
Topic Matching Based Change Impact Analysis
from Feature on User Interface of Mobile Apps

Qiwen Zou1, Xiangping Chen2,∗, Yuan Huang1,3
1School of Information Science and Technology, Sun Yat-sen University, Guangzhou, China, 510006

2Institute of Advanced Technology, Sun Yat-sen University, Guangzhou, China, 510006
3Ocean University of China, Qingdao Haier Intelligent Home Appliance Technology Co.,Ltd, Qingdao, China

Email: cathyzqw@163.com, chenxp8@mail.sysu.edu.cn, huangyjn@gmail.com

Abstract—The complexity of mobile applications often lies in
the user interface (UI). To update function provided by UI or just
fix bugs related to UI, software maintainers primarily need to
obtain the location of source code implementation and detect
change set. Since UI related feature is tightly related to the
class containing the declaration of the UI component, this paper
proposes a topic matching based change impact analysis method
from feature on user interface of mobile apps. Our approach
combines LDA model with program dependency to realize the
change impact analysis. Considering app′s small scale and few
comments, a novel preprocessing method combining tf-idf with
term weight based on structural information is applied to LDA
model. Experiments on 16 update records of 4 open source apps
show the effectiveness of our proposed method.

I. INTRODUCTION

With the rapid development of mobile application industry,
most mobile applications (i.e., apps) are updating frequent-
ly, which challenges software maintainers. During software
maintenance, developers must spend much efforts on program
comprehension when related documents are missing and even
original developers are no longer available. However, to seek
out relative classes manually is difficult and time-consuming.
Change impact analysis [12] is always a special topic of
determining potential consequences of a proposed change.

Different from traditional software, the user-friendly of apps
has become a key point to attract users thus modifying user
interface (UI) is frequent. In addition, app has to deal with
users′ various requirements through UI and this can be error
prone for UI with the complexity of the demands [1]. Thus we
guess frequent function update is associated with app UI and
it′s an active area of software maintenance tasks. To validate
our conjecture, we manually browse 1007 update records of
306 apps collected from Google Play Store1, in which 458
changes are related to function provided by UIs, excluding
these changes such as data storage, configuration file and
ambiguous changes (fix bugs, improve performance, etc.). The
rate which reaches 45% shows a frequent modification of
source code related to UI. Detailed data are available in the
online appendix2. Further, we investigate keywords on UI and
want to know how many words appearing on UI will exist in

1http://www.androidcentral.com/google-play-store
2http://research.defool.me/dataset/website/1.html
DOI reference number: 10.18293/SEKE2015-078

the topics. Results suggest an average of 35%, which indicates
that function provided by UI can be well described by topics.

To update function provided by UI or just fix bugs related to
UI, software maintainers primarily need to obtain the location
of source code implementation and detect change set (i.e.,
classes that may be modified to accomplish an update of app
UI). Feature location is always an option and then change
impact analysis can help to find relative classes. A UI related
software feature is tightly related to the class containing the
declaration of the UI component providing its corresponding
function. In this context, locating the feature on UI can
automatically detect an initial class for impact analysis.

In recent years, text retrieval model such as Latent Dirichlet
Allocation (LDA) [3] is generally used to locate feature while
impact analysis depends on program dependency [9, 10, 12].
However, to do impact analysis for the update of feature
provided by UI, those information implied by keywords on
UI is very important, using LDA to mine relative classes and
combining program dependency, we expect to obtain improved
recommended list of classes. Considering app′s small scale
and few comments, using entire source code corpus not
just identifiers and comments is essential. If so, the words
extracted may contain too much noise, extracting topic directly
from source code may be less effective. Novel preprocessing
techniques term frequency-inverse document frequency (tf-idf)
and structural information based term weight can be applied
to filter out less meaningful words and make topics prominent.

In this paper, we propose a topic matching based change
impact analysis method for maintaining UI of apps. Our
approach starts from locating software feature on UI to its
implementation in source code as the initial class for impact
analysis. Then, we combine LDA with program dependency
to realize change impact analysis. For LDA, a novel prepro-
cessing method combining tf-idf with term weight is applied.

