
DOI reference number: 10.18293/SEKE2015-084

Documenting Implementation Decisions with Code Annotations

Tom-Michael Hesse1, Arthur Kuehlwein1, Barbara Paech1, Tobias Roehm2 and Bernd Bruegge2

1Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
{hesse, kuehlwein, paech}@informatik.uni-heidelberg.de

2Technische Universität München, Boltzmannstr. 3, 85748 Garching b. München, Germany
{roehm, bruegge}@in.tum.de

Abstract

Software developers make various decisions when imple-
menting software. For instance, they decide on how to im-
plement an algorithm most efficiently or in which way to
process user input. When code is revisited during mainte-
nance, the underlying decisions need to be understood and
possibly adjusted to the current situation. Common doc-
umentation approaches like JavaDoc neither cover knowl-
edge related to decisions explicitly, nor are they integrated
closely with knowledge management. In consequence, de-
cision knowledge is rarely documented and therefore inac-
cessible, especially when developers have left the team. So,
effective maintenance is hindered. We have developed an
annotation model for decision knowledge and integrated it
with the knowledge management tool UNICASE. The ap-
proach enables developers to document decisions within
code without tool switches to lower their documentation ef-
fort. Afterwards, maintainers can exploit the embedded de-
cision knowledge and follow links to external knowledge.
This paper presents the approach and evaluation results of
a first case study, which indicate its practicability.

1 Introduction

During the implementation of software, developers make
many decisions, e.g. on how to implement an algorithm
most efficiently or in which way to process user input. This
means to solve a decision problem, which comprises a set
of alternatives and criteria to compare them [16]. A com-
parison of alternatives, like using an external library instead
of programming an algorithm, can be made by considering
expert knowledge, personal experiences and the context of
the decision. So, a complex and large amount of knowledge
is required to understand a decision problem in retrospect.
We will refer to this knowledge as decision knowledge.

Over time, decision knowledge can erode easily [12]. As
a result, most information needs of developers towards im-

plementation decisions cannot be satisfied sufficiently. This
is shown in a study of Ko et al. at Mircosoft with 17 soft-
ware developer teams [13]. For instance, the question “Why
was the code implemented this way?” could not be an-
swered in 44% of the cases. The major reasons are that
decisions either are documented within unstructured inline
comments, are not documented at all or have to be inferred
from external documents without links to code [15]. These
reasons imply three requirements our approach has to fulfill.

First, implementation decision are difficult to understand
in retrospect, when no documentation structures are defined
and unstructured inline comments are used. So, defined
structures for decision documentation are required. Even
frameworks like JavaDoc only provide limited capabilities
for documenting decisions, as they focus on describing what
was implemented, but not on the underlying decisions. But
a defined documentation template for decisions often re-
quires more than the decision knowledge, which is currently
present. In consequence, a structured, but incremental cap-
ture of decision knowledge is required (requirement R1).
Second, implementation decisions may concern code parts
of different granularity levels, such as the usage of a particu-
lar operation or the purpose of an entire class. If developers
cannot document decisions directly within the code, they
either do not document decisions at all or have to interrupt
their current implementation task and change to some ex-
ternal documentation tool. Therefore, decision knowledge
should be embedded within the code for different levels of
code granularity (requirement R2). Third, when decision
knowledge is not linked to external documents like require-
ments or design diagrams, such decision-related external
knowledge cannot be exploited easily. This again can cause
high efforts and thereby hinders the assessment of imple-
mentation decisions by developers during system mainte-
nance. Therefore, decision knowledge should be linked to
related external knowledge within code (requirement R3).

The contribution of this paper is an approach, which ad-
heres to these requirements. First, we propose a documen-
tation approach based on code annotations, which is inte-



grated with knowledge management. Therefore, we derive
appropriate annotations for decision knowledge from an ex-
isting knowledge model for decisions, and implement these
annotations in Eclipse. The set of annotations covers many
elements of decision knowledge and can be used in an incre-
mental way without a static template. Second, we integrate
our approach with the model-based knowledge manage-
ment tool UNICASE [3]. This allows for links between an-
notations and external knowledge within UNICASE. Over-
all, our approach supports decision documentation within
code for developers and makes decision knowledge explicit
and exploitable during maintenance.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces background information and discusses re-
lated work. Section 3 describes our approach with a run-
ning example. In Section 4, we present results for a first
evaluation of our approach. We summarize our insights in
Section 5 and describe directions for future work.

