
(DOI reference number: 10.18293/SEKE2015-049) 

 

Secure, Dynamic and Distributed 

Access Control Stack for Database Applications 
 

Óscar Mortágua Pereira¹, Diogo Domingues Regateiro², Rui L. Aguiar³ 

Instituto de Telecomunicações 

DETI, University of Aveiro 

Aveiro, Portugal 

{omp¹, diogoregateiro², ruilaa³}@ua.pt  

 

 
Abstract— In database applications, access control security layers 

are mostly developed from tools provided by vendors of database 

management systems and deployed in the same servers 

containing the data to be protected. This solution conveys several 

drawbacks. Among them we emphasize: 1) if policies are 

complex, their enforcement can lead to performance decay of 

database servers; 2) when modifications in the established 

policies implies modifications in the business logic (usually 

deployed at the client-side), there is no other possibility than 

modify the business logic in advance and, finally, 3) malicious 

users can issue CRUD expressions systematically against the 

DBMS expecting to identify any security gap. In order to 

overcome these drawbacks, in this paper we propose an access 

control stack characterized by: most of the mechanisms are 

deployed at the client-side; whenever security policies evolve, the 

security mechanisms are automatically updated at runtime and, 

finally, client-side applications do not handle CRUD expressions 

directly. We also present an implementation of the proposed 

stack to prove its feasibility. This paper presents a new approach 

to enforce access control in database applications, this way 

expecting to contribute positively to the state of the art in the 

field. 

Keywords-information security; access control; database; SQL; 

software architecture. 

I.  INTRODUCTION 

Access control [1], [2] is a critical security issue in many 
software systems. Access control “is concerned with limiting 
the activity of legitimate users.” [3]. Basically, it is a process to 
supervise every user’s requests to access protected resources, in 
our case data residing inside database management systems 
(DBMS), by determining whether authorizations should be 
granted or denied. Access to data stored in DBMS is mostly 
achieved issuing Create, Read, Update and Delete (CRUD) 
expressions from client-side applications. Nevertheless, access 
control security layers are traditionally deployed in centralized 
servers where the data to be protected are stored. Rephrasing, 
the attackers are distributed and the security wall is built 
around the data. Very few scientific contributions have been 
proposed based on a distributed architecture. Basically, in a 
distributed architecture the walls are not centralized but 
deployed by putting them close to the attackers, as in [4], [5]. 
At first sight, the distributed architecture would seem the best 
one. Although, distributed architectures raise additional 
security concerns, such as how to trust that legitimate users are 

issuing authorized requests only. To overcome this security 
concern, in this paper we propose a security stack, herein 
referred to as Secure, Dynamic and Distributed Access Control 
Stack for Database Applications. The security stack comprises 
the policies to be enforced and also the correspondent 
authorized Create, Read, Update and Delete (CRUD) 
expressions. In order to keep access control mechanisms 
always aligned with the established policies, they are 
automatically updated at runtime whenever policies are 
modified. We also provide an empirical proof of concept to 
demonstrate the feasibility of the proposed security stack. It is 
expected that the outcome of this paper can contribute to new 
approaches to enforce access control policies, namely by 
deploying them based on distributed architectures. 

The remainder of this paper is organized as hereafter 
described. Chapter II presents the motivation for the work 
detailed in this paper, chapter III presents the related work, 
chapter IV presents the security stack, chapter V presents a 
proof a concept of the security stack and chapter VI concludes 
this paper and details the future work. 

II. MOTIVATION 

Currently, there is no standard to enforce access control 
policies in database applications. Security experts complement 
security layers built from embedded tools provided by vendors 
of DBMS with additional security artifacts (components and/or 
hard-coded inside the client-application) built from scratch and 
tailored to the specific scenario. Approaches based on this 
approach convey several drawbacks. Among them we 
emphasize: 

Scalability: security layers based on DBMS tools share 
concurrently the computational resources allocated to DBMS. 
When access control policies are many and complex, they can 
lead to performance decay. Moreover, very often the security 
layers resort to additional techniques, such query rewriting 
techniques [6][7][8][9][10], the use of views 
[10][11][12][11][12][6] and parameterized views [15]. 
Inevitably, these additional artifacts will lead to the allocation 
of additional computational resources and, therefore, additional 
performance decay, as explicitly recognized in most of the 
papers by their authors. 

