
Impact of Unanticipated software evolution on 

development cost and quality: an empirical evaluation 
 

Rodrigo Vilar 

Exact Sciences Department 

Federal University of Paraíba 

Rio Tinto, Brazil 

rodrigovilar@dce.ufpb.br 

Anderson Lima, Hyggo Almeida, Angelo Perkusich 

Embedded Systems and Pervasive Comp. Lab. 

Federal University of Campina Grande 

Campina Grande, Brazil 

anderson.lima, hyggo, perkusic@embedded.ufcg.edu.br

 

 
Abstract—Most techniques to aid maintenance and evolution of 

software require to define extension points. Generally, developers 

try to anticipate the parts that are more likely to evolve, but they 

can make mistakes and spend money in vain. With Unanticipated 

Software Evolution, developers can easily change any element of 

the software, even those that are not related with an extension 

point. However, we have not found empirical validations of 

Unanticipated Software Evolution impact on development cost 

and quality. In this work, we design and execute an experiment 

for Unanticipated Software Evolution (specifically, using the 

COMPOR platform), in order to compare its results metrics --

time, lines of code, test coverage and complexity -- using OO 

systems as baseline. 30 undergraduate students were subjects in 

this experiment. We concluded that COMPOR have significant 

impact on the Lines of code and Complexity metrics, reducing the 

amount of lines changed and the McCabe cyclomatic complexity 

on evolution of a small system. 

Keywords-Unanticipated Software Evolution, Cost, Quality, 

Empirical software engineering, Software Evolution. 

I.  INTRODUCTION 

Some studies estimate that maintenance and evolution tasks 
spend between 50% and 90% of software development budget 
[13, 8]. Thus, Software Engineering researchers invest 
considerable resources in order to create new techniques that 
ease and reduce the cost of software evolution. Most of these 
techniques require developers to anticipate extension points 
(EP), which are flexible structures to hold new functionality 
and changes. 

 However, there is a trade-off: defining an EP is abstract 
and expensive; conversely, it is even more expensive to change 
software pieces that are not prepared for it. So, for each EP 
created, we expect a ROI (return of investment), deriving out of 
reducing the cost of later changes that use the same EP. For this 
reason, developers try to discern and isolate software chunks 
inclined toward change. Nevertheless, sometimes they do not 
predict EP correctly and ROI is zero. 

 Unanticipated Software Evolution (USE) is a Software 
Engineering approach, which aids developers to change any 
software fragment, even without EP [12]. It considers that is 
possible to reduce the cost of software evolution and preserve 
its quality, even when there is not investment to create EP. As a 

result, it would eliminate the trade-off we cited above and 
developers would not worry to create EP. 

 In an effort to confirm USE hypothesis, we have analyzed 
all articles published on USE events [12, 10, 11]. Nevertheless, 
none of these studies have validated the influence of USE on 
software development metrics such as quality and cost. In face 
of this gap, we define a business problem for this work. 

Business Problem: There is no convincing evidence on how 

USE influences software development metrics. 

In this paper, we perform an early evaluation of COMPOR 
[5, 6], a USE platform developed by Embedded Laboratory at 
UFCG 

1
, whose code is open source and is available online

2
. 

COMPOR is a container for components that communicate 
with each other indirectly, through a specific message 
mechanism. So that components have weak coupling and can 
be easily changed. In fact, COMPOR can even change 
components at run time.  

We have defined a technical problem, reducing our scope to 
COMPOR and using more specific software development 
metrics. 

Technical Problem: There are not empirical studies that 

investigate COMPOR influence on software development cost 

and quality. 

We propose an experiment to fulfill this gap on USE 
validation. Since COMPOR is a USE platform, its 
experimental outputs are also USE results. So, we try to 
evaluate USE impact over software development through 
COMPOR.  

Cost and Quality are abstract metrics. So we choose 
concrete metrics for our experiment. We measure Cost as the 
time spent and lines of code changed in order to complete a 
software evolution task. Likewise, we assess Quality being 
Cyclomatic complexity and Test coverage of code after 
evolution. 

