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Abstract—Addressing security in the software development 
lifecycle is an ever-present concern for software engineers and 
organizations. From a management and monitoring perspective, 
it is difficult to measure 1) the amount of effort being focused on 
security concerns during active development and 2) the success of 
security related design and development efforts. Such data is 
simply not recorded. If reliable measurements were available, 
software project leaders would have a powerful tool to assess risk 
and inform decision making. This would enable managers to 
direct development and testing to assure a desired level of 
security in their software products, to protect both their 
organizations and customers. To fill this need and provide such 
data, we propose a technique for performing topic detection on 
data commonly available in most software development projects: 
text artifacts from issue tracking and version control systems. We 
apply machine learning and natural language processing 
techniques to create classifiers capable of accurately detecting 
whether a given text snippet is related to the topic of security. 
Realization of such a capability will give software teams the 
ability to analyze current and past levels of security effort, 
revealing immediate project focus and the long-term impacts of 
security tasking. We validate our approach via experiments on 
data from the large-scale open source Chromium software 
project. Our results show that a Naïve Bayes classification 
scheme using an n-gram feature-space is an appropriate and 
effective approach to automated topic detection of software 
security text snippets, and that effective training data can be 
derived from public data sources without the need for manual 
intervention.  

Keywords-natural language processing; machine learning; 
software security; security; topic defection; classification; naïve 
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I.  INTRODUCTION 
Adequately injecting security into the software 

development lifecycle (SDLC) to ensure the creation of secure 
systems is a growing concern. Recent high profile security 
breaches in major industry and government organizations [1, 2, 
3] have shown the unsettling vulnerability of modern software 
systems, even those developed by mature technology firms 
with experienced software engineering teams. Industry has 
taken note, and is responding with initiatives such as 
Microsoft’s Security Development Lifecycle (SDL), a 
framework for formalizing and monitoring regular security 
effort throughout the SDLC [4]. In the open source community, 

equally prolific security holes have recently been exposed, 
including the high profile Heartbleed [5, 6] and Shellshock [7] 
vulnerabilities, which contribute to a broad threat faced by 
many technology sectors and industries. 

It is widely accepted that to achieve a high level of quality 
with regards to security in a software application, security as a 
quality attribute must be consistently addressed through all 
phases of the SDLC [4, 8, 9]. Techniques such as threat 
modeling, attack surface reduction, and penetration testing 
have been developed and put into practice in an attempt to meet 
this condition of secure software development [4, 10]. 
However, these techniques represent the injection of isolated 
activities at specific phases of the SDLC, not an overarching, 
consistent amount of concern for and effort towards security 
throughout software development. The goal of consistent 
security thought and effort in software development is 
hampered by the lack of robust means of identifying and 
measuring security effort within a software project or team. 

  Despite the efforts to regularize the reporting of security 
bugs (e.g., the CVE classification [11]), software development 
teams rarely record security bugs, tasks, or effort specifically. 
For this reason, accurate measurement of security effort is 
virtually impossible. In fact, our analysis of over 400,000 
project repositories hosted on Github, a popular open source 
project management system, showed that only 1.4% of projects 
using a labeling system for tasks made available to developers 
a label for security related issues. The ability to identify and 
measure, at any point in time, the amount and type of effort 
being dedicated to security would give software developers and 
project managers powerful new capabilities. For example, they 
could plan and track the levels of effort expended towards 
software security throughout the SDLC. Additionally, such 
capability would allow teams to recognize early when projects 
are at risk of lowering security quality through inattention, thus 
avoiding the unintentional injection of vulnerabilities into their 
software product. Further, if applied continuously (or even in 
hindsight), such a quantitative capability would allow architects 
and project managers to identify points of introduction of 
design flaws, process failures, architectural inconsistencies, or 
weakness in security process enforcement, enabling isolation of 
areas of code developed during these periods for more rigorous 
testing and maintenance. This data would also allow the project 
to make informed decisions about when the technical debt of 
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such flaws had accumulated sufficiently that it was 
economically advantageous to refactor the affected portions of 
the code base. 

