning schemes for
each data set. The genetic approach has presented bet-
ter performance than Song approach in the majority of the
cases, representing eight of ten data sets. The data set where
the Genetic approach had less performance was PC2 while
the data set with more performance was MC1.

The predominant learning schemes were: DP= {Replace
Missing Values, Math Expression}, AS={Genetic selec-
tion} and LA={Naive Bayes, Decision Tree, Lineal Regres-
sion, Boosting, Bagging, Support Vector Machine}.

Another important conclusion has been the size of the
data sets. For example MC1 is the data set with more size
(9277 modules). This data set represented the best AUC
(0.858) in the Genetic approach. A similar situation with
KC1, this data set represented the second in size (2096 mod-
ules) and the second with the best AUC (0.82). This situa-
tion is different in Song approach where the AUC was re-
ported with a value of 0.82 (MC1) and (0.69) KC1 respec-
tively.

As Future work, it is necessary to include more data
sets with different size, noise level and imbalance data from

public and private repositories. It is very important more ex-
perimentation with different parameters configuration and
others methods of crossover and mutation that improvement
the performance.
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