 In an ideal configuration, the experiment should use 
professional developers to implement systems with two 
alternatives – coding using only Object oriented code or using 

                                                           
1
 http://www.embeddedlab.org 

2 http://bit.ly/COMPOR 

 

DOI: 10.18293/SEKE2015-074 



COMPOR – and compare the Time, LoC, Complexity and 
Coverage results. This way we would infer COMPOR impact 
on software development, considering OO results as baseline.  

Due to resources and time limitations, we performed our 
experiment with undergraduate students, during an OO Design 
course. Carver et. al. [3] state that the risk of using 
inexperienced students is justifiable for pilot experiments. This 
kind of experiment would not be generalizable, but it 
contributes to fix experiment design problems and to guide 
future replications on professional development environments. 

At this point, we can define our objective and hypotheses 
using the GQM template. 

Objective: The purpose of this study is to measure the 
impact of COMPOR on evolution cost (time spent and lines of 
code changed) and quality (tests coverage and complexity) 
[16], from the point of view of software developers, in the 
context of evolution tasks for a small system implemented by 
undergraduate students, using plain Object Oriented 
implementations as baseline.  

Hypothesis 1: COMPOR systems require less time to 
complete evolution tasks than plain OO systems;  

Hypothesis 2: COMPOR systems change less lines of code 
to complete evolution tasks than plain OO systems;  

Hypothesis 3: COMPOR systems have better test code 
coverage after evolution tasks than plain OO systems;  

Hypothesis 4: COMPOR systems have lower cyclomatic 
complexity after evolution tasks than plain OO systems. 

In the remaining of this paper, we show the related work, 

describe COMPOR features, detail the experiment design, 

analyze the experiment results and point out our conclusions 

and future work. 

II. RELATED WORK 

We have divided this section into two parts. Firstly, we review 

the literature about USE, looking for concrete tools and their 

empirical validation. After that, we show some experimental 

works for software evolution, similar to our experiment. 

A. Unanticipated software evolution 

We have found some USE works in literature. Oreizy et. al. 
defined an architecture for run-time software evolution [14]. 
Keeney and Cahill created a framework for dynamic adaptation 
[9]. Wurthinger et. al. modified a Java virtual machine to allow 
arbitrary runtime changes at any point at which a Java program 
can be suspended [19]. Piechnick et. al. propose a role-based 
composition system that enables the adjustment of 
unanticipated, dynamic self-variation of applications in a fine-
grained manner [15]. However these works did not evaluated 
empirically the impact of USE on software cost and quality. 
Therefore, we expanded the scope of our literature review to 
experimental evaluation of software evolution. 

B. Software evolution experiments 

While investigating software evolution literature, we found 
several experimental studies that evaluated aspects of 
evolution.  

Arisholm and his partners worked three times with 
alternative designs for a coffee machine simulator, which sells 
and prepares drinks [4], in order to: evaluate changeability of 
systems with good and bad design [2]; measure the effect of 
sequence in which maintenance tasks are performed on the 
time required to perform them and on the functional 
correctness of the changes made [18]; evaluate the effect of 
centralized versus delegated control design on software 
maintainability [1].  

Deligiannis et. al. have replicated the [1] study, using other 
programming language, enhancing the evolution tasks and 
collecting more metrics [7]. Sfetsos et. al. used the coffee 
machine project to investigate the impact of developer 
personalities and temperaments on communication, pair 
performance and pair viability-collaboration [17].  

In spite of not focusing on USE, these works helped us to 
design a comparative experiment for COMPOR. 

III. COMPOR 

This section explains the Unanticipated Software Evolution 
features of COMPOR that we evaluated in an experiment. 
COMPOR has a generic and formal specification for a 
component container. It defines the components structure and 
their indirect communication, decoupling components and 
easing their change. For example, in Fig. 1, a component A 
needs to invoke a service of another component B, A does not 
invoke B directly. Instead, B should declare a service named as 
s and A could use the COMPOR API to invoke service s. The 
COMPOR container discovers automatically where s is 
declared and invokes it. 

