
DOI reference number: 10.18293/SEKE2015-073

Scaffolding MATLAB and Octave Software

Comprehension Through Visualization

Ivan de M. Lessa, Glauco de F. Carneiro

Universidade Salvador (UNIFACS)

Salvador/Bahia, Brazil

ivan.lessa@gmail.com,

glauco.carneiro@unifacs.br

Miguel P. Monteiro

Universidade Nova de Lisboa (UNL)

NOVA LINCS

Lisbon, Portugal

mtpm@fct.unl.pt

Fernando Brito e Abreu

Instituto Universitário de Lisboa
(ISCTE-IUL)

Lisbon, Portugal

fba@iscte-iul.pt

Abstract— Multiple view interactive environments (MVIEs)

provide visual resources to support the comprehension of a specific

domain dataset. For any domain, different views can be selected

and configured in a real time fashion to be better adjusted to the

user needs. This paper focuses on the use of a MVIE called

OctMiner to support the comprehension of MATLAB and

GNU/Octave programs. The authors conducted a case study to

characterize the use of OctMiner in the context of comprehension

activities. Results provide preliminary evidence of the effectiveness

of OctMiner to support the comprehension of programs written in

MATLAB and Octave.

Keywords – software visualization; MATLAB/Octave; software

comprehension.

I. INTRODUCTION

Multiple view interactive environments (MVIE) provide
resources to support data analyses and unveiling information that
otherwise would remain unnoticed [1][4]. This work is focused
on MATLAB [8] and Octave [11] programs, following reports
in the literature that indicate a lack of support for the
comprehension of programs coded in these languages. We
contribute to fill this gap by implementing a MVIE named
OctMiner. Following previous research on this topic [2][9], we
conducted a case study using OctMiner to support the
comprehension of MATLAB/Octave programs, which aims at
characterizing the MVIE support to identify crosscutting
concerns.

This paper is structured as follows: section II describes key
functionalities of OctMiner and its architecture; section III
presents two case studies to characterize OctMiner as a means to
support MATLAB/Octave program comprehension; section IV
proposes a set of usage strategies to be performed with OctMiner
for comprehension purposes. Finally, section V presents the final
considerations and outlines opportunities for future work.

II. MULTIPLE VIEW INTERACTIVE ENVIRONMENTS

Visualization is a means of providing perceivable cues to
several aspects of the data under analysis to reveal patterns and
behaviors that would otherwise remain unhighlighted and
unnoticed [13]. Card et al. [1] proposed a well-known reference
model for information visualization. According to them, the
creation of views goes through a sequence of successive steps:
pre-processing and data transformations, visual mapping and
view creation. Carneiro and Mendonça [3] extended this model

to adapt it to the context of MVIEs. Figure 1 shows the extended
model, emphasizing that the visualization process is highly
interactive. Moreover, it enables the combined use of resources
of a multiple view interactive environment. The process starts
with original (raw) data obtained from a repository that
undergoes a set of transformations to be organized into data
structures suitable for information exploration. This process is
called data transformation [3]. Next, the data structures are used
to assemble visual data structures. Those structures organize
data properties and visual information properties in ways that
facilitate the construction of visual metaphors. This step defines
the mapping from real attributes – which are derived from the
data properties, software attributes, in our case – to visual
attributes such as shapes, colors and positions on the screen. This
process is called visual mapping [3]. It is important to highlight
that these activities do not deal with rendering, but rather with
building suitable data structures from which the views can be
easily computed and rendered. The final step, presented in
Figure 1, is the view transformation, aimed at drawing the
information on the screen to produce the views. In this step, a
specific visual scene is actually rendered on the computer screen
[3].

Figure 1. An Extended Reference Model for MVIEs [3]

Nunes et al. [10] proposed a toolkit implemented as a Java
Eclipse plugin from which MVIEs could be developed. The
plugin provides a basic structure that allows the creation and
inclusion of new resources and functionalities to develop
MVIEs. Figure 2 presents the way the toolkit was used and
extended by other plugins to comprise the SourceMiner MVIE.
This MVIE was originally developed to support the
comprehension of Java source code. As can be seen in the figure,
the extension points of the toolkit.aimv plugin enable the
inclusion of new plugins to the MVIE. Each of the extension
points conveyed provides an interface with methods and their
respective signatures. In the case of OctMiner, we needed to
access and transform raw data – the Abstract Syntax Tree (AST)
of MATLAB/Octave programs – to a format compatible with the

visual data structure. According to the extended reference model
for MVIEs, this is a requirement to feed the views.