For example, in other work we have shown how certain 
types of design flaws are consistently highly correlated with 
high bug and change rates [12, 13]. If these design flaws are 
not fixed, no amount of bug-finding and bug-fixing effort will 
result in higher quality software. We are interested to know 
whether the same patterns hold specifically for security bugs. If 
this were true then, armed with this information, a project 
manager could focus project resources on refactoring, to 
remove the design flaws, and hence systematically increase 
system security. But such an analysis is almost impossible 
today: most projects do not indicate which bugs in their issue-
tracking system or which commits in their Version Control 
System (VCS) are security related. We simply lack the raw 
information to perform this analysis. To address this 
shortcoming we have focused on filling this gap—that is, 
providing the missing information—in software development 
project situational awareness. In this way we can provide 
insight to software architects and project managers as to the 
ongoing security efforts within their projects based on a data-
driven assessment of their project repositories. 

To achieve this goal, two common sources of 
incontrovertible data were identified for use: 1) text from tasks 
entered into trackers and 2) text messages accompanying 
source code commits to a VCS. It is expected that most 
organized software development teams use both issue trackers 
and some form of VCS that provides the opportunity for 
commit messages, and as such that these data sources will be 
readily available in the vast majority of operational contexts. 
To quantify security effort using these sources of data, natural 
language processing (NLP) methods were applied to derive 
feature sets from the unstructured text data and machine 
learning classification methods were applied to determine 
whether each text snippet was likely to represent a security-
related topic. While others have attempted to use NLP 
techniques to detect specific security information within full 
text documents [14], our approach represents a generalized 
topic detection scheme with broad potential utility in informing 
software development processes. 

 

II. BACKGROUND 
NLP techniques have been used by researchers in a number 

of ways to analyze artifacts of the software development 
process, often focused on commit messages or defect reports 
[15, 16, 17]. Other researchers have noted the challenges and 
potential rewards of mining process and requirements data 
from software project artifacts [18, 19]. Our work builds on this 
research by attempting to create a generalized classifier capable 
of identifying security-focused text artifacts from data residing 
in standard software development tools.  

The classification method that we have been exploring, 
Naïve Bayes, simplifies statistical learning processes by 
adopting an assumption of independence between features of a 
given classification. Though this assumption can be questioned 
for many applications, in practice Naïve Bayes competes well 

against more sophisticated techniques, and is therefore a 
common starting point for exploration of a new problem space 
[20].  

 

III. DATA 
To train classifiers to identify software security-focused 

text snippets, reliable gold-standard data was required. The 
most accessible source of large quantities of such training data 
comes in the form of issue tracker items from open source 
projects in which contributors specifically label security-related 
issues with a “security” tag. The Chromium projects [21] 
hosted on the Google Code platform were identified as one 
such source. The issue-tracking repository for these projects 
included 875 issues labeled as “security”, dating from 3/10/13 
to 1/9/15. The summary statements of these issues were 
extracted as positive examples of software security-related text 
snippets, while the summary statements of additional 
Chromium issues not tagged as “security” were used as 
negative examples. The full data set used in this study 
contained 1874 text samples (875 security related, 999 not 
security related). Table I shows examples of both positive and 
negative text snippets used for training. 

Data were randomized and divided into training and testing 
sets for performance validation, discussed in detail in the next 
section. 

 

IV. EXPERIMENTAL METHODS 
This initial study applied Naïve Bayes classification to the 

problem of determining whether snippets of text are related to 
software security. To perform feature selection and 
classification, the Python programming language and the 
associated Natural Language Toolkit (NLTK) were used. 
Methods of Naïve Bayes classifier training, testing, accuracy 
calculation, and confusion matrix generation used were all 
unmodified NLTK implementations [22]. 