In a hypothetical evolution scenario, the system client 
requires to change some functionality of s. The system 
developer only needs to deploy another component C that also 
declares a s service, replacing the former service from B. A and 
other components that invoke s are not aware of that change, 
since they do not know B and C components directly.  

Currently, there are four COMPOR implementations, for 
Java, C#, C++ and Python languages. In this experiment, we 
used the Java Component Framework for COMPOR, which 

defines two API classes: ComporFacade, that must be 
extended to create the system entry point and to deploy 

components; and Component, that must be extended too, in 
order to declare services and invoke services of other 
components. 

IV. EXPERIMENT DESIGN 

A. Experimental Units 

With a view to run this experiment using evolution tasks, 
we needed to choose a system to be implemented by the 
experiment subjects. We decided to use a small system, which 
can be completely implemented by just one developer, rather 
than a big one that demands several developers working 
together. 

The coffee machine problem fits this small-system 
requirement. It has also been replicated on several experimental 
studies. So, we have decided to use the same project (with 
some adaptations) for this experiment. 



 

Figure 1.  COMPOR: Declaring and invoking. 

We planned its development as evolution tasks, which are 
the Experimental Units of our experiment.  

The original coffee machine problem has four phases [4]: 
Payment with coins, four types of drink with the same price, 
cancel drink and return coins; add a new drink type with 
another price; use employees badges to directly debit the cost 
of drink purchases from paychecks; dynamic drink 
configuration.  

We have partitioned these phases into 50 small tasks, so 
that developers can achieve better success rates on evolution 
tasks. Among these tasks there are also some new tasks that we 
have added to fill some missing functionality, e. g., loading 
coins on machine start in order to provide change.  

Since COMPOR is a tool that starts operating from 
software design, the experiment does not need to measure 
COMPOR influence on requirements and analysis development 
phases. Therefore, we have simulated that requirements and 
analysis phases were already finished, and provided automatic 
functional tests for each evolution task. The functional tests run 
against a specific coffee machine Facade, which can be 
implemented using COMPOR or plain object orientation.  

Next subsections detail the treatments designed to run with 
the experimental units.  

B. Input: Independent variables 

Factor: Technology 
The main focus of this experiment is to compare result 

metrics of evolution tasks, between implementations that used 
COMPOR versus other versions that used plain OO. Therefore, 

the experiment contains a simple design with only one 
interesting factor, which has two levels: using COMPOR or 
using plain OO. The other sources of variation are undesired. 
So, we have designed the experiment in order to neutralize 
their effect over dependent variables. 

Undesired controlled variable: Participants 
The experiment engaged 30 third-year students of 

Licentiate in Computer Sciences at UFPB, which were taking 
an OO Design course. The OO Design teacher used this 
experiment to grade the students in a practical project. Each 
student has different levels of experience in OO programming. 
While some of them work as junior developers on start-ups, 
others have almost no programming skills. Before the 
experiment, all students already had classes of refactoring 
techniques and design patterns. 

To reduce the effect of developer experience, we have 
allocated them into random pairs. In fact, when we compared 
the final grading score in OO Design class, the score standard 
deviation for individuals was 0.89. In other hand, the score 
standard deviation for the experiment pairs was 0.61. 
Therefore, we suggest that pair randomization really reduced 
the developer experience effect. Each pair performed pair 
programming during the evolution tasks. Moreover, the 
experiment design uses replication for participants, because 
each pair should carry out all evolution tasks. We divided the 
15 student pairs randomly into two groups. The first five pairs 
should use COMPOR in the coffee machine implementation 
and the other ten pairs must use plain OO. 

