
State Key Laboratory for Novel Software Technology at Nanjing University, Nanjing, China

How do developers use C++ libraries? An empirical study
Di Wu

nju.wudi@gmail.com

Lin Chen *

lchen@nju.edu.cn

Yuming Zhou

zhouyuming@nju.edu.cn

Baowen Xu

bwxu@nju.edu.cn

Abstract—C++ libraries provide an abundance of reusable
components for writing high-quality programs and are thus
widely adopted by software developers. However, to date there is
little work investigating how these libraries are actually used in
real software. In this paper, we perform an empirical study to
investigate the adoption of C++ standard libraries in open-source
applications, with the goal to provide actionable information for
developers to help them employ libraries more efficiently. To this
end, we analyze 379 historical revisions of 30 applications,
containing 149 million lines of C++ code, to conduct the
experiment. The experimental results show that: (1) three
standard libraries (i.e. Containers Library, Utilities Library, and
Strings Library) are significantly more often used than other
libraries; (2) the new libraries of C++11 (i.e. Regular Expressions
Library, Atomic Operations Library, and Thread Support
Library) are significantly less often used than the formerly-
established libraries; (3) the deprecated library constructs (i.e.
auto pointers, function objects, and array I/O operations) are not
used at a declining frequency; and (4) applications with a larger
size do not adopt libraries more frequently. Based on these
results, we propose four suggestions, which could help developers
learn and use C++ libraries in an efficient way.

Keywords- Programming Language, C++, Library, Empirical Study

I. INTRODUCTION

C++ libraries are pervasively used in software
development, as they enable developers to write high-quality
programs by employing reusable components rather than
implementing all code from scratch [4]. To date, various
libraries have been provided to help solve problems of
different domains. Among these libraries, the Standard C++
Library is the most renowned, since it provides a large set of
standardized components that are shipped with identical
behavior by every C++ implementation [5]. According to
C++11 [3], the latest1 C++ specification, the Standard C++
Library is constituted by 11 sub-libraries, including 3 new
libraries introduced in C++11 and 8 old libraries established in
C++98 [1] and C++03 [2]. For brevity, people generally call
these sub-libraries as “standard libraries”.

In recent years, many researchers have been devoting to
improve the performance of standard libraries. However, few
studies focus on how these libraries are actually adopted in
real software. This lack of knowledge may bring troubles to
software developers, since they do not know which standard
libraries are the most commonly used and need their attention
to be paid on, whether they have made full use of new

* Corresponding author: Lin Chen; Email: lchen@nju.edu.cn
1 C++14 was recently approved, but its official specification has not been
released. Thus, we still serve C++11 as the latest standard of C++ in this paper.

(DOI reference number: 10.18293/SEKE2015-009)

standard libraries, and whether deprecated library constructs
are less frequently used.

In this paper, we perform an empirical study to investigate
the adoption of C++ standard libraries in open-source
applications, with the goal to provide actionable information
for developers to help them use libraries more efficiently. To
be specific, we propose the following four research questions:
(1) RQ1: Which libraries are the most often used? (2) RQ2:
Are the new libraries of C++11 used as often as the formerly-
established libraries? (3) RQ3: Are the deprecated library
constructs used at a declining frequency after C++11 was
published? and (4) RQ4: Do applications with a larger size
adopt libraries more frequently? The purpose of RQ1
investigates whether there exist a few libraries that are more
often used than others. If the most commonly used libraries
are found, we may suggest developers, especially the new
comers of open-source projects, to focus on understanding and
using these libraries. The purpose of RQ2 investigates whether
the new libraries of C++11 have been widely used. If the
answer is “Yes”, we will have an empirical evidence to
support that the new features of C++11 have been widely
adopted in developing real software. Otherwise, we may
advise developers to pay a special attention on using
applicable new library constructs instead of writing their own
code of similar functionality. The purpose of RQ3 investigates
whether the deprecated library constructs are gradually
infrequently used. Due that auto pointers, function objects, and
array I/O operations can be replaced by other advanced
features, they have been deprecated since C++11. By
investigating RQ3, we can understand whether developers
have realized to reduce using these outdated library constructs.
The purpose of RQ4 investigates the correlation between
system size and the frequency of library use. In previous
studies on Java and C# libraries [9, 10], researchers found that
applications with different sizes adopt libraries differently.
The empirical result for RQ4 can be used to answer whether
this conclusion is also applicable to the use of C++ libraries.