We have conducted experiments on 16 update records of 4
open source apps to evaluate the effectiveness of our method,
results show that our approach works well for recommending
appropriate classes for corresponding feature on UI.

II. RELATED WORK

A. Feature Location
Feature location, also called concept location, is a program

comprehension phase during software maintenance to detect

source code implementation of features of target system [2]. In
recent years, most researches on feature location have focused
on (semi-)automated techniques to alleviate manual operation.
The most common analysis techniques are static, dynamic,
textual, or a blend of several analysis approaches. Static anal-
ysis just uses source code text. Independently and in parallel,
some other researches [6, 7] use dynamic information (i.e.,
execution trace) gathered from scenarios to locate features.

In particular, textual analysis based on modern information
retrieval technique, LDA [3] and LSI [4], has been increasing
popular. Marcus et al. [4] propose LSI-based feature location.
Dynamic analysis combining with LSI (SITIR) results in a
better performance comparing with LSI alone [7]. Lukins et al.
[8] have evaluated LDA-based feature location. Experiments
with Eclipse and Mozilla suggest LDA-based approach is more
effective than using LSI for this task. An approach based on
genetic algorithm is proposed by Annibale Panichella [10] to
detect a near-optimal configuration for LDA which leads to a
higher accuracy of feature location. Considering the structural
characteristics of source code different from natural language,
Blake Bassett [9] introduces a novel term weighting scheme
for LDA to improve accuracy of feature location.

In our research of detecting relative classes for correspond-
ing function provided by UI, feature location with character-
istics of apps is used to find initial class for change impact
analysis. Meanwhile, considering the effectiveness of LDA for
detecting functional related classes in those previous works,
we combine the information mined by LDA with program
dependency to perform impact analysis.

B. Change Impact Analysis
Change impact analysis is used to determine the potential

consequences of a proposed change during software main-
tenance [12]. In recent years, change impact analysis for
software maintenance is hot. Acharya, M. et al. [11] design
a static program slicing based method to do change impact
analysis for large and evolving industrial software systems.
Malcom Gethers et al. [13] configure a best-fit including
information retrieval, dynamic analysis, and data mining of
past source code commits to present an adaptive approach to
perform impact analysis from a proposed change. Hoa Khanh
Dam Dam [12] makes efforts on impact analysis for client-
based systems. On the whole, there have various techniques
supporting change impact analysis from procedural to object-
oriented system [11, 12, 13, 14, 15].

Different from those researches, our method starts change
impact analysis with a recommended class which is auto-
located with our tool while traditional approach selects an
initial class that needs to be changed by developers. In
addition, we perform change impact analysis by combining
linguistic information with structural dependency of source
code.

III. APPROACH

A. Approach Overview
Fig. 1 shows the overview of our approach. In the general

framework, users provide interface feature as a query and a

Fig. 1. The approach overview

recommended list related to the function of the UI is identified
with which developers can easily detect relative classes.

Our approach starts from locating software feature on UI
of mobile apps to its implementation class in source code by
matching the ID of UI component.

For topic extraction, novel preprocessing techniques, tf-
idf and term weight, are applied. Term weight technique
based on the conjecture that the importance of words among
different entities (e.g., classes, methods, attributes and others)
are different and tf-idf technique stemming from information
retrieval are applied to filter out less meaningful words and
core words are taken as input for LDA.

Two class lists ranked based on dependency relation and
topic matching degree are taken as input to rank its possibility
of being impacted when maintaining the app feature on UI.

B. Feature Location
For change impact analysis, the primary step is locating the

initial source code implementation of function provided by
app UI, feature location is always an option.

Considering the special characteristics of apps, we model
feature on UI of apps as feature =< ID, keywords >, in
which ID is the unique identifier of UI component in the whole
app project and keywords are core words on UI or close related
to this component (i.e., words existing in the ID). When text
information on UI is too long and indistinctive or there has
no words on the corresponding component, words in ID are
considered to build keywords. Keywords are used to construct
query for LDA model described in next part. ID is used to
locate the initial class declaring this component. Based on our
previous work on searching UI component of apps [18], we
develop an auto-locating tool3 to find ID and detect the initial
class by just clicking this component using a screenshot of the
UI. This tool is developed based on the characteristics of apps
that every component has unique ID and unique location on
its belonging UI. When user is running an app and he wants to
modify one component or function provided by the component
on a UI, our tool can help to locate the initial location.