Undesired not controlled variable: Environment  
There are some events that we cannot control and would 

impact the experiment results, such as, climate, holidays, 
students transportation problems, etc. In order to reduce the 
environment effect, we have designed the experiment in a 
controlled manner. All students worked in a laboratory at 
UFPB with similar schedule, resources and instructions to 
execute 

C. Procedures 

Preparing 
We have prepared some guidelines to guide students 

through experiment: 

 An Experiment Manual
3

, explaining experiment 
conditions, purpose, resources, steps, auxiliary 
documentation and glossary; 

 A Web Form to manually collect experimental unit 
configuration and time spent metric; 

 Auxiliary documentation containing pseudo code, 
because instead of evaluating algorithms, we want to 
analyze design decisions; 

 A Github repository for a coffee machine specification, 
containing a sequence of 50 tags (one for each 
evolution task). Each tag defines the functional tests, 

                                                           
3
 http://bit.ly/CoffeeMachineExperiment 



using jUnit 
4
 and Mockito

5
 , for its respective evolution 

task; 

 A tutorial which we have used to give a class about 
COMPOR; 

 A Github repository with the last COMPOR version. 

The students were also trained on: Git, to manipulate 
Github repositories; Maven, to manage projects dependencies; 
JUnit and Mockito, to understand and execute the functional 
tests; Facade design pattern, which was used by the functional 
tests. 

Executing  
In the Coffee machine Github repository, we have created a 

tag for each evolution task, with an X.YY format. Where X 
means the coffee machine phase (from 1 to 4) and YY is the 
evolution task inside of the phase.  

Beginning on tag 1.01 until tag 4.15, the student pair has to 
follow this procedure: 

a) Merge the current implementation code with the next 

tag (except for tag 1.01, which has not implementation); 

b) Set the task start time; 

c) Evolve the code until all functional tests pass; 

d) Set the task finish time; 

e) Commit the task final code and send it to Github;  
Submit the Web Form with task data, such as start and 

finish times, pair id, task id, technology and subjective 
questions about difficulties. 

The results of first five evolution tasks were fragile, since 
we consider it as training for experiment modus operandi. 

D. Output: Dependent Variables 

After the Executing procedure detailed above, we can 
collect several data about each evolution task. Github provides 
a diff report for each commit, so we can calculate the amount 
of lines of code changed by the evolution task. The time spent 
is collected from a spreadsheet populated by the web form.  

Collecting Complexity and Coverage data is harder, since 
we need to access each evolution task final code and run the 
Cobertura Maven plugin

6
. It generates an HTML report with 

total test code coverage and mean McCabe cyclomatic 
complexity. 

V. ANALYSIS 

In this section, we show the experiment result data and its 
transformations, in order to try to obtain normal-distributed 
data. We also perform some statistical tests and interpret the 
models results. After all, we check the hypotheses defined in 
Section 1. 

A. Results and Transformations 

The initial 26 experiment tasks (1.01 to 1.26) represent the 
first coffee machine requirement. While the subsequent ones 
represent evolution tasks. Due to software evolution 

                                                           
4
 http://www.junit.org 

5 http://code.google.com/p/mockito/ 
6 cobertura.github.io/cobertura/ 

importance and COMPOR evolution nature, we focused our 
analysis on evolution tasks (2.01 to 4.15).  

Each student pair worked 35 hours in this experiment, but 
only one pair finished all evolution tasks successfully. All 
teams submitted approximately 500 experimental task logs.  

We have ignored some data due to the following reasons: 

 After task 4.01 there is not enough data to perform 
statistical tests;  

 Three COMPOR teams used COMPOR poorly. Their 
Facades are replete of OO code and invoke COMPOR 
only three times. By comparison, the two remaining 
teams have smaller Facades and invoke COMPOR 8 
and 23 times, respectively; 

  The 3.02 Task alone weakened all COMPOR metrics. 
Since, in the 3.03 task, the metrics returned to normal 
levels, we consider the former task as an outlier. 

This resulted in 338 observations that we have analyzed 
using the R statistical language. The tasks data, R code and 
program output are available online

7
.  

