
Statically-Guided Fork-based Symbolic Execution for

Vulnerability Detection

Yue Wang, Hao Sun, Qingkai Zeng

State Key Lab for Novel Software Technology, Nanjing University

Department of Computer Science and Technology, Nanjing University

Nanjing 210023, China

wxywang89@163.com, shqking@gmail.com, zqk@nju.edu.cn

Abstract—Fork-based symbolic execution would waste large

amounts of computing time and resource on invulnerable paths

when applied to vulnerability detection. In this paper, we propose a

statically-guided fork-based symbolic execution technique for

vulnerability detection to mitigate this problem. In static analysis,

we collect all valid jumps along vulnerable paths, and define the

priority for each program branch based on the ratio of vulnerable

paths over total paths in its subsequent program. In fork-based

symbolic execution, path exploration can be restricted to

vulnerable paths, and code segments with higher proportion of

vulnerable paths can be analyzed in advance by utilizing the result

of static analysis. We implement a prototype named SAF-SE and

evaluate it with ten benchmarks from GNU Coreutils version 6.11.

Experimental results show that SAF-SE outperforms KLEE in the

efficiency and accuracy of vulnerability detection.

Keywords-fork-based symbolic execution; static analysis;

vulnerability detection; program analysis

I. INTRODUCTION

Symbolic execution was first proposed by James C. King [1]
in 1976. Fork-based symbolic execution uses symbolic values as
inputs to execute target programs and replaces concrete program
operations with ones that manipulate symbolic values during the
execution. When program execution branches based on
symbolic values, it follows each valid branch and collects the
branch condition as the constraint of the corresponding path.
When one path terminates or hits a bug, a test case will be
generated by solving the collected constraints. Symbolic
execution has two advantages: 1) having high code coverage and
2) producing no false positives.

Recently, fork-based symbolic execution has been applied to
the field of vulnerability detection. The key challenge lies in that
the goal of vulnerability detection is to expose vulnerable code
as soon as possible and vulnerable paths, i.e. paths involving
vulnerable code, only occupy a small proportion in programs,
while fork-based symbolic execution selects branch blindly,
leading to a considerable waste of computing time and resource
on exploring invulnerable paths. Besides, the vulnerability
detection accuracy would also be affected, i.e. generating false
negatives, if computing time and resource is limited in real-
world scenarios. Furthermore, path explosion would worsen
both the efficiency and accuracy of vulnerability detection if
target programs are in large scale.

To address this issue, we propose and implement a statically-
guided fork-based symbolic execution technique for
vulnerability detection, named SAF-SE. Static analysis process
marks vulnerable paths and collects all valid jumps along them.
These valid jumps would restrict symbolic execution to
vulnerable paths only, and generate test cases which can violate
the security constraints of sensitive operations. Furthermore, we
define the priority for each program branch based on the ratio of
vulnerable paths over total paths in its subsequent program.
These branch scores are used by execution state selector to
determine the priority of each execution state. Therefore,
program segments with higher proportion of vulnerable paths
will be explored first and more vulnerable code will be detected
in the circumstance of limited computing time or resource.
Hence, SAF-SE can not only accelerate fork-based symbolic
execution process but also improve the accuracy of vulnerability
detection.

This paper makes three contributions. First, we propose a
statically-guided fork-based symbolic execution technique for
vulnerability detection, in which we restrict fork-based symbolic
execution on vulnerable paths. Second, we score program
branches based on the ratio of vulnerable paths in subsequent
program. Hence, code segments with higher proportion of
vulnerable paths would be analyzed earlier. Third, we
implement a prototype name SAF-SE and evaluate it with 10
benchmarks from GNU Coreutils 6.11. Experimental results
show SAF-SE can improve vulnerability detection efficiency,
and reduce false negatives when time and resource is limited.

II. DESIGN OF SAF-SE

Figure 1 illustrates the architecture of SAF-SE. It consists of
three components: graph generation module, static analysis
module and fork-based symbolic execution module. Note that
users can define sensitive operations and corresponding security
constraints in user-defined configuration file.