Figure 2. The MVIE SourceMiner [10]

Figure 2 presents a set of plugins that comprise the
SourceMiner MVIE. The following guides are available to help
MVIE developers: (1) Data Transformation: to extend the plugin
Import Module to implement the plugin sourceminer.modules;
(2) Creating and Applying Filters to extend the plugins Filter and
Filter View; (3) Creating Tools to extend the plugin Tools; (4)
Creating Views to extend the plugins Data Views and Tools.
These guides are available at [14].

Figure 3. OctMiner Architectural Overview [7]

The goal of the toolkit is to provide an infrastructure to

develop MVIEs for different domains. The domain targeted in

this paper comprises programs written in MATLAB/Octave.

A. THE MATLAB AND OCTAVE PROGRAM LANGUAGES

MATLAB is an interpreted language very popular among
students and researchers of physics, biomedical engineering and
related areas. It is not uncommon that a young engineer is fluent
in using MATLAB, but hardly familiar with C, and even less of
Fortran [5][15]. MATLAB has been used to teach linear algebra,
numerical analysis, and statistics. Since the MATLAB language
is proprietary, a similar language, named Octave was developed,
and is distributed under the terms of the GNU General Public
License. It was originally conceived in 1988 to be a companion
programming language for an undergraduate-level textbook on

chemical reactor design. Due to the similarities between these
languages, it is possible to interpret MATLAB programs in the
interpreter of the GNU/Octave with no major problems. The
main differences among the two languages are as follows: i)
Some similar routines can have different names in each
language; ii) Comments in MATLAB are written after “%”
while in Octave you can use both “%” and “#”; iii) In MATLAB
the control blocks (while, if and for) as well as the functions
delimiter all finish with “end” while in Octave you can also use
“endwhile”, “endif”, “endfor” and “endfunction” respectively;
iv) In MATLAB the not equal to operator is “˜=” while in Octave
“!=” is also valid; v) MATLAB does not accept increment
operators such as “++” and “—“, while Octave accepts them.

B. THE AIMV OCTMINER

The main motivation for representing concerns manifested

in MATLAB/Octave code in a MVIE is the enhancement of the

comprehension activities. The plugin structure supporting the

MVIE toolkit is the same as presented in Figure 2. The main

difference is that in this case the focus is on MATLAB/Octave

rather than Java. Figure 3 depicts the main four elements of

OctMiner: the Eclipse IDE RAP/RCP (Rich Clients and Rich

Ajax Applications), the Octclipse plugin, the Octave interpreter

and the MVIE toolkit proposed in [10]. The Eclipse IDE enables

its extension through the use of plugins. The MVIE toolkit does

this to provide its functionalities as well as enabling the

tailoring of the MVIE tailoring for the analysis of data from

different domains, e.g., the data gathered from

MATLAB/Octave programs.

We implemented an Analyzer module as presented in Figure

3, which is analogous to sourceminer.modules – see Figure 2. It

is an extension of the Import Module, whose goal is to import

and convert data from the original data repository to be

represented in the multiple views. The Octclipse plugin also

provides an Octave development environment built on top of

Eclipse's Dynamic Languages Toolkit. This environment

enables programmers to create Octave scripts (*.m files), edit

them in a multi featured text editor, run the Octave interpreter

and see results displayed in the IDE's console. OctMiner is

available at [14].

To provide a short illustration of the visualization

capabilities of OctMiner, Figure 4 shows a typical visualization

scenario. Part A is the Project Explorer, presenting all the

repository files; Part B is the Outline, showing the functions and

variables of a given file, when it is selected in the Project

Explorer. Part C provides editing access to the routine’s code.

Part F is a filter dashboard. Parts D, E and G are views

corresponding to several different visualization metaphors. For

instance, the Treemap view (G) provides panoramic view, e.g.,

of how names of routines are distributed in the file repository.

Colours represent different concerns (be they crosscutting or

no). We use the term “token” to refer to routine names from the

MATLAB/Octave systems. The List view (E) presents a list of

the files from the repository. The Grid view (D) is be used to

identify the tokens

Figure 4. A Typical Scenario of OctMiner Use in the Eclipse IDE [7]

used in the repository along with several different metrics, e.g.,

number of occurrence of each token in each file or in the whole

repository. This view can also be presented in several orderings,

depending on what is convenient. Full details on the

visualizations are provided in our ITNG paper [7].