In the scope of this experiment, tasks size vary a lot and 
absolute data for response variables did not tend to be normally 
distributed. With this in mind, we have transformed raw 
experiment data into relative values based on the mean OO 
metrics for each task. For example, the mean Time for all OO 
teams on task 1.01 was 35 minutes. So, instead of using the 
absolute Time value for Team 01 on this task (106 minutes), 
we have made statistical tests using the respective relative 
value (302% of OO mean). The relative data became closer to 
the normal distribution than the absolute data. 

After that, we applied a log transformation into Time and 
LOC metrics and they become almost normally distributed. We 
did not find any transformation that made Coverage and 
Complexity data normal. So, these variables were tested with 
non-parametric methods.  

Since the experiment generated a lot of observations, we 
have decided to split the observations into seven sequential task 
groups of about 50 observations. After that, we made separated 
statistical tests for each task group. Therefore, we compared 
OO and COMPOR metrics seven times during experiment 
execution and got temporal conclusions for experiment results.  

The task groups had different configurations for each 
response variable (Time, LOC, Coverage and Complexity). We 
made some group adjustments in order to find group 
boundaries where response variables change behavior. This 
approach optimized the results of statistical tests. 

Firstly, we tested the normality and homoscedasticity of 
data for each combination of task group and response variable, 
for both OO and COMPOR teams. In the sequence of analysis, 
we used t tests for normal data and Wilcox tests for non-normal 
data, in an effort to discover significant relations between 
COMPOR and OO data: Do COMPOR metrics differ of OO 
metrics? Are COMPOR metrics lower than OO metrics? And 

                                                           
7
 http://bit.ly/ComporExperimentResults1 



are COMPOR metrics greater than OO metrics? At least, we 
performed Power tests to analyze the probability of type II 
errors. 

B. Interpretation 

The relative Time spend to complete tasks (Table 1) had an 
alternating behavior in the experiment beginning. Between 1.04 
and 1.24 tasks, 12 tasks spent less time with OO and 9 tasks 
spent fewer time with COMPOR. These results have 
considerable significance (p-value < 0.03) and power above 
0.7.  

As the experiment reached evolution tasks, COMPOR and 
OO metrics equalized. In spite of the low statistical power, this 
data indicates the COMPOR Time spent for evolution tasks is 
better than its own Time for development tasks. We should 
replicate this experiment, in order to obtain sufficient data until 
the 4.15 task and analyze the metrics trends. There still is one 
question: will COMPOR Time tend to equate OO Time 
infinitely or COMPOR will overcome OO?  

In relation to the LOC metric, the relative amount of lines 
changed is equal for both technologies until task 1.25. The last 
9 (evolution) tasks demanded less lines for COMPOR versions. 
As Table 1 shows, these data is significant and has statistical 
power above 0.5.  

Regarding Test Coverage, we gave equal and fixed tests, 
mapping each task requirements, for all teams. So, low 
coverage rates mean that a team created a lot of unnecessary 
code, which reduces the code quality.  

COMPOR teams had better coverage in the first 11 tasks 
and equals coverage in the middle 23 tasks. However, in the 
last 4 tasks, OO teams got better coverage results. This means 
that COMPOR teams wrote more unnecessary code in the 

experiment end and the use of COMPOR would impact system 
quality.  

Finally, we analyzed the Complexity metric, where the first 
15 tasks had similar results for both technologies. In the 11 
intermediary tasks, the COMPOR teams code complexity was 
significantly lower than OO code. The last 8 (evolution) tasks 
showed similar results again, but with low statistic power. This 
means that there is a great probability that the statistical tests, 
which are not significant for tasks 2.01 - 4.01, were wrong. 
This data needs more replication to enhance the last tests power 
and find out Complexity trends: does COMPOR continue to 
generate code with lower complexity as system increases? This 
answer can be found in a future work. 

C. Hypothesis test 

Hypothesis 1: Does COMPOR systems require less time to 
complete evolution task than plain OO systems?  

There is no significant trend on the impact of Technology 
factor on the Time teams took to perform the evolution tasks. 
So, we REJECT this hypothesis.  

Hypothesis 2: Does COMPOR systems require less lines of 
code to complete evolution task than plain OO systems?  