2 Background and Related Work

In this section, we define decision knowledge in detail
and introduce the knowledge management tool UNICASE.
Then, we give a brief overview of existing annotation ap-
proaches for decision knowledge in code.

Decision Knowledge As defined in Section 1, Decision
knowledge addresses all information required to understand
a given decision problem with its context and rationale jus-
tifying the decision. Decision problems comprise a set of
alternatives, which are compared by different criteria [16].
In practice, these criteria and the resulting rationale for the
decision depend on various context aspects. For instance,
constraints brought up by former design decisions or as-
sumptions on the environment of the system shape deci-
sions. Moreover, rationale for decisions might be influenced
by time pressure in the project or personal experiences of
developers [19]. As we have described in [17], many mod-
els exist that cover parts of this knowledge for different ac-
tivities, for example in requirements engineering or design.
However, none of these models is addressing implementa-
tion decisions, they do not support an incremental documen-
tation and have only limited support for pre-defined links.

Due to these shortcomings, we decided to use a flexi-
ble documentation model as presented in [11]. It consists
of a set of different decision knowledge elements, which
may be aggregated for a decision incrementally over time
by different developers. The model is depicted in Figure 1.
The basic element is the Decision, which contains all related
decision knowledge elements for one decision as Decision-
Components. Amongst others, DecisionComponents can be
refined to a decision problem description as an Issue, to con-
text information like an Assumption, to a solution descrip-

External Knowledge

(e.g. Use Case, UML diagram)

Decision

Problem Solution Context Rationale

Contains

Contains

Issue

Goal

Alternative

Claim

Assumption

Constraint

Argument

Assessment

Identified byDecisionComponent

Attached to

Person

Role

Has

Taken by

Concerns

Implication

Figure 1. Documentation Model for Decisions

tion as an Alternative, or to a description of a rationale as an
Argument. Decisions and their components can be linked to
external knowledge like requirements specifications or de-
sign diagrams.

Knowledge Management Tool UNICASE Our annota-
tion model is integrated with the model-based knowledge
management tool UNICASE [3]. UNICASE is an Eclipse
extension and provides an integrated model for system and
project knowledge [5]. UNICASE offers a generic support
for the collaborative editing of the underlying model ele-
ments based on the Eclipse Modeling Framework EMF [1]
and the model versioning system EMFStore [2]. Moreover,
it provides a variety of elements for documenting and struc-
turing external knowledge, like use cases, UML diagrams
or test protocols.

Existing Annotation Approaches In the last decades,
only a few approaches were developed to document deci-
sion knowledge explicitly within code. Typically, they fo-
cus on rationale. As one of the first approaches, Lougher
and Rodden introduced a system to annotate rationale in the
source code of software using comments [15]. Then, a doc-
umentation is generated as a network of linked hypertext
documents out of these comments. Whereas the approach
claims to use a markup language for comments, no concrete
proposals for well-defined structures for such a language
are made. Moreover, the system is not integrated with ex-
ternal knowledge sources. So, this approach does not sat-
isfy R1 and R3. Canfora et al. propose the “Cooperative
Maintenance Conceptual Model” (CM2) [7]. It also struc-
tures rationale knowledge as a network of linked comments
for analysis, design and implementation. Also for this ap-
proach well-defined structures for comments are missing.
Moreover, the links between analysis and design artifacts



with the comments are not specified in detail. In conse-
quence, also this approach does not fulfill R1 and R3. Burge
and Brown present the system “Software Engineering Us-
ing RATionale” (SEURAT), which is an Eclipse extension
based on an ontology for rationale knowledge [6]. It can
highlight existing rationale in the code via Eclipse markers
as well as infer unresolved issues of inconsistencies. But
the documentation of newly acquired rationale is not pos-
sible within the code, as the ontology has to be extended
externally. Also, links to external knowledge are limited, as
the approach focuses on linking rationale and code files. So,
R2 and R3 are not satisfied. Other approaches enable devel-
opers implicitly to exploit decision knowledge by creating
traceability links, e.g. between requirements and code. For
instance, the approach of Cleland-Huang et al. [8] traces
architectural significant requirements to code. This enables
developers to reflect that a part of code realizes the linked
requirements. However, such traceability links typically do
not support incremental modifications and are not embed-
ded within the code, so they do not fulfill R1 and R2. In
summary, to the best of our knowledge no current approach
realizes all three introduced requirements for decision doc-
umentation of implementation decisions.