Fig. 2 represents examples of optimization of message list
in project Faceless and music scan in project Kjmusic. The
red rectangular box in Fig.2 (a) shows a message list in which

3http://research.defool.me/uidroid/

Keywords: message list
ID: R.id.listViewMessages

(a)

Keywords: scan
ID: R.id.scan_music_title

(b)
Fig. 2. Examples of components on UI of apps.

text is too long and words are less significant, we use core
words in the id R.id.listViewMessages to build keywords. If
we need to alter the display of message or add information on
the list, we can click this part and locate the initial class. And
in Fig.2 (b), we build keywords with text information (scan
music) in the red rectangular box which is distinctive after
being translated into English. We can click this part to obtain
corresponding initial class and update the function of music
scan.

C. Topic Extraction
The generation of topic model has following steps. Abstract

Syntax Tree (AST4) can be used to extract the information
of source code. Then, the documents are preprocessed. LDA
outputs the word-topic probability distribution and the topic-
document probability distribution. Thus, LDA model is con-
structed and can be queried with keywords of feature on UI.

1) Source Code Preprocessing: Common preprocessing
steps include identifiers splitting, abbreviations expanding,
removing stop words and stemming. In our method, we use
novel preprocessing techniques, term weight and tf-idf to
process source code corpus aiming at filtering out noise words
and making topics prominent.

a) Term weight technique: This technique is proposed based
on the experience that term in different entities (i.e. class,
method etc.) has different importance by Girish Maskeri [16].
Considering the hidden but important information, term weight
is taken into account to make important terms outstanding.

Empirically, a weight-based rule f : Ttype
yields→ v that

assigns various positive integers v to five types of terms (i.e.,
all types T={term in class names, term in method names,
term in attribute names, term in comments, term in others}) is
applied. To differentiate the importance, for example, v(class)
is assigned higher than v(method) because in object-oriented
software system, class as functional implementation of do-
main problem, it is more promising to acquire the intended
functional knowledge encoded in the class name than method.
And empirically, other values v(comment), v(attribute),
v(other) are assigned diminishingly. Then, we use formula

4c2.com/cgi/wiki?AbstractSyntaxTree

weighti,j =
∑

Ttype∈T

v(Ttype)× ni,j (1)

to calculate weight sum of term i in document j. ni,j denotes
the number of occurrences of i in the forms of Ttype in
document j. Further, we normalize term weight weighti,j to
ωi,j with the fomula

ωi,j =
weighti,j∑

k∈D

weightk,j
(2)

because different documents have different size of vocabulary
and ωi,j reflects term′s importance to the document j.

b) tf-idf technique: This technique is used to evaluate the
importance of a word to a document in corpus and has been
widely used in the domain of information retrieval. In our
study aiming at removing noise words, tf-idf is applied.

tw (term weight) denotes the proportion of word i in
document j. tfi,j is the number of occurrences of word i in
document j and m stands for the number of different words
occurring in document j.

twi,j =
tfi,j

m∑
k=1

tfk,j

(3)

tf-idf (term frequency-inverse document frequency) is pro-
posed with the principle that the importance of word i to doc-
ument j is in proportion to tfi,j while inversely proportional
to the number of documents dfi containing the word i. And n
is the number of all documents in the corpus.

tf − idfi,j = twi,j × log
n

dfi
(4)

Both in term weight and tf-idf technique, threshold needs to
be set to filter out less meaningful words. A word with higher
value is more representative of the document than others. We
use cut points δweight and δtf−idf . Word i in the document j
will be retained if ωi,j > δweight and tf − idf i,j > δtf−idf , if
the weight ωi,j or tf − idf i,j for a word is low, that means the
word is not significant and can be considered as noise word.