Maintainability: security layers built from DBMS tools can 
be easily maintained since they are centralized in a server. In 



opposite, security artifacts deployed in client-side applications 
can lead to huge maintenance efforts. For example, if an 
attribute of a table becomes protected by a new or modified 
policy, there is no other alternative than modify in advance all 
the CRUD expressions violating that policy. Otherwise, CRUD 
expressions are rejected while the updating process is not 
completed. 

Security gap: CRUD expressions are mostly issued from 
client-side applications. If this process is not controlled, 
malicious users can issue CRUD expressions systematically 
against the DBMS expecting to identify any security gap. It is 
very likely that professional malicious users will end up 
violating the protected data to some extension. Malicious users 
can follow additional malicious approaches, such as SQL 
Injection, the use of sequences of valid CRUD expressions [16] 
and also resorting to reflection [17] to get and/or modify the 
way software works. Other security gaps can arise from 
collecting data sent between a legitimate user and the DBMS 
and also from personification.  

To overcome these drawbacks, we propose a security stack 
with the following properties: 1) access control mechanisms are 
mostly distributed in each client-side system; 2) access control 
mechanisms are updated whenever modifications occur in the 
established policies; 3) client-side applications are prevented 
from issuing CRUD expressions and, finally, 4) additional 
security mechanisms are provided for user authentication and 
secure connections. 

III. RELATED WORK 

We will now discuss the work in the field of access control 
enforcement and how they relate to our proposed security 
stack. 

A complete architecture for web applications is presented in 
[18], where the problem of sensitive data being stored in a 
browser is solved by enforcing end-to-end security on data, 
across the virtual machine, operating system, networking and 
application layers. However, it relies solely on mandatory 
access control to enforce the end-to-end security policies and it 
is only concerned with web applications. 

In [19] a new tool is presented, Ur/Web, where the access 
control policies can be checked by CRUD expressions written 
by programmers in a RDBMS backed system. It uses an 
extension to the standard SQL language with predicates that 
indicates ‘which secrets the users knows’ and determine what 
information can be disclosed. However, these predicates are not 
checked against the access control policies, potentially leaking 
protected information. λDB [20] is a programming language that 
enforces access control policies to data by static typing for 
data-centric programs. It allows the definition of entities that 
are checked at compile-time with the defined access control 
policies. Each entity has a set of attributes that are given a read 
and write permissions with different predicates, similarly to 
Ur/Web. Another similar work is presented in [21] using 
predicated grants. These solutions only provide access control 
mechanisms, not addressing the rest of the stack. 

The   work  presented  in [22]  aims  to  provide  role-based 
access control using proxy objects, generated using a custom 
compilation tool. Each role has a set of different proxy objects, 

which are made available through Java Remote Method 
Invocation (RMI). Note that the proxy objects only implement 
the methods that the given role can execute, therefore it is not 
possible for a client to execute other methods. This method 
guards against reflection mechanisms since they do not work 
over sockets, but this solution is limited to RBAC and it 
protects access to java objects, not the data layer itself. 
Similarly, [23] is a security-typed programming language that 
extends Java that aims to give support for information flow and 
access control, enforced at both compile and runtime. 
However, this solution is also mostly used to manage 
information at the application level, leaving out other data 
sources, like a RDBMS. 

In [4], the authors present a proposal to extend the RBAC 
model to control sequences of CRUD expressions.  In [5], the 
authors present a proposal to implement distributed RBAC 
mechanisms. The content of both is relevant but they are 
focused on RBAC policies only. Additionally, key issues such 
avoiding the use of CRUD expressions at the client-side is also 
not supported. 