A. Graph Generation Module

Graph generation module reads LLVM bytecode file as
input and generates the call graph and control flow graphs
(CFGs). The call graph and CFG generation process in LLVM
Utils doesn’t consider dynamic link library functions. Therefore,
we utilize a light-weight symbolic executor to obtain a relatively
complete program. In it, we simulate the link process by
executing the target program symbolically with the simplest

This work has been partly supported by National NSF of China under Grant
No. 61170070, 61431008, 61321491; National Key Technology R&D

Program of China under Grant No. 2012BAK26B01.

(DOI reference number: 10.18293/SEKE2015-094)

Figure 1. Architecture of SAF-SE

symbolic strategy, i.e. one symbolic input sized of one character
in order to get dynamic library functions in records. Considering
the small time consumption, i.e. less than 10 seconds, we call it
light-weight symbolic executor.

B. Static Analysis Module

Static analysis module at first locates sensitive operations in
target programs and divides functions into three categories.
Then valid jumps analysis collects all valid jumps by marking
the conditional values of each branch instruction that can lead
to sensitive operations. At last, branch score analysis calculates
the score of program branch according to the ratio of vulnerable
paths over total paths in its subsequent program.

1) Function Classification
We define two attributes for each function, i.e. vul-related

and vul-lead.

Definition 1. Function f is vul-related, if there are sensitive
operations in f, or f calls another vul-related function.

Definition 2. If function h invokes function f at call site loc,
and there are sensitive operations or vul-related function calls
on the paths from loc to the exits of function h, then function f
is vul-lead.

To calculate vul-related attribute, initially, we mark
functions with sensitive operations inside as vul-related. Then,
callers of vul-related functions are also marked as vul-related.
To calculate vul-related attributes, first we locate the positions
of sensitive operations and vul-related function call sites as locs
in each function. Then, we initialize all the functions called
between the function entry and locs as vul-lead. At last, all
callees of vul-lead functions are also marked as vul-lead.

According to the attributes, functions in target programs can
be divided into three categories, i.e. T1~T3, and different
execution strategies would be applied to different categories.

a) T1: vul-lead = true: sensitive operations would be

invoked after T1 functions. Since operations within T1 function

might affect the sensitive operations afterward, all paths inside

would be executed symbolically to gain conservative results.

b) T2: vul-related = true and vul-lead = false: T2

functions have sensitive operations inside and have no sensitive

operation after the execution of them. Hence, invulnerable paths

inside can be pruned in symbolic execution.

c) T3: vul-related = false and vul-lead = false: T3

functions neither involve sensitive operations, nor have

sensitive operations afterward. Hence, symbolic executor

would terminate the execution process for T3 function calls.

2) Valid Jumps Analysis
Valid jumps analysis aims to collect the valid jumps of each

branch instruction in T2 functions. Valid jump is the conditional
value of branch instruction which can lead execution to
sensitive operations. Algorithm 1 illustrates this process for
function fn. Vtarget-op refers to the set of sensitive operations and
vul-related function calls. Tuple < f, inst, choice> is used to
denote one valid jump, i.e. the instruction inst in function f
would lead to sensitive operations under the conditional value
choice. Setvalid-jmp stores all the collected valid jumps.

Our valid jumps analysis is at basic block granularity.
Initially, basic blocks involving Vtarget-op are marked as sensitive
(line 1). Then, for each sensitive basic block bb, we fetch each
of its preceding basic block pbb (line 3) and set the branch from
pbb to bb as a valid jump (lines 5 to 7). At last, pbb is also
marked as sensitive (line 8). This process will continue until all
sensitive basic blocks have been analyzed.

3) Branch Score Analysis
In branch score analysis, for each program branch, first we

count the number of total paths and vulnerable paths, then score
the branch based on the ratio of vulnerable paths over total paths
in its subsequent program. These scores would be further used
by execution state selector to explore the branch with higher
proportion of vulnerable paths in advance. Note that we count
the loop as one path when calculating the number of paths due
to the lack of actual execution times of the loop structure in
static analysis.