2) Model Generation: Latent Dirichlet Allocation (LDA) is
a probabilistic generation model from the term occurrences in
a corpus, proposed by Blei et al [3]. Source code documents
are taken as input for LDA, the documents are considered
unstructured and described as bag-of-words in which the
order of the words is neglected. Through training, LDA
expects to obtain two matrix θd =< pt1, pt2, ..., ptk > and
φt =< pw1, pw2, ..., pwn >. For each document d, pti denotes
probability that d maps to topic ti. For each topic t, pwi

denotes probability that word wi belongs to t. For those results,
documents having the same relevant topic are grouped into the
same cluster.

In our approach, the classes of app source code are taken
as a collection of documents. For that, we use term weight
technique and tf-idf technique for preprocessing, appropriate
thresholds should be set to choose the most likely words
reflecting corresponding document, which lays a solid foun-
dation for our purpose of change impact analysis. Therefore,

we invite three graduate students of Sun Sat-sen University
to manually check the words retained by preprocessing with
a large number of experiments through reduplicated adjusting
and feedback, so that near-optimal thresholds can be obtained.
To avoid any bias, students are not aware of the experimental
goals.

We apply LDA to this entire collection of preprocessed data
with Gibbs sampling. The number of Gibbs iterations n is
required while every iteration samples a topic for each word.
In addition, the Dirichlet hyperparameter for topic proportions
∂ and the Dirichlet hyperparameter for topic multinomials β
need to be set to control the smoothing of the model. For those
configuration parameters, we use suggested values from [17],
∂ = 0.5, β = 0.1. Moreover, we set the number of topics and
the number of top words in a topic by taking account of both
app scale and the number of keywords on app UI.

3) Feature Query: As is illustrated in the section of intro-
duction, we find that core words on UI will exist in topics. In
that case, feature on UI can be matched with a topic and even
mapped to source code classes. Having modeled feature on UI,
we use keywords of feature as query, those words have been
processed so that they can be matched with topic words. For
each query, we compute the similarity of the feature and all
topics and select the most similar topic using words matching
(i.e., the topic is more relative when more words exist in both
query and this topic). Then topic-document distribution is used
to sort classes with descending order, we name it as LDA list.

D. Change Impact analysis
Having located the initial class, change impact analysis is

used to detect recommended list. Dependency graph (actually a
tree, the child B of a node A is its relative class, including two
cases that A depends on B and B depends on A) starting with
the initial class can be obtained. This dependency graph gives
relative classes and dependency depth and can be constructed
as a dependency list (DG list) in which the initial class is
always in the first place, and the children of a node have
no certain sequence. Source code class with smaller depth
indicates it is more likely to be changed to adapt to the update.
To keep the parent-child relationship, parent class is attached
to every class in the DG list.

Finally, an improved recommended list will be generated
by change impact analysis combining LDA list with DG
list. Topics are functional description of source code, and
dependency graph represents structural relations. However, in
DG list, a class as a child node may have higher probability
assigned by LDA than a class as parent node when parent class
is used as an interface to this child class and doesn′t implement
core function. In theory, the parent class is important for
feature update. In that case, we reassign the probability P
of every class A in the LDA list considering the probabilities
of its all children B1, B2, ..., Bn, namely,

P (A) = max(P (A), P (B1), P (B2), ..., P (Bn)) (5)
where n is the number of A′s all children. And the parent-
child relationship can be detected in the DG list. In addition,
the class in LDA list may be unreachable in DG list, in most

TABLE I
THE PERCENTAGE OF KEYWORDS AND TOPIC WORDS

App
project

Classes Words
on UI

Keywords Nt =
Ni

Nt =
2Ni

Nt =
3Ni

Lightning-
Browser

21 131 74 24.32% 39.19% 39.19%

Notify 95 339 114 26.32% 35.09% 35.09%
Jamendo 115 70 52 21.15% 28.85% 28.85%
EasyToken 24 198 78 15.38% 24.36% 25.64%

cases, this class is not related to the function of the UI and
can′t be impacted by the update, so we remove it from LDA
list. Consequently, the order of classes in the topic is optimized
and we obtain final recommended list.

IV. EXPERIMENTS

We have conducted an empirical study to evaluate the effects
of our method. In this section, we discuss the significance of
change impact analysis from feature on app UI, as well as
present and evaluate the resulting data.