IV. ACCESS CONTROL STACK PRESENTATION 

For a software solution to provide secure, dynamic and 
distributed access control mechanisms we need to evaluate the 
requirements and the problems that arise from this architecture.  

A. Access Control Stack 

We will now discuss the necessary requirements to build 
Secure, Dynamic and Distributed Access Control Stack for 
Database Applications. As previously described, the identified 
fragilities of current solutions, and therefore to be addressed by 
the stack, are: scalability, maintainability and security gap. 
Figure 1 presents the general access control stack. 

The data layer will obviously reside on the server side, so 
that it can be provisioned to all the clients. It can use relational 
DBMS[24] or some other form of data storage, e.g. a 
distributed file system[25][26] (e.g. Apache Hadoop[27]). 

The application layer requesting access to the protected 
data resides on the client-side. It will access the data layer 
through the Security Layer. 

The Security Layer is the layer responsible to ensure that all 
operations requested by the Application layer follow the 
established security rules. It comprises three main components: 
Security Manager, Access Control and Network Security.  

Security Manager: The Security Manager component needs 
to address three main issues. The first one is to ensure that 
access control mechanisms are dynamically built and updated 
at runtime. This is very important to overcome one of the 
fragilities of current solutions: maintainability. The building 
and updating processes need to be based on an automated 
engine responsible for generating the necessary code for the 
Access Control component. The automated engine takes as 
input the policies to be enforced and also the architectural 
model to be implemented, as shown in Figure 2. The place to 
store the policies to be enforced depends on each particular use 
case or scenario. The second one is ensure that the access to the 
Data layer follows the established security rules. The third and 
last one is provide a standard interface to Application layer. 



Applcation

Security Manager

Access Control
Network 
Security

Data

Security
Layer

 

Figure 1. General access control stack. 

+ Access Control 
Policies

Access 
Mechanisms

Security
Model

 

Figure 2. Access control mechanisms generation process. 

This is quite relevant because Access Control component is 
not static as previously described. It depends on the policies to 
be enforced. 

Network Security: Connections to database need to follow 
some security rules, namely authentication and secure 
connections. These rules are enforced by the Network Security 
component. Authentication mechanism forces users to present 
some sort of identification before accessing the data. To 
prevent malicious users from accessing the data when it is sent 
to the authenticated users it should be possible to setup a secure 
communication channel, which is typically done using the 
SSL/TLS [28] communication protocols.  

Access Control: The architecture and functionalities of the 
Access Control component depend on the policy to be enforced 
and also on the architectural model to be implemented. 
Nevertheless, independently from the policy to be adopted, the 
drawbacks related to security gaps need to be addressed. Three 
main functionalities are required, as shown in Figure 3. The 
first one is the type of policy to be used, such as RBAC. The 
second one is the use of Sequence Controllers which are 
responsible to only allow the execution of valid sequences of 
CRUD expressions. The third one is the deployment of CRUD 
pointers instead of CRUD expressions. The first functionality 
enforces the top level functionalities of the policy to be 
enforced. The second functionality prevents malicious users 
from issuing sequences of authorized CRUD expressions to 
disclose the protected data. The third functionality prevents 
malicious users from resorting to techniques based on CRUD 
expressions to violate the established policies. 

 

Top Level Policy 

Sequence Controller

CRUD pointers
 

Figure 3. Access Control sub-components. 

B. Technical Issues 

Like any other software solution, there are technical issues 
that need to be solved before it can be expected to be 
considered useful. As such, we will now discuss the issues 
related to the Security Layer. However, it is impossible to 
discuss every issue that can rise from every possible scenario, 
so this chapter should be used as a starting point and the 
scenario-specific issues analyzed separately. 

The Security Layer handles the Security Manager, the 
Access Control and the Network Security components. The 
Network Security aims at addressing two security problems: 
the network communication and the client authentication. The 
access control layer is where the access control effectively 
happens. It must be dynamic and distributed, which means that 
it must adapt to policy changes and be enforced on the client 
side. The Security Manager configures and manages the 
Network Security and the access control mechanisms. 