3 Annotation Model for Decision Knowledge

Based on the documentation model for decision knowl-
edge, we derived one annotation for each decision knowl-
edge element and integrated the annotations with UNI-
CASE. This implementation of our approach is available
via an Eclipse update site [4]. In the following sections, we
introduce a running example and describe how our model
realizes the three requirements presented in Section1.

Running Example To explain our annotation model, we
will employ the decision on implementing a wizard instead
of a dialog as example. This is a typical decision point
when programming plug-ins for Eclipse. On the one hand,
a wizard provides multiple pages for a guided user interac-
tion, but typically requires multiple user actions for stepping
through the pages. Moreover, it often implies complex data
handling, when input checks for each page are performed.
On the other hand, a dialog only offers a single page, so that
a step-wise user interaction is not possible directly. How-
ever, a dialog typically requires less user actions, because it
just consists of one page. Depending on the actual decision
context, either a wizard or a dialog are more appropriate.
We will refer to this decision in the following sections and
enrich it with further information to demonstrate our ap-
proach.

Annotation Structure All annotations are mapped to a
corresponding decision knowledge element of the docu-

mentation model (cf. Figure 1). An annotation can be used
to either create a new decision knowledge element or link
to an existing one. Each annotation contains several inter-
nal attributes to deal with references to external knowledge
and persistent storage. The textual content that is to be doc-
umented by the annotation can be typed directly after the
annotation itself by the developer, as depicted in Figure 2
using our wizard example. We established two different
kinds of annotations with different functional complexity:
core annotations and augmented annotations.

Core annotations represent a decision knowledge ele-
ment in the documentation model, for instance an issue as
@Issue or an alternative as @Alternative. We cre-
ated one core annotation for each knowledge element given
by the documentation model. Augmented annotations rep-
resent one or more decision knowledge elements with pre-
defined attributes or relations. This is a shortcut for devel-
opers in practice to create decision knowledge elements by
patterns, so that the manual documentation effort can be re-
duced. For instance, @Contra can be used to create a new
argument as a child of the nearest DecisionComponent and
to link the argument to this component as an attacking argu-
ment. In our wizard example, the @Contra-annotation is
used to argue against the “dialog”-alternative (cf. Figure 2).

This structure of annotations suits an incremental and
flexible use. For instance, if a @Decision statement is al-
ready given, a developer can simply add another annotation
like @Alternative to document a newly arisen alterna-
tive during re-engineering for this decision. So, developers
can complete and update the given documentation in case
this decision knowledge is incomplete or outdated. Also,
they are not forced to document a pre-defined default set of
annotations for a decision. Our approach is extensible, as
developers can define their own customized augmented an-
notations. Overall, this enables a structured and incremental
documentation of decisions and thus fulfills R1.

Annotation Embedding To implement our annotation
model, we created a new annotation parser within Eclipse,
which makes the annotations available for use. Decision an-
notations can be used in any inline code comment, including
JavaDoc, to annotate class and method declarations as well
as any code part within the method body. All annotations
are written directly into the code file, so that their textual
contents are not lost when the code is stored in a code ver-
sioning system. Whenever a developer types an annotation,

// @Decision Implement input UI using a wizard
// @Issue Complex user input
// @Alternative Use a dialog
// @Contra Need for step-wise user guidance

Figure 2. Examples of Decision Annotations



options for creating or linking related decision knowledge
are displayed by hovering over the annotation. In addition,
our implementation in Eclipse allows to directly create new
knowledge elements as children of the nearest decision that
is found in the code before, as depicted in Figure 3. More-
over, developers can annotate elements of one decision in
different comments on different code parts, as long as no
other decision is inserted in between. This addresses the
problem of different code granularity levels and enables a
documentation of implementation decisions directly within
the code, so R2 is fulfilled.

Integration with Knowledge Management UNICASE
allows for relating decision knowledge elements with anno-
tations to ingrate them into knowledge management. This
integration requires that for each annotation in code a cor-
responding decision knowledge element in the manage-
ment tool is created or linked. In consequence, all de-
cision knowledge elements were added to the UNICASE
model. Then, any other UNICASE knowledge element can
be linked with the decision knowledge element correspond-
ing to the annotation. However, an explicit link is needed to
relate code annotations and decision knowledge elements
in UNICASE. In our model, this is done by the Annotation-
Link knowledge element as the parent knowledge element
for CoreAnnotation and AugmentedAnnotation, which all
three were added to the UNICASE model. The Annotation-
Link provides a relation to the decision knowledge element
and uses the ID of the Eclipse marker for linking to an anno-
tation. In addition, the current revision of the code file and
the decision knowledge element is stored. These revisions
are updated, whenever a change in code or knowledge man-
agement impacts an annotation. So, a collaborative, dis-
tributed usage of annotations is supported. This mapping is
depicted in Figure 4.