A. Research Motivation
The key point of our research is based on the following

question:
Is the change impact analysis from feature on app UI

meaningful and promising?
We extract words on app UI, the data are simply prepro-

cessed and we remove repeated words. Meanwhile, we use
LDA to extract topics, composed of a couple of words, from
source code corpus. We expect to validate that the function of
UI can be well described by topics. Representative results are
shown in Table I. The percentage of how many words existing
on UI are in topics lists in the five column when the number of
topic words Nt equals the number of keywords Ni, and when
Nt is double of Ni the percentage lists in the six column, and
so on.

From Table I, we can see that core words on UI will appear
in topics, the large percentage is near 40% when the rate
is double and it is lower when Nt = Ni. However, many
experiments show no larger percentage when we continue
increasing the number of the topic words. In that case, we
go deep in the projects to check those unmatched words, such
as please, sure, thanks for EasyToken. Obviously, those words
are less significant for this app comparing with these words
such as easy token. Therefore, we can conclude that those
unmatched words are not core words, if appropriate number
of topics and number of top words in a topic are set, the
query using keywords on UI can find matched topic, and then
find corresponding classes with different probability. For more
data, this online appendix5 is avaliable.

B. Data Set & Effectiveness Measure
Our approach is used to recommend a list of classes which

are probably affected by maintaining a software feature on UI.
We evaluate our method with update history of apps to see the
position of changed classes related to an update of UI in the
list. As a result, we choose open source apps with well-written
source code and available update records.

5http://research.defool.me/dataset/website/2.html

TABLE II
THE EXPERIMENT DATA

App
project

Change Update
Date

All
Classes

Update
Classes

Change Description Feature-keywords

Oschina

01 2014-02-19 162 9 Fixes the function of report message report message
02 2014-02-24 162 7 Added welcome screen to start different figure with different festivals start welcome
03 2014-02-10 162 1 Fixes flashing with tweet audio player audio player tweet
04 2014-03-03 162 5 Fixes the keyboard up when refreshing detail message detail editor
05 2012-09-14 162 2 Fixes a bug that users cant use the camera to upload new image user image editor

Kjmusic

06 2014-01-29 41 5 Optimization of scan interface scan
07 2014-01-28 41 1 Repair the bug that current play pictures is hidden after disappearing player picture
08 2014-01-28 41 2 Optimization of lyrics playlist UI display interface lrc
09 2014-01-15 41 4 Repair logic error of playing a looping pattern loop mode play

Faceless

10 2014-12-09 30 5 Display approximate distance to message author on Android message list
11 2014-12-09 30 2 Added location input when composing message in Android location input
12 2014-12-11 30 5 Added ’Nearby’ messages feature on Android nearby message
13 2014-12-15 30 1 Hide secondary options in message compose window by default advance option

expand message

Jamendo

14 2012-09-13 114 1 Fixes preset naming preset equalizer
15 2012-07-05 114 2 User can customizer equalization customizer

equalization
16 2011-04-14 103 9 Added paginated retrieval of all Album’s tracks album track

We choose 4 open source apps in our experiment: Oschina6,
Kjmusic7, Faceless8, Jamendo9. Oschina is an open source
china community for sharing open source software. Faceless
is an anonymous social software where you can talk freely.
Kjmusic and Jamendo are two music players. The words on
UI of Oschina and Kjmusic are Chinese, we use a translator
to translate them into English during feature location.

Table II summarizes app information that we use to conduct
the experiments, including update date, the number of classes
and update classes, change description and feature-keywords.
We use a number to denote a change in our paper.

To evaluate the performance of our method, we use the
effectiveness measure in [9] to evaluate our results. Descriptive
statistics is to go deep in the ranked list to check the position
of the updated classes including min, median, max. And min,
median, max represents the rank of first class, middle class,
last class that are related to the update, respectively.

In addition, we change mean reciprocal rank (MRRC) as the
average of the reciprocal of the location of relevant classes:

MRRC =
1

|C|

|C|∑
i=1

1

ri
(6)

where C are all classes related to an update, and ri is the rank
of the relevant class in the recommended list. A higher MRRC
implies a better rusults.

