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Abstract
The use of stochastic formalisms, such as Stochastic Automata
Networks (SAN), can be very useful for statistical prediction and
behavior analysis. Once well fitted, such formalisms can generate
probabilities about a target reality. These probabilities can be
seen as a statistical approach of knowledge discovery. However,
the building process of models for real world problems is time
consuming even for experienced modelers. Furthermore, it is often
necessary to be a domain specialist to create a model. This work
illustrates a new method to automatically learn simple SAN models
directly from a data source. This method is encapsulated in a tool
called SAN GEnerator (SANGE). This new model fitting method
is powerful and relatively easy to use; therefore this can grant
access to a much broader community to such powerful modeling
formalisms.

1 Introduction
Stochastic Automata Networks (SAN) is a powerful formal-

ism to describe systems as stochastic models. Through these
models we can derive probabilities concerning some event or
set of events of a system. Our research group has a record
of successful development of stochastic models for behavior
prediction from several domains, e.g., geological events [2],
production lines [7] and distributed software development
teams [8]. In all these examples, the model construction re-
quired domain specialists and a large amount of stochastic
modeling knowledge. The resulting models are very accu-
rate in predicting the behavior of the realities as could be
verified by comparison with records of each reality behavior.

Typically, SAN model construction is a top-down driven
approach, i.e., first the target reality is analyzed, then its
behavior is translated into a stochastic model. Once we have
a complete SAN model, it is possible to use a collection of
specialized algorithms that can solve it [5]. The problem of
this approach is that it is specific to a given system. In other
words, each new system must be carefully analyzed before
the creation of the model. This analysis usually is performed
via handmade steps such as data analysis and data selection.
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In a previous work [1], we proposed a bottom-up pro-
cess to forecast events using time series and stochastic mod-
els (Figure 1). This modeling approach also speeds up
the time to develop a representative model from input data.
However, we did not have a technique to automatically gen-
erate SAN code, but only plain Markov chains (MC). The
extension of this previous work to generate SAN models in-
creases our potential to handle more complex (multidimen-
sional) data.

Figure 1: A Dimensionality Reduction Process to Forecast
Events Through Stochastic Models [1] enhanced by the
generation of SAN models (SANGE).

A bottom-up, MC-based, approach gives a solution for
any generic model. However a plain (unstructured) MC is
usually a limited, memory expensive model. Limited in
the sense that you have a bulk representation for a system,
regardless of how complex it may be. Memory expensive
because a system with S states is represented by a transition
probability matrix of S2. In the best case, the number of non-
zero entries will be in the order of 2S.

SAN formalism is modular and its model representation
is composed by a collection of sub-systems, which are usu-
ally much more compact benefiting from tensor representa-
tions. Thus, in this paper we show a new approach to fit SAN
models directly to data, reducing the model size. This ap-
proach has been implemented in a tool called SANGE (SAN
GEnerator) that automatically generates SAN models from a



dataset.
The excessive human effort to construct models can

be avoided with a tool that handles the formal tasks to
convert data into state transitions. Consequently, the user
can focus on more interesting tasks, such as interpreting
the results and applying the gain knowledge. Additionally,
SANGE performs dimensionality reduction using time series
representation methods [10]. Thus, SANGE is also capable
of automatically fitting the model to input data, possibly
achieving better models than those made by humans.

Our algorithm was inspired by a well known and broadly
used formalism, Hidden Markovian Models (HMM), and its
fitting algorithm (Baum-Welch, BW) [4]. Thus, the HMM
user only needs to understand the modeling basics and how
to interpret the generated HMM model.

The BW algorithm is a special case of the Expectation-
Maximization algorithm, using forward-backward probabil-
ities to estimate the model parameters. Our approach can be
seen as an adaptation of this algorithm implementing only
the forward procedures. However, our solution works with a
structured formalism, which naturally can provide higher ac-
curacy and can be more flexible and user-friendly to describe
a system.

2 Computational Kernel
SANGE’s main objective is to reduce the time spent on
generating SAN models, thus, opening the use of SAN
models to non-specialists. However, our solution needs
records of a system behavior in the form of time series that
will be assigned to the variables of interest for the system.

SANGE’s basic operation consists in the composition
of a set of time series describing how system variables
behave [9]. Considering a system with n interest variables
(v(i) with i = 1, . . . ,n,) we need a behavior sample of the
system in the form of n time series with the successive values
of the variables through time. With these time series, the first
step is to identify the points of interest in time as the time
ticks where at least one of the variables changes its value.
Once the time ticks of interest are identified, the second step
is to determine the possible values for the variables in order
to define the stochastic model. This process is summarized
in an example with three time series in Figure 2 and Figure 3
showing the identification of 11 time ticks (a) and the three
succession of values for variables v(1), v(2) and v(3).

The examples of Figure 2 and Figure 3 results in three
automata where local states are given by the observed val-
ues for each variable. Transitions events refer to the possi-
ble changes in states. These can happen locally within one
automaton or simultaneously for several automata (synchro-
nizing events). Figure 4 presents the SAN model for this
example.