In order to answer these research questions, we analyze
379 historical revisions of 30 applications, containing 149
million lines of C++ code, to conduct the experiment. The
experimental results show that: (1) three standard libraries (i.e.
Containers Library, Utilities Library, and Strings Library) are
significantly more often used than other libraries; (2) the new
libraries of C++11 (i.e. Regular Expressions Library, Atomic
Operations Library, and Thread Support Library) are
significantly less often used than the formerly-established
libraries; (3) the deprecated library constructs (i.e. auto
pointers, function objects, and array I/O operations) are not
used at a declining frequency; and (4) applications with a
larger size do not adopt libraries more frequently. Based on
these results, we propose four suggestions, which could help
developers learn and use C++ libraries in an efficient way.

The rest of the paper is organized as follows. Section II
introduces the C++ Standard Library. Section III describes the
studied applications, data collection procedure, and data
analysis methods. Section IV reports the experimental results,
the implications, and the threats to validity of our study.
Section V discusses related work. Section VI concludes the
paper and outlines the direction for future work.

II. AN OVERVIEW OF THE C++ STANDARD LIBRARY

The C++ Standard Library is a general name for the
standardized built-in classes, functions, and macros in C++.
The whole standard library is constituted by 11 sub-libraries,
which are generally called “standard libraries”. Before C++11,
8 elementary standard libraries were supported. To
differentiate them from new libraries of C++11, we call these
libraries as “formerly-established libraries”. These libraries
basically consist of Containers, Iterators, Algorithms, Utilities,
Strings, Numerics, Input/Output, and Localizations. The first
three libraries together with function objects in the Utilities
library constitute STL (the Standard Template Library), which
provides generic classes and functions to create and operate
common data structures like vectors, queues, and stacks. The
other five libraries are specific to language support (as well as
general-purpose utilities support), string processing, scientific
computation, I/O management, and internationalization
support, respectively. Since C++11, three new libraries have
been introduced. They are Regular Expressions Library,
Atomic Operations Library, and Thread Support Library. The
first new library is used to perform pattern matching for
strings. The other two new libraries are specific to concurrent
programming, equipped with low-level (atomics-based) and
high-level (thread and task-based) concurrency facilities,
respectively. Moreover, three formerly-established library
constructs (i.e. auto pointers, function objects, and array I/O
operations) are deprecated in C++11. They are no longer
supported either due to the low efficiency or due to the
advanced replacers.

III. EXPERIMENTAL SETUP

In this section, we first introduce the open-source
applications used for investigating our research questions.
Then, we report the data collection procedure. Finally, we
describe the data analysis methods.

A. Studied Applications

To investigate the proposed research questions, we analyze
30 open-source applications, whose source code is obtained by
using svn and git clone tools. These applications are selected
for the following reasons: (1) they cover different application
domains listed on http://sourceforge.net, thus making the
empirical results not skewed to a specific kind of applications;
(2) they have a big difference in code size, thus making the
result for RQ4 sufficiently reliable; and (3) they are developed
as ongoing projects, thus making the experimental data up-to-
date. The detailed information of the 30 applications is shown
in Table I. As we can see from Table I, these applications
cover 10 software domains. Moreover, they vary in age (2 to
16 years) and code size (9 to 4731 KSLOC). For these
applications, we use their latest revisions by the end of 2014 to

investigate RQ1, RQ2, and RQ4 and use their historical
revisions to investigate RQ3. In our experiment, the historical
revisions are regularly selected as the last revisions in each
season after September 2011, the release time of C++11. We
do not investigate all historical revisions because the code
repositories contain many dump revisions, which may pose a
threat to the accuracy of our experimental data. For some
applications (i.e. PN, SwiftSearch, HTEditor, and ConEmu),
only a few revisions are studied. This is either due to their late
establishing time or due to the long time intervals between
adjacent revisions.