C. Fork-based Symbolic Execution Module

Fork-based symbolic execution module explores vulnerable
paths following the branch scores and generates test cases
which can violate security constraints for sensitive operations.

Algorithm 1

input: CFGfn, Vtarget-op

output: Setvalid-jmp

procedure calValidJmps (CFGfn, Vtarget-ops)

1 Vsen-BBs = collectSensitiveBBs (CFGfn, Vtarget-op);

2 for each BasicBlock bb ∈Vsen-BBs do

3 Vparent-BBs = collectParentBBs (CFGfn, bb);

4 for each BasicBlock pbb in Vparent-BBs do

5 Instruction inst = last branch instruction in pbb;

6 validChoice = getValidCondition (pbb, bb);

7 Setvalid-jmp.insert(<fn, inst, validChoice>);

8 Vsen-BBs.insert(pbb);

9 return Setvalid-jmp;

Generally speaking, it consists of three main parts: instruction
executor, execution state selector and constraint solver.

1) Instruction Executor
We modify the instruction executor to analyze vulnerable

paths with the results of function classification and valid jumps
analysis. When we deal with sensitive operations, a verify
process check() will be used to check if current constraints
violate security constraints. If so, a test case would be generated
by the constraint solver and reported to users.

When executing Call instructions, we check whether the
callee is T3 function. If so, we would terminate current
execution process and remove the execution state from the
execution state pool based on the analysis in Section II-B-1).

As for Branch instructions and Switch instructions, we at
first check whether current function belongs to T1 function. If
so, we follow the original fork-based symbolic execution
process. If current function is T2 function, execution flow can
only be transferred to the valid succeeding basic blocks
according to the result of valid jumps analysis. For each valid
branch, we construct a new execution state by copying the
current execution state, changing instruction pointer pc to the
valid destination instruction, and adding condition expression
into constraint set. At last, we insert the new execution states
into the execution state pool.

2) Execution State Selector
Execution state selector aims to select an execution state

from the execution state pool. Since existing selection strategies,
e.g. depth-first search (DFS), breadth-first search (BFS), and
covering new focus on program coverage, they cannot
accelerate the process of vulnerability detection. Hence, we
design a new selection strategy for vulnerability detection.
Leveraging the results of branch score analysis, we select the
execution state in the order of scores. In this way, code
segments with high proportion of vulnerable paths would get
analyzed in advance, accelerating vulnerable paths exploration
and explore as many vulnerable paths as possible with limited
computing time and resource.

III. IMPLEMENTATION AND EVALUATION

A. Implementation Details

We have implemented a prototype named SAF-SE. In it, we
use a fork-based symbolic executor with one symbolic
argument, whose size is one character, as the light-weight
symbolic executor, and LLVM-3.1 utils to generate call graph
and CFGs. As for the static analysis part, we implement a
LLVM optimization pass written in about 1,600 lines of C++
on call graph and CFGs. In fork-based symbolic execution
module, we adopt KLEE [2] and modify its instruction executor
and the execution state selector based on previous discussion.

B. Experimental Setup

To evaluate the effectiveness of SAF-SE, we applied it on
ten programs from GNU Coreutils version 6.11, and compared
the results with KLEE [2]. In our experiments, we set seven
library function calls as sensitive operations, including alloc,
malloc, realloc, calloc, memcpy, memccpy and memset. All
experiments were run on a machine with 3.20GHz Intel(R)

Core(TM) i5-3470 processor and 4G of memory, running 64-
bit Linux 3.2.0.

C. Results of Static Analysis

Table 1 shows the experimental results of static analysis on
the ten benchmarks. The time cost (Column 2) in static analysis
is negligible, averaging about 0.389s. Columns 3 to 5 show the
distributions of three types of functions. We can observe that
T2 functions, in which invulnerable paths can be pruned,
account for the largest proportion, about 48.4% on average.
Column 6 indicates the number of the basic blocks that can be
pruned by static analysis, including all the basic blocks in T3
functions and those along invulnerable paths in T2 functions.
On average, 21.8% of all basic blocks are free of symbolic
execution.