In our approach, developers are enabled to create, mod-
ify or delete both annotations and knowledge elements as
summarized in Table 1. For new annotations, developers
decide to either create a related decision element or link
the annotation to an existing one. Then, annotations can
be related to any further UNICASE elements representing
the related external knowledge. Modifying annotations re-
quires the corresponding decision elements to be updated,

Figure 3. Create Elements using Annotations

Repository of 

version control 

system (svn)

Knowledge 

repository 

(UNICASE)

Code file Annotation
Decision 

element

UNICASE 

elementLinked toContains

AnnotationLink element

Code revision, 

Knowledge revision

Related to Related to

Figure 4. Relating Code Annotations and De-
cision Knowledge via AnnotationLink

whereas updates of decision elements in UNICASE may
also require an annotation update. Considering our wizard
example, a developer can document how the wizard class
was embedded in the existing design. When annotations or
their related decision elements are deleted, the related An-
notationLink is removed. If a deleted annotation was used
to create a decision element, this corresponding element is
also removed. If a decision knowledge element is updated
or deleted, the related annotations also have to be updated or
deleted within the code. However, this is currently not im-
plemented due to restrictions and missing functionality in
the employed Eclipse version 3.7. Through these actions,
our annotation model enables developers to link any ex-
ternal knowledge consistently with annotations and thereby
fulfills R3.

4 Evaluation

To investigate the practicability of our approach for other
developers, we performed a first case study with students.
We present its results in this section. However, this does not
show the practicability of our approach in industry.

Context We performed a case study within a practical
course for undergraduate students in computer science at
Heidelberg University. Within the course, 7 participating
students were grouped in two development teams in or-
der to realize a software development project with identical
project descriptions. Their task was to plan, implement and
document an Eclipse plugin. We acted as the “customer”

Table 1. Impact of Developer Actions

Action Performed on Annotations Performed on
UNICASE Elements

Create Create new decision knowledge
element or link existing one

No effect on annotation

Modify Update decision knowledge
element content, references,
AnnotationLink

Update annotation, An-
notationLink

Delete Delete decision knowledge ele-
ment, AnnotationLink

Delete annotation, An-
notationLink



in both projects and provided an initial set of requirements
as scenario descriptions, which were not changed during
the project. Both projects were divided into three sprints
lasted three weeks from mid February until the beginning
of March 2015. For both teams, an initial tutorial for UNI-
CASE and the code annotations was held to reduce the vari-
ability of competency concerning the annotations for the
students. In addition, we provided textual explanations on
how to use the code annotations to both teams. However,
there was no mandatory rule for the students to use the an-
notations during implementation in order to get a realistic
impression of the actual annotation usage. At the end of
each sprints, the teams held a presentation to report on their
current progress.

Research Questions and Method Our goal was to inves-
tigate the practicability of our approach referring to the re-
search question: Is the annotation model and its implemen-
tation practicable to document implementation decisions?
To evaluate this question, we build upon the Technology
Acceptance Model (TAM) [9] to explore the actual use of
our approach. TAM consists of three variables: Ease of use
describes the degree to which a person expects the approach
to be effortless, usefulness is defined as the subjective prob-
ability for a person to increase job or work performance
and intention to use determines a persons’ willingness to
use the approach in the future. We assessed these variables
with three anonymous questionnaires. Each questionnaire
belonged to one sprint. They were answered by the students
after each sprint presentation. We derived questions on us-
ing the annotations for each variable, as listed in Table 2.
All questions were formulated as statements with defined
answers in order to ensure the comparability of the students’
responses. With statement #1 and #2, we distributed our in-
vestigation of ease of use on the creation and usage of anno-
tations. Statement #3 and #4 address usefulness and inten-
tion of use for the entire approach. The answers represent a
six point Likert scale [14], as this is an established approach
in survey research. If the majority of subjects marks four or
higher on the scale, we consider a statement to be accepted.

Table 2. Questionnaire Statements

No. Statement Variable

#1 It was easy to create decision elements with
code annotations.