C. Results and Analysis
In this section we represent the results of topic matching

based change impact analysis method from feature on UI for
four apps. For the reason that it′s firstly proposed, we use
traditional LDA results without considering term weight and
tf-idf (LDA), LDA list (CLDA) and DG list (DG) to compare
with and discuss the advantages of our method.

6http://git.oschina.net/oschina/android-app
7http://git.oschina.net/kymjs/KJmusic
8https://github.com/delight-im/Faceless
9https://www.jamendo.com/en/

1) MRRC: Fig. 3 shows MRRC for 16 changes described
in Table II. Compared with LDA, CLDA and DG, our method
generally obtains higher MRRC than others which implies a
better performance. And obviously, LDA with novel prepro-
cessing obtains higher accuracy than traditional LDA. Some-
times, our method seems poorer than DG when doing minor
changes, actually they are the same because the probabilities
of the first few classes are the same such as change 15, the
probability of the first class is the same as that of the second
class. In addition, it′s obvious that there have break points
in the DG line for change 03, 07, 13, 14 because we don′t
show MRRC of DG when there is only one changed class.
For that, feature location can always detect the initial class
and the comparison is less promising.

2) Descriptive Statistics: This part we report the descriptive
statistics for 16 changes of our method compared with LDA,
CLDA and DG in Table III.

The character “-” in the table denotes meaningless results
as explained in MRRC. We note a better performance (i.e.,
lower rank) of our method compared with LDA, CLDA and
DG. In addition, the results of traditional LDA show that
topics are scattered and its accuracy is lower than CLDA. Our
method takes advantage of both DG and CLDA so that min
is almost 1 (some are not because the probabilities of the first

Fig. 3. MRRC of our method compared with LDA, CLDA and DG

TABLE III
DESCRIPTIVE STATISTICS OF OUR METHOD COMPARED WITH LDA, CLDA, DG

Change Our Method LDA CLDA DG
Min Median Max Min Median Max Min Median Max Min Median Max

01 1 7 105 2 76 162 2 106 161 1 22 94
02 1 5 70 1 106 152 1 16 162 1 13 60
03 1 1 1 10 10 10 9 9 9 - - -
04 1 4 7 2 4 6 1 3 6 1 23 25
05 1 1.5 2 4 46 84 1 15 30 1 37.5 75
06 1 8 11 1 9 39 1 6 40 1 3 18
07 4 4 4 18 18 18 3 3 3 - - -
08 3 6 9 8 14 20 7 10.5 14 2 4 6
09 1 5 30 1 20 40 1 9 39 1 3.5 9
10 1 5 17 1 4 29 1 24 30 1 12 19
11 1 2 3 4 16.5 29 1 5.5 10 1 5 9
12 1 7 15 3 14 29 1 11 26 2 9 19
13 3 3 3 7 7 7 3 3 3 - - -
14 3 3 3 2 2 2 3 3 3 - - -
15 2 3 4 1 1.5 2 1 1.5 2 1 40 79
16 1 9 90 1 31 115 1 36 92 1 13 24

several classes are the same) and most of the classes that are
updated are in lower rank. However, this combination may
make some results (larger rank) worse when CLDA and DG
interact together. For change 02, our method obtains lower
rank except max because the max of CLDA is large that affects
our recommended list. For that, Fig. 3 shows overall results
that the effect is little and our method is effective for change
impact analysis from feature on app UI.

V. CONCLUSION AND FUTURE WORK

In this paper we propose topic matching based change
impact analysis from feature on UI of mobile apps. Focusing
on the function of app provided by UI, we firstly model it
with keywords and ID and help users find appropriate classes
related to the update of the function.

In our method, we develop a tool to locate the initial location
by just clicking this component using a screenshot of the UI.
Then, we use LDA to model source code in which novel
preprocessing techniques (i.e., term weight, tf-idf) are applied
and keywords related to UI are used as query to acquire proper
class list with descending probability. Finally, dependency
graph (DG) starting with initial class is detected, we take
the advantage of DG and LDA with novel preprocessing
techniques to do impact analysis, experiments with four apps
show a better performance of our method.