TABLE I.  TRAINING DATA SAMPLES 

Chromium Project Training Data 

Summary Message (text snippet) Correct 
Classification 

Clicking “Safe Browsing diagnostic page” link 
broken on malware interstitial 

security 

Block chrome-extension:// pages from importing 
script over non-HTTPS connections 

security 

Security: XSS issue in the FTP parser security 

Heap-use-after-free in 
WebCore::RenderLayer::repaintBlockSelectionGaps 

security 

Rendering glitch when switching windows not security 

Regression: Default cursor not seen in Sign in page of 
chrome after navigating back from any other tab. 

not security 

Status Bar fails to hide not_security 

Separators on column header disappear when display 
language is RTL. 

not_security 

 



A. Feature Extraction 
Features for text classification were derived from the 

presence or absence of n-grams in tokenized text snippets. For 
example, the text snippet “I am a rock, I am an island” is 
tokenized into the following set of tokens: [‘i’, ‘am’, ‘a’, 
‘rock’, ‘i’, ‘am’, ‘an’, ‘island’]. Prior to feature detection, stop 
words (words too common to indicate any semantic meaning 
for our classification) were removed. Removing stop words 
(including ‘i’, ‘am’, and ‘an’, as defined in [23]) from our 
example yields the following remaining tokens: [‘rock’, 
‘island’]. These tokens indicate two unigram (or n-gram of 
size one) features for our text snippet, namely contains(rock) 
= True and contains(island) = True. It is also relevant to know 
if a text snippet does not contain certain words, such as 
contains(snowblower) = False, as the presence of the word 
“snowblower” would likely impact the meaning or topic of our 
text. N-gram feature analysis often goes beyond unigram 
features to also include bigram (adjacent word pair) features 
[e.g., contains(rock, island)], trigram (adjacent word triplet) 
features, etc. 

To determine the set of all potential features relevant to the 
domain of interest (i.e., software security), a training set of 
summary messages from issues in the open source Chromium 
project was analyzed, as depicted in Fig. 1.  

Text from the summary message of each issue was 
tokenized and stop words were removed. The remaining 
tokens were used to generate feature spaces S1, S2, and S3, 
representing a unigram-only feature space, a (unigram + 
bigram) feature space, and a (unigram + bigram + trigram) 
feature space, respectively. These feature spaces were used to 
extract features from the text for classifier training and testing, 
as described in the next section.  

 

Figure 1: Generation of Experimental Feature Spaces 

 
 

B. Naïve Bayes Classification 
Once the full feature space was determined, text samples in 

a training set with known classifications could be analyzed to 
determine their feature vectors. For our text samples, a feature 
vector is a representation of the presence or absence of all 
features in the full feature space. Thus, when running an 
experiment using feature space S1, the feature vector V1(t) for 
a given tokenized text snippet t is an array containing a 
Boolean value for each token feature represented in S1, 
indicating whether the text contained or did not contain the 
token. See Fig. 2. These feature vectors and their correct 
classifications were used to train a Naïve Bayes classifier, 
yielding a statistical model of features and their statistical 
contributions to the classification of software security related 
text.  

It should be expected that the words comprising highly 
informative features in models generated from training will be 
independent of words found by prior studies to be common to 
text snippets from many areas of software projects, such as 
those reported in [24]. For example, words like “html”, “add”, 
or “feature” would be common to almost any software project 
text, and thus would not be expected to yield highly 
informative features to our security classifier after training. 
Table II presents an example of the most informative features 
of a model from a single training run, illustrating unigram 
features and their likelihood ratios in classifying software 
security related text. True to expectations, the highly 
informative features discovered have no overlap with high-
frequency words common across many software systems [24], 
lending confidence to the domain-centric training of the 
classifiers.  