TABLE I. OPEN-SOURCE APPLICATIONS IN THE STUDY

Project
A
ge

C++
KSLOC
of latest
revision

Studied

revisions

Total C++
KSLOC1

Category

VLC 16 135.825 14 1855.855 Audio
&

Video
LameXP 5 21.449 14 315.346
MPC-HC 9 521.267 14 9581.495
MuPDF 11 16.137 14 140.816 Business

&
Enterprise

Qucs 12 125.600 13 2323.950
LibreOffice 5 4730.718 14 68554.599
LeechCraft 8 325.526 14 3819.669

Commu-
nications

MirandaNG 3 1087.472 12 11155.677
KopeteIMClient 13 348.629 14 4009.079
TortoiseGit 7 457.517 14 5153.035

Develop-
ment

PN 13 155.059 7 1084.903
KDevelop 16 108.759 14 1388.152
Warzone2100 10 186.721 12 2233.427

Games Pentobi 4 30.818 14 375.543
SuperTuxKart 8 369.355 14 3476.652
Blender 13 600.906 14 6852.224

Graphics LuminanceHDR 13 38.828 13 452.887
FreeCAD 4 1185.593 14 15992.063
GoldenDict 6 75.008 14 748.038 Home

&
Education

Kiwix 8 63.863 14 1060.158
SUMO 13 132.400 14 1651.322
rr 4 18.245 14 66.944 Science

& Engi-
neering

Trimph4php 3 80.211 10 562.450
RStudio 2 127.943 14 1300.345
KmyMoney 3 146.252 14 1993.554 Security

&
Utilities

SwiftSearch 3 8.556 6 43.196
HTEditor 13 95.517 7 712.315
ConsoleZ 8 65.056 14 840.411 System

Adimini-
stration

NVDA 9 11.291 14 139.735
ConEmu 2 203.471 5 955.516

B. Data Collection

We collect the experimental data by using “Understand”
[17], a tool that automatically analyzes the source code of
applications without manual configuration. To be specific, the
data is collected by the following steps. At the first step, we
obtain C++ files by using the “C++ Strict” option provided by
“Understand” and build an Understand database for each
studied application. At the second step, we process Understand
databases to identify the use sites of standard library
constructs, including library classes, library functions, and
library macros. Since all standard library constructs are
marked with the “std::” namespace, they can be easily detected
by running a Perl script which invokes Understand APIs. At

1 “KSLOC” means “thousand source lines of code (excluding comments)”.
Generally speaking, it is equal to “KLOC” (“thousand lines of code”).

the third step, we compare the names of practically used
constructs with the names of actual standard library constructs.
We do this in order to filter out those fake standard library
constructs used by developers. At the fourth step, we divide all
examined standard library constructs into the new library
group and the formerly-established library group. At the final
step, we calculate the KSLOC value and the number of C++
files for each application by looking up the metrics reported by
Understand. With these five steps, we can obtain the
experimental data set, which consists of: (1) the number of use
for each standard library (both formerly-established and new
libraries); (2) the number of use for deprecated library
constructs; (3) the number of use for standard libraries in each
application and in its historical revisions; and (4) the KSLOC
value and the number of files in each application.