In future work we plan to investigate change impact analysis
from feature on UI at method level. In addition, we find some
updates related to UI just modify the layout file (i.e., .xml),
how to discover those files is also meaningful.

ACKNOWLEDGMENT

This research is supported by NSFC-Guangdong Joint Fund
(No. U1201252), the Educational Commission of Guangdong
Province (No. 2013CXZDB001), the Fundamental Research
Funds for the Central Universities, and the National Science
& Technology Pillar Program (No. 2012BAH12F02).

REFERENCES
[1] Zhifang Liu, Xiaopeng Gao and Xiang Long, Adaptive random testing of

mobile application, in Proceedings of the 2nd International Conference
on Computer Engineering and Technology (ICCET 10), IEEE Computer
Society, Washington, DC, USA, 2, 297-301.

[2] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, Feature location in
source code: a taxonomy and survey, Journal of Software: Evolution and
Process, vol. 25, pp. 53-95, 2013.

[3] Blei, D. M., Ng, A. Y., Jordan M I, and Jordan, M. I. , Latent Dirichlet
Allocation, Journal of Machine Learning Research, vol. 3, pp. 993-1022,
2003.

[4] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and
Harshman, R., Indexing by Latent Semantic Analysis, Journal of the
American Society for Information Science, vol. 41, pp. 391-407,1990.

[5] A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic, An information
retrieval approach to concept location in source code, in Proc. of the11th
Working Conf. on Reverse Engineering, 2004, pp. 214C223.

[6] Cornelissen, B., Zaidman, A., Van Deursen, A., Moonen, L., and Koschke,
R., A systematic survey of program comprehension through dynamic
analysis, Software Engineering, IEEE Transactions on, 2009, 35(5): 684-
702.

[7] D. Poshyvanyk, Y. Gueheneuc, A. Marcus, G. Antoniol, and V. Rajlich,
Feature location using probabilistic ranking of methods based on execu-
tion scenarios and information retrieval, IEEE Transactions on Software
Engineering, vol. 33, no. 6, pp. 420C432, Jun. 2007.

[8] S. Lukins, N. Kraft, and L. Etzkorn, Source code retrieval for bug
localization using latent Dirichlet allocation, in Proc. of the 15th Working
Conf. on Reverse Engineering, 2008.

[9] B. Bassett and N. A. Kraft, Structural information based term weighting
in text retrieval for feature location, in IEEE Int’l. Conf. on Program
Comprehension, 2013, pp. 133-141.

[10] Panichella A, Dit B, Oliveto R, et al., How to effectively use topic models
for software engineering tasks? An approach based on genetic algorithms,
in ICSE, 2013, pp. 522C531.

[11] Acharya, M., Robinson, B, Practical change impact analysis based on
static program slicing for industrial software systems, in Proceedings of
the 33rd international conference on software engineering. ACM, 2011.

[12] Hoa Khanh Dam Dam, Automated change impact analysis for agent
systems, in Software Maintenance (ICSM), 2011 27th IEEE International
Conference on (pp. 33-42). IEEE.

[13] M. Gethers, H. H. Kagdi, B. Dit, and D. Poshyvanyk, An adaptive
approach to impact analysis from change requests to source code, in
ASE, 2011, pp. 540C543.

[14] Yi Wang, Jian Yang, Weiliang Zhao, Change impact analysis for service
based business processes, IBM Systems Journal, 2005, 44(4): 653-668.

[15] Kama, N., Azli, F, A change impact analysis approach for the software
development phase, in Software Engineering Conference (APSEC), 2012
19th Asia-Pacific (Vol. 1, pp. 583-592). IEEE.

[16] Maskeri, Girish, Santonu Sarkar, Kenneth Heafield. Mining business
topics in source code using latent dirichlet allocation, in Proceedings
of the 1st India software engineering conference. ACM, 2008.

[17] Biggers L R, Bocovich C, Capshaw R, et al., Configuring latent Dirichlet
allocation based feature location, Empirical Software Engineering, 2012.

[18] Kaiyuan Li, Zhensheng Xu, Xiangping Chen, A platform for searching
UI component of android application, in ICDH 2014, Nov. 28-30, 2014,
Guangzhou, P. R. China.