 

 

Figure 2.  Feature Vector Generation 

 



TABLE II.  UNIGRAM CLASSIFIER MODEL EXAMPLE 

Informative Features for Classifying Software Security Text 

Feature Likelihood Ratio  
(security : not_security) 

contains(heap) = True 25.3 : 1.0 

contains(corruption) = True 18.1 : 1.0 

contains(security) = True 17.9 : 1.0 

contains(bad) = True 16.2 : 1.0 

contains(integer) = True 15.2 : 1.0 

contains(overflow) = True 13.9 : 1.0 

contains(pointer) = True 12.0 : 1.0 

contains(doesn) = True 1.0 : 11.4 

contains(stack) = True 11.3 : 1.0 

contains(buffer) = True 11.2 : 1.0 

contains(seen) = True 1.0 : 10.5 

contains(ui) = True 1.0 : 9.4 

 
A number of words highly relevant to the topic of software 

security appear in the models derived from classifier training. 
As might be expected, we see that words such as “corruption”, 
“overflow”, and “security” are strong indicators that a text 
snippet should be classified as a software security message. 
Strong negative indicators also appeared, such as the presence 
of the word “ui” (user interface) indicating that the message 
was likely not related to software security. It is worth noting 
that while the top 15 indicators for each classifier training run 
were stored, no strong indicators based on the absence of a 
word were observed. This shows no indication, for example, 
that any single feature is so common in security-related text 
that its absence alone conveys strong semantic meaning.  

Further experiments expanded the feature space by 
allowing bigram (two-word) and trigram (three-word) features 
to be used in classification. Table III shows an example 
feature model for a classifier derived using a feature space 
containing unigrams, bigrams, and trigrams.  

It can be seen that new strong indicators were introduced 
by the addition of larger n-grams, including the (buffer, 
overflow) bigram and (heap, buffer, overflow) trigram. These 
phrases are consistent with expected terms highly relevant to 
software security, and provide positive anecdotal evidence for 
the classifier training data and methodology.  

C. Validation 
Repeated random sub-sampling validation [25] was 

performed to validate the approach to text classification. This 
validation method was chosen to demonstrate the efficacy of 
training functional classifiers from many possible selected 
data sets in the hopes of proving the approach robust without 
specifically selected training data. Repeated random sub-
sampling is performed by repeatedly splitting gold standard 
data into two randomly distributed partitions of pre-defined 

proportions, training and testing the classifier for each split, 
and recording all performance results.  

 

TABLE III.  UNIGRAM + BIGRAM + TRIGRAM CLASSIFIER MODEL 
EXAMPLE 

Informative Features for Classifying Software Security Text 

Feature Likelihood Ratio  
(security : not_security) 

contains(heap) = True 38.7 : 1.0 

contains(overflow) = True 27.3 : 1.0 

contains(security) = True 24.9 : 1.0 

contains(cast) = True 23.4 : 1.0 

contains(pointer) = True 21.8 : 1.0 

contains(bad) = True 18.3 : 1.0 

contains(buffer, overflow) = True 17.8 : 1.0 

contains(doesn) = True 1.0 : 17.7 

contains(corruption) = True 17.3 : 1.0 

contains(fails) = True 1.0 : 14.3 

contains(integer) = True 13.9 : 1.0 

contains(buffer) = True 12.6 : 1.0 

contains(heap, buffer) = True 12.3 : 1.0 

contains(heap, buffer, overflow) = True 12.3 : 1.0 

 

In this study, three experiments were performed, using 
different feature sets. The first feature set included only 
unigram (single word) tokens observed in data from the 
Chromium project. The second experiment used a feature set 
containing unigrams and bigrams, and the third experiment 
used a feature set containing unigrams, bigrams, and trigrams. 
In each experiment, we performed 50 repetitions of random 
sub-sampling on our aforementioned issue tracker data from 
the Chromium project. The full experimental data set was 
distributed into 80/20% training/test distributions, resulting in 
random training sets containing 1499 samples and random test 
sets containing 375 samples.  

Classifier performance from the experiments can be seen 
in Table IV.  