Ease of use

#2 It was easy to locate decision elements
within the Eclipse Code Editor.

Ease of use

#3 Code annotations have been useful for the
documentation of decisions.

Usefulness

#4 In the future I would use code annotations
again to document decisions.

Intention of use

Table 3. Questionnaire Results

Sp
ri

nt
no

.

St
at

em
en

tn
o.

St
ro

ng
ly

di
sa

gr
ee

D
is

ag
re

e

R
at

he
r

di
sa

gr
ee

R
at

he
r

ag
re

e

A
gr

ee

St
ro

ng
ly

ag
re

e

N
ot

us
ed

,n
o

an
sw

er

∑ D
is

ag
re

e,
A

gr
ee

A
cc

ep
te

d

1
#1 0 0 0 0 1 2 4 0 / 3 yes
#2 0 0 0 2 1 1 3 0 / 4 yes
#3 0 1 0 3 1 1 1 1 / 5 yes

2
#1 0 0 0 1 2 1 3 0 / 4 yes
#2 0 0 0 2 1 1 3 0 / 4 yes
#3 0 1 0 0 1 3 2 1 / 4 yes

3

#1 0 0 1 0 3 2 1 1 / 5 yes
#2 0 1 0 0 3 0 3 1 / 3 yes
#3 0 0 1 0 2 2 2 1 / 4 yes
#4 0 1 1 0 4 1 - 2 / 5 yes

Note, that only questionnaire 3 contained statement #4, as
it addresses the overall experience with annotations during
all sprints. For this statement, the “not used”-answer was
not given. As the number of students does not permit to
achieve statistical evidence, we also asked for rationale and
comments in general and for each statement. This allowed
us to collect as much individual feedback as possible.

Results The results from all questionnaires are presented
in Table 3. Over time, more students used the code anno-
tations, so that the sum of “Not used, no answer”-results
slightly declines in sprint 3. Whereas the high number of
”Not used, no answer”-answers especially in the first sprint
provides only a limited support for the statements, no state-
ment has to be rejected according to the number of rejecting
answers. In consequence, this indicates that our approach is
practicable for documenting implementation decisions with
annotations. Multiple students pointed out in their feed-
back, that the approach was very useful to document deci-
sions within the code in order to remember and reflect them.
However, there was also a rejecting answer in the first two
questionnaires concerning the usefulness of the annotations
and several rejecting answers in the last questionnaire. This
might be due to some errors in the integration of annotations
and the code versioning system, which caused decisions to
be represented at incorrect locations within the code. These
errors partly are related to the employed Eclipse version 3.7
and were not entirely fixed during the course. Also, af-
ter trying our approach some students made proposals for
functionality enhancements. For instance, they proposed to
add keywords to annotations in order to create references to
other decisions when typing the annotation.

Threats to Validity According to Runeson et al. [18],
four different types of threats to validity have to be con-



sidered for our study. Concerning the internal validity, the
students’ knowledge was varying and they were not ex-
perienced in software engineering. To address this factor,
we provided a tutorial for our approach and grouped the
teams according to the students’ subjective experience lev-
els. However, missing experience could not be balanced
completely. Concerning the external validity, the develop-
ment projects had a rather small size regarding time, re-
quirements, and team size. So, the evaluation of the useful-
ness of our approach might be affected. In addition, the re-
sults for the investigated student projects are incomparable
to industry projects due to different project settings. How-
ever, Eclipse is a common tool in industry and also UNI-
CASE has been used in an industry setting [10]. So, we
believe that the usage through the students gives a first in-
dication that our approach is useful in practice. Concerning
construct validity, the questionnaires could have measured
something different than TAM, as they were not evaluated
prior to the study. However, we used typical questions for
TAM. Reliability validity can be impacted by the fact, that
the students knew we were investigating decision annota-
tions. But this impact is unlikely to be high, as the investi-
gators were not involved in the students’ grading.

5 Conclusion and Future Work

This paper presented an approach to document imple-
mentation decisions using annotations in source code. The
approach supports the structured and incremental capture of
decisions within code without switching to a documentation
tool. Moreover, external knowledge from knowledge man-
agement tools can be linked to annotated decisions. To the
best of our knowledge no other approach addresses all of
these requirements. The approach consists of an annotation
model and is integrated with the knowledge management
tool UNICASE. Evaluation results of a first case study were
presented, which indicate the practicability of our approach.