To compute the rates of local events we must count how
many transitions take place starting in each local state. For
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Figure 2: Example of SANGE basic process to three time
series - identifying time ticks of interest.
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Figure 3: Example of SANGE basic process to three time
series - identifying transitions between variable states.

example, consider the transition from state v(1)3 to state v(1)5 .

Observing all time ticks, we see state v(1)3 at the end of ticks
t1, t2 and t3. In t1 and t2 automaton V (1) does not change
state, before going to v(1)5 in t3. Therefore, one in three times

the event v(1)3 → v(1)5 occurs, and the rate of this event is 1/3.
For synchronizing events the computation is similar,

but since more than one automaton is concerned, we now
have to count the number of times that a certain number
of combination of states occurs. For example, we look at
automata V (1) and V (2) and the combination of states v(1)4

and v(2)3 . This combination occurs at the end of time ticks t9
and t10, and the synchronizing event happens at one of these
two time points (after t10), hence, its rate is 1/2.

From a practical point of view the current version of
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Figure 4: Equivalent SAN model for the three time series example of Figure 3.

SANGE can generate either a SAN model or a Markov
chain output (which is basically a SAN model with a single
automaton and only local events). The output is in the format
of a .san file, that can be directly fed into a SAN solver, such
as PEPS [5] that performs state of art Kronecker solutions
[6].

The presented example consists of quite short time
series, which limits the validity of the generated model.
In real cases, much longer time series, where events are
represented by a large number of state successions, must be
considered in order to see statistically relevant patterns. Here
we limited the amount of data for the sake of clarity, yet an
extended version of this work is available in [3].

3 Example: Weather in Gothan city
To facilitate the understanding, we use a classical example
for Markov models, i.e., forecasting weather events [11].
The most basic example is a Markov chain with 3 states,
representing Raining, Sunny and Cloudy (Figure 5). Proba-
bilities are assigned to the transitions between states as well
as staying in the same state.

Figure 5: Classical example Markov chain model.

By solving this model we can achieve the transient and
stationary probabilities of being in one of the three states. As
the only representation of such a model is by a probability
matrix, It can be computationally hard to handle for real
world applications with many states. Furthermore, the best
known formalisms, Markov chains and HMMs, can not
integrate models with multiple automata in a unique system,
i.e. they do not have a structure for this. By using SAN with

SANGE it is possible to generate a structured version, which
allows us to assemble more elements to our model and solve
those as one.

SANGE encapsulates the techniques described in the
Section 2; thus, it provides an interface for this basic and
more advanced statistical tools. As pointed out before, the
algorithm merges the SAN and TS characteristics.

The following example does consider nor real data
neither the adequacy of the model; Our goal here, is to
illustrate how SANGE works with multiple variables and
how easy is to create a model with it. Although SANGE is
a prototype, the basic functions are implemented and some
basic models can be generated.

WC WF

Figure 6: Generic SAN model for weather conditions and
wind force. “ce" means climate event and “we" wind event.

For ease of understanding, Figure 6 shows a generic
model with 2 automata, WC for weather conditions and
WF for wind force. The states’s labels WC are Raining,
Sunny and Cloudy. In WF, the states correspond to the wind
velocity, Fast, Medium, Slow and None.

Assuming that this model is accurate to predict the wind
and the climate of a city called Gothan, we want to know the
probability of Gothan facing rain and fast wind at the same
time. We do not have many records, so we need to learn this
probability by a small sample which is formatted as Table 1.

In this case, the probability to have rain and fast wind is
4.5%. In this example a basic combination of two automata



Table 1: Sample for input data
Raw data Symbolic data

weather wind speed weather wind speed
cloudy 48 b d
raining 16 c b
sunny 26 a c

... ... ... ...
sunny 9 a a

Figure 7: Line plot after the symbolic representation. Each
letter is assigned to a value, a = 1, b = 2, c = 3, d = 4.

was used with a maximum number of 80 states. However, the
number of automata and states could be much larger. This is
a very compact representation and through SANGE; it scales
better and demands less effort than the equivalent Markov
model, allowing an easier derivation of probabilities in large
models.

4 Final Remarks
As the core technique to data mining, statistics are important
to knowledge discovery. It allows us to infer probabilities
through samples instead of considering the complete behav-
ior data. Stochastic formalisms are heavily based on proba-
bilistic techniques. The use of stochastic modeling tools is
promising to forecast the behavior of systems which can be
described as sets of time series.

Our main achievement was to introduce SAN formalism
to the process (illustrated in Figure 1) in an automated way,
allowing non-specialist users to take advantage of SAN’s
structure and solutions. Through the automatic fitting, we
create a bottom-up approach that can be broadly used, once
that the learning process avoids the human effort to manually
create such models. Compared to the traditional modeling
approach, our implemented solution, SANGE, represents
an interesting option that simplifies the effort to construct
SAN models. As SANGE is a first attempt to automatically
generate SAN models that can be useful to real world

datasets, we have introduced a new method for knowledge
discovery through stochastic modeling.

For future work, we will improve our algorithm by
adapting the forward-backward procedures from BW algo-
rithm, improving SANGE capacity to handle more complex
SAN models for real datasets.
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