D. Results of SAF-SE

To assess the effectiveness of SAF-SE, we look into the
following two aspects: 1) we applied SAF-SE and KLEE on five
benchmarks with the same arguments, respectively. For each
benchmark, both SAF-SE and KLEE completed the whole
symbolic execution process, and we assessed the reduction in
execution time and executed instructions of SAF-SE over KLEE;
2) we applied SAF-SE and KLEE on the other five benchmarks
with the same arguments, and we limited the execution time to
60 minutes, so as to assess the sensitive operation coverage
promotion of SAF-SE over KLEE.

Table II shows the experimental results of the first aspect.
Columns 2 to 4 show the results of KLEE, including the
execution time, the number of analyzed instructions and the
number of analyzed sensitive operations, and Columns 5 to 7
show those of SAF-SE. On average, SAF-SE achieved about
23.52% execution time reduction and about 23.17% analyzed
instruction reduction over KLEE. In a word, SAF-SE can spend
less execution time and execute fewer instructions than KLEE in
completing the symbolic execution process without missing any
sensitive operations.

Table III describes the experimental results of the second
aspect. The meanings of the columns are similar to those in
Table II. Each benchmark was run for 60 minutes with the same
symbolic arguments: --sym-args 1 5 10 --sym-files 2 100, which
means the number of symbolic arguments are from 1 to 5, and
the length of each symbolic arguments is up to 10 characters.
Meanwhile, we use two symbolic files which are not longer than
100 characters. From the results we can see that, SAF-SE
executed 1.70x of instructions that KLEE executed, and
discovered 1.37x of sensitive operations that KLEE covered in
the same execution time. It is worth noting that the effectiveness
in sensitive operation coverage promotion is highly dependent
on the structure of each program and on the distribution of
sensitive operations. We can conclude that SAF-SE can explore
more vulnerable paths under limited execution time than KLEE.

The Experimental result proves SAF-SE can improve
vulnerability detection efficiency of fork-based symbolic
execution by pruning invulnerable paths in advance. Moreover,
SAF-SE can reduce false negatives in the circumstance of
limited computing time and resource with the help of branch
scores from static analysis.

TABLE I. RESULTS OF STATIC ANALYSIS

program time(s) T1 (num/rate) T2 (num/rate) T3 (num/rate) Prune BBs (num/rate)

mkdir 0.410 167/0.498 154/0.460 14/0.042 750/0.209

mkfifo 0.391 143/0.451 160/0.505 14/0.044 796/0.236

mknod 0.379 148/0.460 160/0.497 14/0.043 845/0.242

paste 0.363 146/0.458 159/0.498 14/0.044 777/0.226

ptx 0.685 196/0.513 167/0.437 19/0.050 886/0.158

seq 0.437 148/0.454 163/0.500 15/0.046 810/0.234

chmod 0.354 210/0.532 161/0.409 23/0.058 851/0.198

echo 0.281 132/0.423 165/0.529 15/0.048 841/0.251

basename 0.287 142/0.444 163/0.509 15/0.047 790/0.237

cat 0.300 148/0.460 159/0.494 15/0.046 816/0.234

AVG 0.389 158.0/0.470 161.1/0.484 15.8/0.046 816.2/0.218

TABLE II. RESULTS OF BENCHMARKS COMPLETED SYMBOLIC EXECUTION

program
KLEE SAF-SE

time(s) instruction sensitive op time(s) instruction sensitive op

echo 1548.01 40878183 20409 1045.72(-32.45%) 29702739(-27.34%) 20409

chmod 315.48 63130620 28425 243.52(-22.81%) 48300940(-23.49%) 28425

mkfifo 323.71 61459653 26275 228.82(-29.31%) 48493576(-21.10%) 26275

mknod 320.3 54853060 21937 259.67(-18.93%) 41718084(-23.95%) 21937

basename 25.45 5264958 2337 21.85(-14.16%) 4213381(-19.97%) 2337

TABLE III. RESULTS OF BENCMARKS RUN FOR 60 MINUTES

program
KLEE SAF-SE

time(s) instruction sensitive op time(s) instruction sensitive op

paste 3832.64 47913926 29752 3644.73 163029964(+240.26%) 61813(+107.76)