In our future work, we will extend and improve our im-
plementation of the annotation model. For instance, bugs
with the integration of the code versioning system in the
current implementation should be fixed and more code ver-
sioning systems (e.g., git) should be integrated. Moreover,
we want to realize the functionality improvements acquired
in the case study. Augmented annotations in our model
could be extended, so that they can handle keywords as ref-
erences on former or similar decisions. We also plan to ex-
ecute further case studies in advanced practical courses and
industry to overcome the shortcomings of the current study.

Acknowledgement This work was partially supported by the DFG
(German Research Foundation) under the Priority Programme SPP1593:
Design For Future — Managed Software Evolution. We thank all students
participating in our case study.

References

[1] EMF. http://eclipse.org/modeling/emf/ (05-2015).
[2] EMFStore. http://eclipse.org/emfstore/ (05-2015).
[3] UNICASE. http://unicase.org/ (05-2015).
[4] Update Site for Decision Annotations. http://svn.ifi.uni-

heidelberg.de/unicase/0.5.2/ures/decdoc-features/ (05-2015).
[5] B. Bruegge, O. Creighton, J. Helming, and M. Koegel. Uni-

case - An Ecosystem for Unified Software Engineering Re-
search Tools. In International Conference on Global Soft-
ware Engineering, pages 1–6. IEEE, 2008.

[6] J. E. Burge and D. C. Brown. Software Engineering Using
RATionale. Journal of Systems and Software, 81(3):395–413,
2008.

[7] G. Canfora, G. Casazza, and A. De Lucia. A Design Ratio-
nale Based Environment for Cooperative Maintenance. In-
ternational Journal of Software Engineering and Knowledge
Engineering, 10(5):627–645, 2000.

[8] J. Cleland-Huang, M. Mirakhorli, A. Czauderna, and
M. Wieloch. Decision-Centric Traceability of Architectural
Concerns. In International Workshop on Traceability in
Emerging Forms of Software Engineering, pages 5 – 11.
IEEE, 2013.

[9] F. D. Davis, R. P. Bagozzi, and P. R. Warshaw. User Ac-
ceptance of Computer Technology: A Comparison of Two
Theoretical Models. Management Science, 35(8):982 – 1002,
1989.

[10] J. Helming, J. David, M. Koegel, and H. Naughton. Inte-
grating System Modeling with Project Management - A Case
Study. In 33rd Annual IEEE International Computer Soft-
ware and Applications Conference, pages 571–578. IEEE,
2009.

[11] T.-M. Hesse and B. Paech. Supporting the Collaborative
Development of Requirements and Architecture Documenta-
tion. In 3rd Int. Workshop on the Twin Peaks of Requirements
and Architecture at RE2013, pages 22 – 26. IEEE, 2013.

[12] A. Jansen and J. Bosch. Software Architecture as a Set of
Architectural Design Decisions. In 5th Working IEEE/IFIP
Conference on Software Architecture (WICSA’05), pages
109–120. IEEE, 2005.

[13] A. J. Ko, R. DeLine, and G. Venolia. Information Needs in
Collocated Software Development Teams. In 29th Interna-
tional Conference on Software Engineering (ICSE’07), pages
344–353. IEEE, 2007.

[14] R. Likert. A Technique for the Measurement of Attitudes.
Archives of Psychology, 22(140):1–55, 1932.

[15] R. Lougher and T. Rodden. Supporting Long-term Collab-
oration in Software Maintenance. In Conference on Orga-
nizational Computing Systems - COCS ’93, pages 228–238.
ACM Press, 1993.

[16] T. Ngo and G. Ruhe. Decision Support in Requirements En-
gineering. In Engineering and Managing Software Require-
ments, pages 267–286. Springer, 2005.

[17] B. Paech, A. Delater, and T.-M. Hesse. Integrating Project
and System Knowledge Management. In G. Ruhe and
C. Wohlin, editors, Software Project Management in a
Changing World, pages 161–198. Springer, 2014.

[18] P. Runeson, M. Höst, A. Rainer, and B. Regnell. Case Study
Research in Software Engineering. Guidelines and Examples.
Wiley, 1st edition, 2012.

[19] C. Zannier, M. Chiasson, and F. Maurer. A model of design
decision making based on empirical results of interviews with
software designers. Information and Software Technology,
49(6):637–653, 2007.


	Introduction
	Background and Related Work
	Annotation Model for Decision Knowledge
	Evaluation
	Conclusion and Future Work