TABLE IV.  RESULTS OF N-GRAM FEATURE STUDIES 

Classifier Performance for Various n-gram Feature Spaces 

Feature Space Average 
Precision 

Average 
Recall 

Average F-
Measure 

S1 
(Unigrams, 

12674 total features) 

0.91 ± 0.026 0.89 ± 0.023 0.90 ± 0.019 

S2 
(Unigrams + 

Bigrams, 
25347 total features) 

0.92 ± 0.022 0.88 ± 0.022 0.90 ± 0.015 



Classifier Performance for Various n-gram Feature Spaces 

Feature Space Average 
Precision 

Average 
Recall 

Average F-
Measure 

S3 
(Unigrams + 

Bigrams + Trigrams, 
38019 total features) 

0.93 ± 0.017 0.88 ± 0.020 0.91 ± 0.016 

 
 

Overall, the trained classifier performed well at software 
security topic detection. The average precision (or positive 
predictive value), which measures the fraction of text snippets 
classifier as “security” by our classifier that were proven to be 
correct classifications, was observed between 91% and 93% in 
our experiments. This data not only represents a promising 
classifier, but show that the addition of more complex features 
(bigrams and trigrams) increases performance of a classifier 
for this domain. Recall (or true positive rate), which measures 
the fraction of correctly classified security text snippets out of 
the total number of security text snippets in the data set, was 
measured at between 88% and 89% in our experiments. 
Finally, the average f-measure (the harmonic mean of 
precision and recall) increased from 90% to 91% as more (and 
more complex) features were added.  

 

V. CONCLUSIONS 

This paper has presented the results of an initial study 
investigating the potential of applying NLP and machine 
learning techniques to extract information from data residing 
in VCSs and issue tracking systems. The information that we 
extracted in this study was a classification of issues as security 
related or not security related. Using this information we can 
create measures of, and get insights into, software process and 
software quality.  

We have shown here that we can fully automate the 
process of extracting semantically meaningful information 
from issue-tracking systems and that this information has both 
high precision and high recall.  Our belief is that the precision 
and recall are high enough that this technique will open up 
many possibilities for post-hoc analysis of project repositories 
and communications, enabling insights that were hitherto 
impossible, due to the dearth of data. While our goal here was 
to identify security-related issues, we believe that this 
technique has the potential to “mine” many other kinds of data 
from project repositories.  

It is expected that more sophisticated feature extraction 
and classification techniques may further improve on these 
results. The initial success of this methodology using token-
derived features also indicates that the lexicon of security 
within software development is sufficiently common and 
consistent that this domain is ripe for the sort of analysis 
presented here. As training data was extracted, unaltered, from 
active open source projects with no interaction with 
developers generating the text, we remain confident that the 
language used naturally within this domain will yield 
successful training data from other software development 
projects in the future.  

 

VI. FUTURE WORK AND LIMITATIONS 

We recognize a number of limitations and areas for fruitful 
expansion of this work, including (1) a broader number of data 
sets, spanning a wider range of software project types and 
teams, (2) more sophisticated classification methods such as 
Support Vector Machines or ensemble methods, and (3) 
application of these techniques to detect software quality 
attributes other than security.  

It is hoped that versions of the classifiers demonstrated 
here can be proven effective in classifying not only text 
snippets from tasks in issue-tracking systems, but also to 
classify other text snippets common to the software 
development lifecycle, such as commit messages in version 
control systems. Validation of this will be explored in future 
studies.  

Additionally, the authors plan to explore the efficacy of 
this approach in autonomously measuring and monitoring a 
variety of software quality attributes from data derived from 
standard software process management and DevOps systems. 
For example, it would be valuable to monitor when the 
occurrences of issues related to other quality attributes—such 
as usability or availability or safety—was spiking.   

It is anticipated that the achievement of autonomous 
quality monitoring can be leveraged into real-time alerting and 
predictive capabilities suitable for providing expert decision 
support to software development management, and proactively 
improving the quality of software developed by organizations 
employing the envisioned data-driven process optimization 
techniques.  
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