Regarding the access control, the first problem comes from 
the fact that it is distributed. This means that the access control 
mechanisms will be subject to all kinds of attacks by malicious 
users that cannot be detected, since it happens on the client 
side. Therefore, there must be some mechanisms in place in 
order to prevent them. One of the major concerns are the 
reflection mechanisms[17] that some programming languages 
provide. These allow a program to inspect and modify the 
structures and behavior of the program at runtime (specifically 
the values, meta-data, properties and functions). This means 
that a software solution based on this stack cannot blindly rely 
on the distributed access control mechanisms to stop malicious 
users. To address this problem the access mechanisms were 
provided with CRUD pointers. CRUD pointers are some 
identifying tokens that are used by the client application instead 
of the actual CRUD expressions, which were pushed to the 
server-side. By making these pointers hard to guess and valid 
for a finite period of time, which must be small enough to 
prevent other users from using it by guessing, the usage of 
reflection mechanisms no longer threatens to manipulate the 
CRUD pointers. 

The dynamic counterpart of the access control layer 
requires that the access control mechanisms in the client 
applications change as the access control policies change. This 
requires the clients to be notified somehow when they change 
and to enforce the changes immediately. To achieve this we 
have a Security Manager that implements the access 
mechanisms using a security model that defines how the access 
control mechanisms should be created from the access control 
policies. It also provides them with the CRUD pointers 
received from the server and handles the network security 
procedures on behalf of the client application. 

Finally, the network security has many problems to address, 
of which we will emphasize two: the problem that the data sent 
between two entities in a network can be read by anyone if no 
measures are taken to prevent it, and the problem that the 
entities involved generally do not prove their identity, allowing 
impersonation to occur. The first problem does not make it 
possible to the malicious user to manipulate the data being sent. 
However, sensible data (e.g. a client’s identification) can still 
be acquired, which poses a serious security breach. The second 



problem not only allows the data that is sent to be manipulated 
but also has all the problems the first problem implies, making 
it a greater concern. A common approach to handle this is the 
usage of SSL/TLS protocols, which can create a secure 
communication channel over an insecure medium, like the 
internet. SSL/TLS protocols verify the identity of servers and 
optionally also of users. Authentication of users is usually 
handled by a server side application that receives the client’s 
identification tokens (e.g. a username and password) and 
provides the client application with the means to access the 
data if the tokens are valid. 

V. PROOF OF CONCEPT 

With this proof of concept we intend to demonstrate that 
the proposed access control stack is feasible of getting 
implemented. To achieve this we used a Java application as the 
client and the SQL Server 2010 RDBMS to manage the sample 
data we used. The implementation is called S-DRACA, which 
stands for Secure, Dynamic and Distributed Role-based Access 
Control Architecture. 

A. Overview 

We will now give an overview of the several components 
that are part of S-DRACA. 

 

Client

Client Application

Server

S-DRACAS-DRACA

Policy Manager

Business 
Manager

Access 
Mechanisms

Policy Extractor

Data

Authentication
/ Data 

EncryptionAccess 
Mechanisms
Awareness

Policy 
Server

 

Figure 4. S-DRACA block diagram. 

Figure 4 shows the block diagram of our proof of concept. 
We can see that on the server side we store the data in a 
database, along with the information about the access control 
policies in place on the system, which was stored in the Policy 
Server database. There is also a server application, the Policy 
Manager, which implements the SSL/TLS encryption and 
authentication mechanisms and also manages the policies to 
enforce in the system. In our proof of concept we only had one 
instance of a Policy Manager, but there could be many over 
different servers to distribute load in a cluster. On the client 
side we have the access mechanisms, which the client 
application uses to access the data stored on the server. The 
access mechanisms are instantiated by a Business Manager, 
which follows the policies defined on the server. We also have 
a Policy Extractor, a custom java annotation, which creates 
interfaces that the client application can use to access the data, 

using the Security Model and the defined access control 
policies. 