III. COMPREHENSION ACTIVITIES WITH OCTMINER

This section presents a case study to characterize the use of
OctMiner in comprehension activities. In it, we investigate the
following question: to which extent OctMiner provides effective
support to identify potential symptoms of crosscutting concerns
in MATLAB programs? In the study, we analyze 22 MATLAB
image processing routines. The goal is the identification of the
dual symptoms of scattering and tangling in the routines, as
supported by OctMiner. Scattering [12] is the degree to which a
concern is spread over different modules or other units of
decomposition. Tangling [16] is the degree to which concerns
are intertwined to each other in the same routines. Both
scattering and tangling are indicators of the presence of
crosscuting concerns in program code.

The case study explores the potential of tokens to be
indicators of the scattering and tangling symptoms. The
approach is as follows: sets of tokens can be associated to a given
concern, which ideally would be modularized into its own file,
with no additional concerns. When the concern is not
modularized, its code is scattered across multiple files and its
associated tokens are found in such files – an indicator of
scattering. Often, such files also betray the presence of tokens
categorized under multiple concerns – an indicator of tangling.

To explore the aforementioned approach, participants
performed the following activities: i) Identify tokens most
commonly used in the 22 routines; ii) Characterize the

localization among files of the most commonly used tokens to
assess the symptoms of scattering; iii) Characterize the
relationship between the most commonly used tokens and other
tokens in the files to assess the symptoms of tangling; iv)
Determine the category (concern) to which the most commonly
used tokens belong; v) Using the category of each token, identify
the main functionalities (concerns) of the program. Using this
approach, it was possible to identify the top most commonly
used tokens in the analyzed routines and that this same tokens
presented evidences of scattering. This study was the starting
point for the use of OctMiner in comprehension activities.

We identified the following limitations in this study:
considering that the routines were already analyzed by
OctMiner, any new modification in the original routines will not
be reflected in the views until a new analysis is performed to
obtain these modification from the repository. In addition, the
user can only select the predefined color in OctMiner. It is also
not possible to define new colors in this version of OctMiner.
The need to configure the XML file with the tokens is also a
limitation. To overcome it, we intend to provide a XML file with
a large number of MATLAB and Octave functions and their
respective categories.

We recognize that OctMiner may not be able to provide

support for all kinds of comprehension needs. To better

characterize and validate its range of applicability, we plan

additional studies (see section V). Another potential threat to

validity is that both design and execution of the study were

performed by the same person. To overcome this issue, further

independent experiments will be carried out to compare results

more thoroughly.

IV. PRELIMINARY STRATEGY BASED ON OCTMINER

Results from this case study enable us to propose a
preliminary usage strategy based on OctMiner for
comprehension purposes. The strategy includes a
comprehension question as its starting point, which drives
subsequent steps. The question is related to tangling and
scattering, using a set of tokens from programs of a repository as
a basis. Table 3 presents the steps proposed from evidences
collected from this case study.

Table 3. A Proposed Set of Usage Strategies

Suggested Steps

1 - Select a question: the programmer needs to identify an issue

relevant for his daily activities. Answers to the question should be

available considering that the routines used in the code should be

registered in the OctMiner configuration file.

2 – Identify a target routine: it should be the routine that plays a

relevant role in the code of the primary solution to the selected

question.

3 – Locate repositories that use the target routine: since

OctMiner aims at assisting the comprehension of a given target

routine, it is desirable that routines using the target routine provide

good examples and be the subject of analysis.

4 – Identify the routines and their respective categories available

in the official documentation: alternative routines used in the

repository selected in Item 3 must also be identified. MATLAB and

Octave routines are categorized in the official language sites of

MATLAB and Octave.

5 – Register the target routine as well as other routines from the

repository in the OctMiner configuration file: the routines should

be registered in OctMiner configuration file using their specific

group, identified according to Item 4.

6 – Create a To-Do list for identification through visualization:
activities that the user must perform should be described so that the

study is conducted as well as possible within OctMiner.

7 – Implementation of the proposed activities: the user must run

OctMiner according to the activities set out in Item 6.

8 - Answer the original question: to prove the effectiveness of the

tool, the user should be able to answer the question that started the

process in Item 1.