C. Data Analysis

In order to answer RQ1, RQ2, and RQ3, we apply the
Wilcoxon signed-rank test to examine whether two groups of
data have a significant difference. More specifically, for RQ1,
we compare the percentages of use for the 11 standard libraries
in pair-wise. Here, the percentage is calculated as the number
of use for a specific library divided by the total number of use
for all libraries. If a few libraries exceed other libraries in the
percentage of use at the significance level of 0.05, we will
accept them as the most commonly used standard libraries.
Otherwise, we will conclude that there is not an outstanding
library that is more often used than others. For RQ2, we
compare the percentage of use for each new library with the
percentage of use for each formerly-established library. If new
libraries show a significant difference (significance level = 0.05)
from the formerly-established libraries in the percentage of use,
we will conclude that the new libraries and formerly-
established libraries are not equally commonly used. Otherwise,
we will fail to reject the hypothesis that “new libraries are as
often used as formerly-established libraries”. For RQ3, we
compare the densities of use for the deprecated library
constructs in each season after C++11 was published. The
densities are calculated both at line level (number of use for
deprecated library constructs per KSLOC) and at file level
(number of use for deprecated library constructs per file). Here,
we use the density instead of the raw number of library
construct use in order to avoid the impact brought by the
change of system size. The answer to RQ3 will be “Yes” if the
density value in one season (for instance, Dec. 2014) is
significantly lower than the density value in the former season
(for instance, Sep. 2014). Otherwise, we will fail to conclude
that the deprecated library constructs are used at a declining
frequency after C++11 was officially released. After
performing each Wilcoxon signed-rank test, we further apply
the Cliff’s , which is used for median comparison, to examine
whether the magnitude of difference is important from the
viewpoint of practical application [6]. By convention, the
magnitude of the difference is either trivial (|| < 0.147), small
(0.147-0.33), medium (0.33-0.474), or large (> 0.474) [7].

In order to answer RQ4, we use the Spearman’s rank
correlation analysis to examine whether the size of applications
is significantly positively correlated to the frequency of library
use. In previous studies [9, 10], researchers found that

applications with different sizes adopt libraries differently.
More specifically, larger applications tend to have more library
uses. However, the raw number of library use cannot
effectively reflect the frequency of library use in different
applications, because larger applications usually have more
functionalities and not surprisingly have more library uses. In
order to remove the impact of different system size, here we
use the density to replace the raw number of library use. More
specifically, we first calculate the density of library use for
each application. The densities are calculated both at line level
(number of library use per KSLOC) and at file level (number of
library use per file). Then, we calculate the Spearman’s
coefficient (rho) of the correlation. In particular, the p-value is
employed to examine whether the correlation is significant at
the significance level of 0.05. If the calculated p-value is less
than 0.05, we will conclude that applications with a larger size
adopt libraries more frequently. Otherwise, we will have a
conclusion that the size of application does not significantly
positively correlates to the frequency of library use.

IV. RESULTS AND IMPLICATIONS

In this section, we report in detail the experimental results
and discuss their implications.

A. RQ1: Which libraries are the most often used?

We employ the result from the Wilcoxon signed-rank
analysis for the percentage of library use to answer RQ1. In
particular, we apply Figure I to describe the percentage of use
for each library. In this figure, each boxplot shows the median
(the horizontal line within the box), the 25th and 75th
percentiles (the lower and upper sides of the box), and the
mean value (the small red rectangle inside the box). By
observing Figure I, we can see that the percentages of use for
three libraries (i.e. Containers, Utilities, and Strings) are
obviously larger than the percentages of use for other libraries
(i.e. Iterators, Algorithms, Numerics, I/O, Localizations,
Regular Expressions, Atomic Operations, and Thread Support),
indicating that these three standard libraries are the most
commonly used by developers. The data listed in Table II
confirms our observation from Figure I. This table displays the
result from the Wilcoxon signed-rank analysis for the pair-
wise comparisons between three standard libraries (the first
row) and the other eight standard libraries (the first column).
In particular, we report the significance (p-value) and the
magnitude (Cliff’s) of the difference, respectively. To be
specific, for the Containers Library, it significantly
outperforms other eight libraries in the percentage of use (all
p-values < 0.001). Moreover, the effect sizes are large in terms
of Cliff’s (0.804 || 0.966). The Utilities Library, as
expected, shows a similar result, and the effect sizes are
considerably large (0.931 || 0.973). For the Strings
Library, its percentage of use is also significantly larger than
the other eight libraries, with seven p-values less than 0.001
and one p-value equaling to 0.017. Moreover, the effect sizes
are either small (= 0.329), moderate (= 0.393), or large
(0.482 || 0.862). To summarize, the core observation from
Table II is that three new libraries significantly outperform the
other eight libraries in the percentage of use and the magnitude
of difference is relatively large. Therefore, we have the

Containers Iterators Algorithms Utilities Strings Numerics Input/Output Localizations
Regular