COMPOR teams changed less lines of code to implement 
evolution tasks. So, we ACCEPT this hypothesis. 

Hypothesis 3: Does COMPOR systems have better test 
code coverage after completing evolution task than plain OO 
systems?  

For almost all tasks, the Technology factor did not have 
significant impact on test coverage after evolution tasks, in the 
COMPOR versus OO comparison. 

TABLE I.  STATISTICAL TESTS FOR TIME, LOC, COVERAGE AND COMPLEXITY RESPONSES VARIABLES. 

Variable Task group Normal data Equal variance 
Statistical tests (p-value) 

Statistical power 
COMPOR != 0 COMPOR < 0 COMPOR > 0 

T
im

e 

1.04 - 1.07 Yes Yes 0.042 0.021 NS 0.78 

1.08 - 1.11 Yes Yes 0.003 NS 0.001 0.96 

1.12 - 1.16 Yes Yes 0.048 0.024 NS 0.73 

1.17 - 1.24 Yes Yes 0.054 NS 0.027 0.75 

L
O

C
 1.26 - 3.01 No NA 0.053 0.026 NS 0.51 

3.03 - 4.01 Yes Yes NS 0.064 NS 0.59 

C
o

v
er

ag
e 

1.01 - 1.04 No NA 0.058 NS 0.029 0.74 

1.05 - 1.07 Yes No 0.087 NS 0.043 0.46 

1.08 - 1.11 No NA NS NS 0.091 0.63 

3.03 - 4.01 No NA 0.016 0.008 NS 0.999 

C
o

m
p

. 1.16 - 1.20 No NA 0.044 0.022 NS 0.999 

1.21 - 1.26 No NA 0.021 0.01 NS 0.99 

a. This table shows only  significant statistical results. 



Moreover, in the last evolution tasks, OO teams wrote code 
with better coverage than COMPOR ones. So, we REJECT this 
hypothesis.  

Hypothesis 4: Does COMPOR systems have lower 
cyclomatic complexity after completing evolution task than 
plain OO systems?  

In spite of the final evolution tasks inconclusive results, 
COMPOR teams produced less complex code for 11 
intermediary tasks. Therefore, we ACCEPT this hypothesis. 

D. Threats to validity 

Conclusion validity 
Due to the low experience of the experiment subjects, we 

have noticed that most pairs did not take care of system design. 
They just want to finish the most tasks possible. These groups 
have written bad code and randomly made some refactoring, 
which could have influenced some results. We suggest, in 
future replications of this experiment, to reserve a period of 
time, after each task, only to perform refactoring. 

Random irrelevancies can affect results, such as lack of 
internet, hardware problems on PCs, etc. Another threat is 
related to human experimental subjects who can easily change 
their behavior over time, generating noise to the data. 

External validity  
The main threat to validity in this experiment is to 

generalize the results, from the sample we have chosen – 
undergraduate students – to the real population of 
programmers. In the context of a company, it is expected that 
employees have a reasonable leveling in relation to software 
development. On the other hand, the academic environment is 
very heterogeneous, in terms of ability and knowledge.  

Another problem is the generalization of COMPOR results 
to the whole class of Unanticipated Software Evolution tools, 
because COMPOR good metrics could be result of another 
COMPOR characteristic apart from USE. With this in mind, 
we hid most COMPOR function, such as, run-time adaptation 
and exposed only the inter-component communication. 

VI. CONCLUSIONS 

 In this work, we designed and executed the first 
experiment, as far as we know, for Unanticipated Software 
Evolution that measures the effects of this technique on 
development cost and quality.  

We consider the experiment design as a valid contribution, 
because it can be easily replicated with better configurations in 
order to obtain more relevant results. In the scope of this work, 
we have obtained some significant results for USE influence on 
development cost and code quality. While COMPOR 
significantly reduces the amount of lines changed and code 
complexity, it does not affect development time and code test 
coverage.  