ptx 3706.1 99826914 40368 3718.47 102729476(+2.91%) 41703(+3.31%)

cat 4169.63 11818118 16565 4179.68 11868664(+0.43%) 16921(+2.15%)

seq 3669.66 81698491 35033 3668.82 103876566(+27.15%) 40830(+16.55%)

mkdir 3699.58 315383144 50299 3697.19 574760703(+82.24%) 76906(+52.90%)

IV. RELATED WORK

KLEE [2] is a widely used fork-based symbolic execution
tool evolves from EXE [3]. Vitaly Chipounov et al. [4]
proposed selective symbolic execution and implemented S2E
by adopting KLEE as symbolic executor and using QEMU [5]
to simulate execution environment. Combining symbolic
execution with concrete execution, Patrice Godefroid et al.
proposed the first concolic symbolic execution tool SAGE [6]
for binary code. Symbolic execution has been widely used in
vulnerability detection. SmartFuzz [7] leverages concolic
symbolic execution to find integer bugs in x86 binary
programs. Crashmaker [8] optimized the generational search
algorithm in SAGE. However, these techniques still have to
traversal the whole program even when detecting specific
sensitive operations, while SAF-SE can improve the
efficiency and accuracy of vulnerability detection by
restricting path exploration on vulnerable paths.

V. CONCLUSION

In this paper, we propose a statically-guided fork-based
symbolic execution technique for vulnerability detection and
developed a prototype SAF-SE to restrict path exploration on
vulnerable paths and to explore code segments with higher
proportion of vulnerable paths earlier by utilizing the results
of static analysis. We evaluated SAF-SE with ten benchmarks
from GNU Coreutils version 6.11, and compared it with
KLEE. The experimental results show that, SAF-SE improves
the efficiency of vulnerability detection a lot, and reduces

generating false negatives in the circumstances of limited
computing time and resource.

REFERENCES

[1] J.C..King, "Symbolic execution and program testing", ;inproceedings
of Communications of the ACM, 1976, pp.385-394

[2] C.Cadar, D.Dunbar, and D.Engler, "KLEE: unassisted and automatic
generation of high-coverage tests for complex systems
programs", ;inproceedings of OSDI'08 Proceedings of the 8th USENIX
conference on Operating systems design and implementation, 2008,
pp.209-224

[3] C.Cadar, V.Ganesh, P.M..Pawlowski, D.L..Dill, and D.R..Engler,
"EXE: automatically generating inputs of death", ;conference of
Computer and Communications Security, 2006, pp.322-335

[4] V.Chipounov, V.Kuznetsov, and G.Candea, "S2E: a platform for in-
vivo multi-path analysis of software systems", ;inproceedings of
Proceedings of the sixteenth international conference on Architectural
support for programming languages and operating systems, 2011,
pp.265-278

[5] F.Bellard, "QEMU, a fast and portable dynamic
translator", ;inproceedings of ATEC '05 Proceedings of the annual
conference on USENIX Annual Technical Conference, 2005, pp.41-41

[6] P.Godefroid, M.Y..Levin, and D.A..Molnar, "Automated Whitebox
Fuzz Testing", ;conference of Network and Distributed System
Security Symposium, 2008, pp.-1—1

[7] D.Molnar, X.Cong.Li, and D.A..Wagner, "Dynamic test generation to
find integer bugs in x86 binary linux programs", ;inproceedings of
SSYM'09 Proceedings of the 18th conference on USENIX security
symposium, 2009, pp.67-82

[8] Bing Chen, Qingkai Zeng, and Weiguang Wang. "Crashmaker: an
improved binary concolic testing tool for vulnerability detection."
inproceedings of the 29th Annual ACM Symposium on Applied
Computing. ACM, 2014, pp.1257-1263