Expresstions
Atomic

Operations
Thread
Support

0
20
40
60
80

100

%
 o

f
u

s
e

Figure I. Boxplot showing the percentage of use for standard libraries

TABLE II. RESULTS OF WILCOXON SIGNED-RANK ANALYSIS FOR RQ1

Containers Utilities Strings

p p p
Iterators <0.001 0.820 <0.001 0.949 <0.001 0.393
Algorithms <0.001 0.911 <0.001 0.966 <0.001 0.642
Numerics <0.001 0.859 <0.001 0.973 <0.001 0.482

I/O <0.001 0.804 <0.001 0.931 0.017 0.329
Localizations <0.001 0.947 <0.001 0.963 <0.001 0.784

Regular exp. <0.001 0.963 <0.001 0.967 <0.001 0.853
Atomic op. <0.001 0.966 <0.001 0.967 <0.001 0.862

Thread sup. <0.001 0.959 <0.001 0.967 <0.001 0.838

* All the p-values are BH-adjusted

following conclusion for RQ1: three standard libraries (i.e.
Containers Library, Utilities Library, and Strings Library)
are significantly more often used than the other libraries.

In order to find out which library constructs play a key role
in Containers, Utilities, and Strings, we further pick out the
most commonly used library constructs on ground of their
number of use. All library constructs are divided into three
groups, namely library classes, library functions, and library
macros. According to the obtained result, library functions
(73.95%) are more often used than library classes (7.89%) and
library macros (18.16%). One possible explanation for this is
that library functions are generally used as APIs and they are
widely applied to operate elementary data structures (for
instance, bitsets, shared pointers, maps, etc). Also, we find that
many library classes are implemented as templates, especially
the STL templates (for instance, map, set, list, and vector) and
the Utilities templates (for instance, tuple, pair, bitset,
numeric_limits, shared_ptr, and auto_ptr). This indicates that
library templates play an important role in creating the basic
data structures, which is in line with our previous findings
about the utilization of templates [16]. For library macros, we
find that the most commonly-used macros are inclusive
members of Utilities. This result is not surprising, because an
important role of the Utilities Library is to provide language
support with built-in macros like UINT8_MAX, INT16_MAX,
EXIT_SUCCESS, etc.

Implication. From the empirical results for RQ1, we
advise developers, especially the new comers of open-source
projects, to be proficient with the usage of Containers, Utilities,
and Strings. Since these standard libraries are the most often
used in real software development, adopting them effectively
is beneficial to increase the efficiency of programming.

B. RQ2: Are the new libraries of C++11 used as often as the
formerly-established libraries?

We employ the result from the Wilcoxon signed-rank
analysis for the percentage of new library use to answer RQ2.
Here, we exclude the experimental data provided by the
applications which were established before C++11 was

released. We do this mainly because these applications have
already existed before the delivery of new libraries, thus
investigating their use of new libraries may pose a threat to the
result for RQ2. To eliminate this negative impact, we only
employ the data of new library use in the applications which
were established after the delivery of C++11. Table III shows
the results for the pair-wise comparisons between the adoption
of new libraries (the first row) and the adoption of formerly-
established libraries (the first column). In particular, we report
the significance (p-value) and the magnitude (Cliff’s) of the
difference, respectively. To be specific, for the Regular
Expressions Library, its percentage of use is significantly
different from the percentage of use for seven formerly-
established libraries (p-values 0.016). Moreover, the effect
sizes are large in terms of Cliff’s (0.877 || 1). The only
exception is the Localizations Library, which does not show a
significant difference from Regular Expressions (p-value =
0.281). For the other two new libraries (i.e. Atomic Operations
and Thread Support), they show a similar result as the Regular
Expressions Library. From this reasoning, we conclude that
new libraries and formerly-established libraries are differently
used. Actually, the new libraries of C++11 are much less
often used than the formerly-established libraries.