As future works, we suggest the replication of this 
experiment with other configurations: providing with sufficient 
time to complete all evolution tasks, until task 4.15; inviting 
professionals to perform evolution tasks and given them better 
COMPOR training; and using other USE tools. After acquiring 

stronger evidences of USE hypothesis, other works may also 
measure COMPOR performance overhead. 

REFERENCES 

[1] E. Arisholm and D. I. Sjoberg. Evaluating the effect of a delegated 
versus centralized control style on the maintainability of object-oriented 
software. Software Engineering, IEEE Transactions on, 30(8):521–534, 
2004.  

[2]  E. Arisholm, D. I. Sjøberg, and M. Jørgensen. Assessing the 
changeability of two object-oriented design alternatives–a controlled 
experiment. Empirical Software Engineering, 6(3):231–277, 2001.  

[3]  J. Carver, L. Jaccheri, R. Morasca, and F. Shull. Issues in using students 
in empirical studies in software engineering education. In In IEEE 
METRICS, page 239. Prentice Hall, 2003. 

[4] A. Cockburn. The coffee machine design problem: Part 1 & 2. C/C++ 
Users Journal, may/june 1998. 

[5] H. de Almeida, A. Perkusich, E. Costa, and R. Paes. Compor: a 
methodology, a component model, a component based framework and 
tools to build multiagent systems. CLEI Electronic Journal, 7(1), 2004.  

[6] H. O. de Almeida, A. Perkusich, G. Ferreira, E. Loureiro, and E. de 
Barros Costa. A component model to support dynamic unanticipated 
software evolution. In Proceedings of the Eighteenth International 
Conference on Software Engineering & Knowledge Engineering 
(SEKE’2006), San Francisco, CA, USA, July 5-7, 2006, pages 262–267,  
2006. 

[7] I. Deligiannis, P. Sfetsos, I. Stamelos, L. Angelis, A. Xatzigeorgiou, and 
P. Katsaros. Assessing the modifiability of two object-oriented design 
alternatives– a controlled experiment replication. In Proceedings 5th 
EUROSIM Congress on Modelling and Simulation, 2004. 

[8] L. Erlikh. Leveraging legacy system dollars for ebusiness. IT 
professional, 2(3):17–23, 2000.  

[9] J. Keeney and V. Cahill. Chisel: A policy-driven, context-aware, 
dynamic adaptation framework, 2003. 

[10] G. Kniesel, P. Costanza, and J. L. Fiadeiro. Second international 
workshop on unanticipated software evolution, Apr. 2003.  

[11] G. Kniesel and T. Mens. First international workshop on foundations of 
unanticipated software evolution, Mar. 2004.  

[12] G. Kniesel, J. Noppen, T. Mens, and J. Buckley. First international 
workshop on unanticipated software evolution, June 2002.  

[13] B. P. Lientz and E. B. Swanson. Software Maintenance Management. 
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 
1980.  

[14] P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture-based runtime 
software evolution. In Proceedings of the 20th International Conference 
on Software Engineering, pages 177–186. IEEE Computer Society, 
1998.  

[15] C. Piechnick, S. Richly, S. Gotz, C. Wilke, and U. Aßmann. Using role-
based composition to support unanticipated, dynamic adaptation 
smart application grids. In ADAPTIVE 2012, The Fourth International 
Conference on Adaptive and Self-Adaptive Systems and Applications, 
pages 93–102, 2012. 

[16] D. Racodon. Developers’ seven deadly sins, July 2014. 

[17] P. Sfetsos, I. Stamelos, L. Angelis, and I. Deligiannis. An experimental 
investigation of personality types impact on pair effectiveness in pair 
programming. Empirical Software Engineering, 14(2):187–226, 2009.  

[18] A. I. Wang and E. Arisholm. The effect of task order on the 
maintainability of object-oriented software. Information and Software 
Technology, 51(2):293–305, 2009. 

[19] T. Wurthinger, C. Wimmer, and L. Stadler. Unrestricted and safe 
dynamic code evolution for java. Science of Computer Programming, 7 
2011. 