V. CONCLUSIONS AND FUTURE WORK

This paper presents the following contributions: a) the
provision of an environment called OctMiner for the
comprehension of MATLAB/Octave routines supported by
multiple views; b) Evidences of the effectiveness of OctMiner to
support the identification of symptoms of code tangling and code
scattering as discussed in the study presented at section III; c)
the initial version of a sequence of steps for a strategy for the
usage of OctMiner for comprehension purposes.

A previous paper by the same authors describing the
architecture of OctMiner along with an illustrative example of
its main functionalities in a real scenario of program
comprehension, was presented at ITNG’2015 [7]. An extended
version of the present paper, where the validation case studies
are described in detail and additional information on the

proposal is provided, will appear in the proceedings of
ICCSA’2015 in Canada.

We will soon conduct a new version of a more detailed study,
based on answers posted at popular question-and-answers sites
(e.g., StackOverflow). We are planning research questions to
assess the extent to which OctMiner provides effective support
to clarify programmer´s issues. We believe OctMiner can help
programmers in understanding the context of use of a routine
through OctMiner‘s visualizations. Our goal is to gather
evidence of the effectiveness of OctMiner in supporting
acquisition of insights by means of the visualization of target
routines. We will base the next study on routines referred in
posts from question-and-answers sites.

REFERENCES

[1] Card, S. K., Mackinlay, J. and Shneiderman, B. Readings in Information
Visualization Using Vision to Think. San Francisco, CA, Morgan
Kaufmann, 1999.

[2] Cardoso, J.; Fernandes, J; Monteiro, M.; Carvalho, T; Nobre, R. Enriching
MATLAB with aspect-oriented features for developing embedded
systems. Journal of Systems Architecture 59 (2013) p. 412–428.

[3] Carneiro, G.; Mendonça, M.. SourceMiner: Towards an Extensible Multi-
perspective Software Visualization Environment. In: Slimane
Hammoudi;José Cordeiro;Leszek A. Maciaszek;Joaquim Filipe. (Org.).
Enterprise Information Systems. 1ed.: Springer International Publishing,
2014, v. 190, p. 242-263.

[4] Carneiro, G., Silva, M., Mara, L., Figueiredo, E., Sant’Anna, C., Garcia,
A., Mendonc¸ a, M., 2010. Identifying code smells with multiple concern
views. In: XXIV BrazilianSymp. on Software Engineering (SBES 2010),
IEEE Comp. Soc., Washington, DC, USA, pp. 128–137.

[5] Chaves, J.; Nehrbass, J.; Guilfoos, B.; Gardiner, J.; Ahalt, S.;
Krishnamurthy, A.; Unpingco, J., Chalker, A.; Warnock, A.; Samsi, S.
Octave and Python: High-Level Scripting Languages Productivity and
Performance Evaluation. In Proc. of the HPCMP Users Group
Conference (HPCMP-UGC '06).

[6] Data Explorer - StackExchange. Available at
http://data.stackexchange.com/.

[7] Lessa, I.; Carneiro, G.; Monteiro, M.; Abreu, F. A Multiple View
Interactive Environment to Support MATLAB and GNU/Octave Program
Comprehension. In: International Conference on Information
Technology:New Generations (ITNG), 2015, Las Vegas/EUA.

[8] MATLAB Programming Language. Available at
www.mathworks.com/products/matlab.

[9] Monteiro, M.; Cardoso, J.; Posea, S. Identification and characterization of
crosscutting concerns in MATLAB systems. In Conference on Compilers,
Programming Languages, Related Technologies and Applications
(CoRTA 2010), Braga, Portugal (pp. 9-10).

[10] Nunes, A.; Carneiro, G.; David, J. Towards the Development of a
Framework for Multiple View Interactive Enviironments. In:
International Conference on Information Technology:New Generations
(ITNG), 2014, Las Vegas/EUA. p. 23-30.

[11] Octave Programming Language. Available at
www.gnu.org/software/octave/.

[12] Robillard, M; Murphy, G. Representing Concerns in Source Code. ACM
TOSEM, 2007.

[13] Spence, R. Information Visualization: Design for Interaction (2nd Edition).
2. ed.Prentice Hall, 2007.

[14] SourceMiner Website. Available at www.sourceminer.org/octminer

[15] Stenroos, M.; Mäntynen, V.; Nenonen, J. A MATLAB library for solving
quasi-static volume conduction problems using the boundary element
method. - Computer methods and programs in biomedicine, 2007.

[16] Tarr, P.; Ossher, H.; Harrison, W.; Jr., N. Degrees of Separation: Multi-
Dimensional Separation of Concerns. ICSE, 1999.