TABLE III. RESULTS OF WILCOXON SIGNED-RANK ANALYSIS FOR RQ2

Regular exp. Atomic op. Thread sup.

p p p
Containers 0.010 -1.000 0.010 -1.000 0.010 -1.000

Iterators 0.016 -0.877 0.016 -0.889 0.034 -0.827
Algorithms 0.016 -0.877 0.016 -0.889 0.019 -0.802
Utilities 0.010 -1.000 0.010 -1.000 0.010 -1.000
Strings 0.016 -0.877 0.016 -0.889 0.019 -0.877
Numerics 0.010 -1.000 0.010 -1.000 0.010 -0.926

I/O 0.016 -0.877 0.016 -0.889 0.019 -0.877
Localizations 0.281 -0.333 0.100 -0.444 0.419 -0.309

* All p-values are BH-adjusted; p-values > 0.05 are shown in grey background.

Implication. The result for RQ2 is opposed to our initial
expectation that new libraries and formerly-established
libraries should be equally used. One possible explanation for
this is that most developers are still not familiar with the usage
of new libraries, as the new libraries are been a part of the C++
standard for only three years. For this reason, we highly
recommend developers to pay a special attention on learning
the usage of new libraries (i.e. Regular Expressions Library,
Atomic Operations Library, and Thread Support Library) and
employ them when they need to write string matching or
concurrent programs.

C. RQ3: Are the deprecated library constructs used at a
declining frequency after C++11 was published?

We employ the result from the Wilcoxon signed-rank
analysis for the density of use for deprecated library constructs

Sep

2011

Dec

2011

Mar

2012

Jun

2012

Sep

2012

Dec

2012

Mar

2013

Jun

2013

Sep

2013

Dec

2013

Mar

2014

Jun

2014

Sep

2014

Dec

2014

0.0

0.1

0.2

0.3

0.4

#
 u

s
e
 p

e
r

K
S

L
O

C

(a) Density of use for the deprecated library constructs (at line level)

Sep

2011

Dec

2011

Mar

2012

Jun

2012

Sep

2012

Dec

2012

Mar

2013

Jun

2013

Sep

2013

Dec

2013

Mar

2014

Jun

2014

Sep

2014

Dec

2014

0.00

0.02

0.04
0.06

0.08

0.10
0.12

#
 u

s
e
 p

e
r

fi
le

(b) Density of use for the deprecated library constructs (at file level)

Figure II. Density of use for the deprecated library constructs

to answer RQ3. In particular, we use Figure II to describe the
density values both at line level (number of use per KSLOC)
and at file level (number of use per file). In Figure II, each
boxplot shows the median (the horizontal line within the box),
the 25th and 75th percentiles (the lower and upper sides of the
box), and the mean value (the small red rectangle inside the
box). By observing the two subfigures, we do not see an
obvious declining trend for the density values from Sep. 2011
to Dec. 2014, indicating that the deprecated library constructs
are not decreasingly frequently used after C++11 was released.
The data listed in Table IV confirms our observation from
Figure II. In Table IV, we show the Wilcoxon signed-rank
analysis results for comparing two adjacent seasons since
September 2011. Of the 13 comparison results listed in the
“Line level” group, we totally find 6 significant results (p-
values < 0.05), whose effect sizes are either trivial or small in
terms of Cliff’s (0.008 || 0.163). By observing the “File
level” column, however, we only have 3 significant results,
whose effect sizes are relatively negligible (0.044 || 0.108).
To summarize, the core observation from Table IV is that the
density of use for the deprecated library constructs does not
significantly decrease from late 2011 to the end of 2014. From
this reasoning, we draw the conclusion for RQ3 as the
deprecated library constructs are not used at a declining
frequency after C++11 was published.

TABLE IV. RESULTS OF WILCOXON SIGNED-RANK ANALYSIS FOR RQ3

Groups for comparison
Line level File level

p p
Dec.2011 vs. Sep.2011 0.060 -0.006 0.133 -0.008
Mar.2012 vs. Dec.2011 0.358 -0.039 0.529 0.003
Jun.2012 vs. Mar.2012 0.032 -0.025 0.087 0.008
Sep.2012 vs. Jun.2012 0.060 -0.017 0.116 -0.019
Dec.2012 vs. Sep.2012 0.005 -0.163 0.007 -0.108
Mar.2013 vs. Dec.2012 0.032 -0.047 0.031 -0.044
Jun.2013 vs. Mar.2013 0.157 0.015 0.446 0.119
Sep.2013 vs. Jun.2013 0.377 0.019 0.534 0.014
Dec.2013 vs. Sep.2013 0.083 -0.055 0.345 -0.033
Mar.2014 vs. Dec.2013 0.074 -0.080 0.095 -0.069
Jun.2014 vs. Mar.2014 0.039 0.008 0.097 -0.003
Sep.2014 vs. Jun.2014 0.032 -0.080 0.031 -0.080
Dec.2014 vs. Sep.2014 0.013 -0.050 0.087 -0.025

* All p-values are BH-adjusted; p-values > 0.05 are shown in grey background.

Implication. One possible explanation for RQ3 is that most
developers do not realize that several long-lived library
constructs (i.e. auto pointers, function objects, and array I/O
operations) have been deprecated since C++11. For this reason,
we advise developers to keep an eye on the changes in the new
C++ standards and update their code accordingly. In particular,
we wish developers to remove the uses of the deprecated
library constructs, because these constructs will completely
stop to be supported since C++17 [18], the next major revision
of the C++ programming language.

D. RQ4: Do applications with a larger size adopt libraries
more frequently?

In order to answer RQ4, we use the Spearman’s rank
correlation analysis described in Section III.C to examine the
correlation between the size of application and the density of
library use. Here, we calculate application size both as
KSLOC (line-level size) and as the number of files (file-level
size), with the purpose to investigate RQ4 from different
perspectives and obtain a consistent result. To be specific, the
result of Spearman’s rank correlation analysis at line level
shows that application’s KSLOC does not significantly
correlate to the density of library use (number of library use
per KSLOC) (p-value = 0.896). A similar result is reported by
the Spearman’s rank correlation analysis at file level, which
shows that the number of files and the density of library use
(number of library use per file) are not significantly correlated
(p-value = 0.799). From this reasoning, we conclude that the
size of application is not significantly correlated to the density
of library use. In other words, applications with a larger size
do not adopt libraries more frequently.

Implication. According to Robillard and DeLine [8],
library users can efficiently understand an API if they are
provided with examples to demonstrate “best practices” for
using the API. Thus, it would be valuable work to explore real
examples of library use in open-source applications. Since the
conclusion for RQ4 indicates that applications of different size
do not adopt libraries at different frequency, we suggest new
comers of open-source projects to learn API usage examples
by reading the source code of small applications. This can help
them obtain better learning effect by avoiding understanding
the complex source code of large applications.

E. Threats to Validity

There are four possible threats to validity in this study. The
threat to the construct validity is the correctness of library use
sites reported by “Understand”. Since many studies have
produced reliable empirical results by using “Understand” [17],
the data in our study can also be considered as acceptable. The
threat to the internal validity is that we do not exclude new
library constructs from the formerly-established libraries. But
according to our empirical data, the new library constructs
only account for a relatively small proportion of the use
(1.23%) for formerly-established library use. For this reason,
our empirical results are still reliable. The first threat to the
external validity is that we only use open-source applications
to conduct the experiment. The empirical results may not be
applicable to industrial applications, as different ways of
software development probably make a difference in the
adoption of libraries. The second threat to the external validity
is that we only investigate standard libraries. The third-party
libraries are not included mainly because they are generally
considered not as widely used as standard libraries.

V. RELATED WORK

Due to page limitation, here we only discuss a few studies
most related to our work. In recent years, more and more
researchers have started to investigate the adoption of software
libraries in an empirical way. Torres et al. [9] were among the
first to study the usage of Java concurrency libraries and they
found a list of commonly-used concurrency library constructs.
Also, they concluded that medium to large-sized applications
tend to use more concurrency constructs. However, this
conclusion was drawn by simply comparing the raw number
of library use among small applications (1-20KLOC), medium
applications (20-100KLOC), and large applications
(>100KLOC). By comparison, we use the Spearman’s rank
correlation analysis method to test the relationship between the
size of application and the frequency of library use, which can
produce a more reliable result. Another related study was an
empirical investigation on C# parallel libraries performed by
Okur and Dig [10], who showed that applications with
different sizes have different adoption trends. However, they
only compare the raw number of library use among different
applications instead of investigating the frequency of library
use. For this reason, this finding is limited to some extent.
Before this study, we have already performed an empirical
investigation on the adoption of C++ templates [16], which
showed that STL predominates the overall use of library
templates. Compared with our previous work, this paper
investigates the adoption of C++ libraries at a higher level by
focusing on the whole C++ Standard Library, not limited to
library templates. The other related work includes the
investigation on MPI open-source applications [11], the study
on Java library use trend [12], the research on Java API
popularity [13], the assessment on third-party libraries [14],
and the exploration on third-party component reuse [15].

VI. CONCLUSION AND FUTURE WORK

In this paper, we conduct a study on the adoption of C++
libraries in real applications. The whole study is performed by
investigating four research questions regarding the most often

used libraries, the difference between the use of the new
libraries and the use of the formerly-established libraries, the
trend of adopting deprecated library constructs, and the
relationship between the size of application and the frequency
of library use. By employing inferential statistics, we get
reasonable results for the proposed research questions. Based
on the empirical results, we give four actionable suggestions,
which could help developers, especially the new comers of
open-source projects, learn and use libraries efficiently. In the
future work, we will investigate more research questions and
perform an empirical study on more applications to understand
the adoption of C++ libraries in depth.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China (61170071, 61432001, 91418202,
61472175, 61472178), the National Natural Science
Foundation of Jiangsu Province (BK20130014), and the
program B for Outstanding PhD candidate of Nanjing
University.

REFERENCES

[1] ISO/IEC. Information Technology—Programming Languages—C++.
ISO/IEC 14882-1998. 1998.

[2] ISO/IEC. Information Technology—Programming Languages—C++,
Second Edition. ISO/IEC 14882-2003. 2003.

[3] ISO/IEC. Information Technology—Programming Languages—C++,
Third Edition. ISO/IEC 14882-2011. 2011.

[4] N. Josuttis. The C++ Standard Library: A Tutorial and Reference -
Second Edition. Addison-Wesley, 2012.

[5] B. Stroustrup. The C++ programming language – Fourth Edition.
Addison-Wesley, 2013.

[6] E. Arisholm, L. Briand, B. Johannessen. A systematic and
comprehensive investigation of methods to build and evaluate fault
prediction models. Journal of Systems and Software, 83(1), 2010: 2-17.

[7] J. Romano, J. Kromrey, J. Coraggio, J. Skowronek. Appropriate
statistics for ordinal level data: Should we really be using t-test and
Cohen’s d for evaluating group differences on the NSSE and other
surveys? In: Annual Meeting of the Florida Association of Institutional
Research, 2006: 1-3.

[8] M. P. Robillard, R. DeLine. A field study of API learning obstacles.
Emp. Soft. Eng., 16(6), 2011: 703-732.

[9] W. Torres, G. Pinto, B. Fernandes, J. P. Oliveira, F. Ximenes, F. Castor.
Are Java programmers transitioning to multicore? A large scale study of
java FLOSS. SPLASH, 2011: 123-128.

[10] S. Okur, D. Dig. How do developers use parallel libraries? FSE, 2012:
Article No. 54.

[11] C. Marinescu. An empirical investigation on MPI open source
applications. EASE, 2014: Article No. 20.

[12] Y. M. Mileva, V. Dallmeier, M. Burger, A. Zeller. Mining trends of
library usage. IWPSE-Evol, 2009: 57-62.

[13] Y. M. Mileva, V. Dallmeier, A. Zeller. Mining API popularity. TAIC
PART, 2010: 173-180.

[14] S. Blom, J. Kiniry, M. Huisman. A structured approach to assess third-
party library usage. ICECCS, 2013: 212-221.

[15] W. Schwittek, S. Eicker. A study on third party component reuse in Java
enterprise open source software. CBSE, 2013: 75-80.

[16] D. Wu, L. Chen, Y. Zhou, B. Xu. An empirical study on the adoption of
C++ templates: library templates versus user defined templates. SEKE,
2014: 144-149.

[17] SciTools Understand. https://scitools.com/.

[18] C++17. http://en.wikipedia.org/wiki/C%2B%2B17.