The access control policy used in our proof of concept is 
the role-based access control (RBAC). We chose this type of 
access control because it is natively supported by many DBMS, 
but the model used in the Policy Server could be changed to 
implement any type of access control policy without any 
implication to our proof of concept. 

We will now explain how each layer was implemented in 
S-DRACA. 

B. Layer Implementation 

In S-DRACA, each layer was implemented independently 
for each other. The data layer is managed by the SQL Server 
2010 RDBMS and it is accessed by the Policy Manager. It 
stores the data being protected as well as the access control 
policies defined for the system. Any operation requested by the 
client-application to manipulate the defined policies must go 
through the Policy Manager, to which the client application 
must be connected and authenticated. The requests to access 
the data are sent directly to the RDBMS, reusing the secure 
communication channel created when the client application 
connected to the Policy Manager to authenticate. 

The network security component is implemented both on 
the client (Authentication and Data Encryption block), and on 
the server side (Policy Manager block). It uses several 
standards of the industry for data encryption and 
authentication, such as SSL/TLS and using hashed and salted 
passwords to store the client’s credentials, respectively. 

For the remainder of the security layer, we had to resolve 
the problems that originated from the programming language’s 
reflection features and make it adapt dynamically to changes 
made to the policies defined in the system. Our access 
mechanisms are Java classes, called Business Schemas, see 
Figure 5, which only implement functions to access and 
manipulate data that the client application is allowed to. This is 
possible because when the client application authenticates with 
the Policy Manager, it receives the policies stored in the Policy 
Server that applies to said client.  The  Business  Manager  then 

 

Figure 5. S-DRACA usage example. 



uses this information and the Security Model to generate the 
Business Schemas with the appropriate methods (see Figure 2). 
The client application can then use these runtime generated 
Business    Schemas     because    they    implement    interfaces 
generated by the Policy  Extractor  during  compilation, known 
as Access Mechanisms Awareness, which also follow the 
Security Model. This prevents the clients from requesting 
operations that they do not have access to, but reflection 
mechanisms can still expose the private connection objects the 
Business Schemas use to request the operations. We have 
solved this issue using the CRUD pointers approach. Figure 5 
shows a simple example of the core interface S-DRACA 
provides to the developers. The Business Schema S_Customers 
is instantiated (line 100) and executed (line 102) to obtain the 
data from the database. Then, if some data is returned, 
information can be read (line 104), updated (lines 107-110), 
inserted (lines 112-115) and deleted (line 117). 

Note that not every user might see all the operations as 
shown in Figure 5. Since the Business Schemas are created 
dynamically from the access control policies retrieved from the 
server, only the authorized operations are actually 
implemented. This prevents developers from performing an 
operation they are not allowed to, which would only be known 
at runtime and could even go unnoticed for a long time if those 
operations are issued under rare circumstances. 

To guarantee that the access control mechanisms adapt to 
changes made to the defined access control policies, the 
database notifies the Policy Manager, through the use of 
triggers, when and what information in the Policy Server was 
inserted, deleted or altered. This prompts the Policy Manager to 
verify which clients must be notified of the changes and send 
them the modifications. The Policy Manager of each client, 
upon receiving the changes, re-implements the Business 
Schemas and loads them, which takes immediate effect on 
current and future instantiations. However, the interfaces 
created by the Policy Server cannot be modified, since they 
were created during compilation, so until the client application 
is updated it will generate errors when methods that are no 
longer accessible are invoked. 

Finally, we discuss the optional CRUD sequencer 
component, see Figure 6. We allowed the definition of 
sequences of Business Schemas on the policy model that is 
used in the policy server, which can be turned on or off at any 
time. This meant that the client application has to follow a 
particular set of generated Business Schemas if it wants to 
perform some operation. To ease the development of 
applications, the Policy Extractor also creates a java class that 
uses the Business Manager to create instantiations of the first 
Business Schema of each sequence (factory object at lines 74 
and 80). Then, each Business Schema has a method to 
instantiate the next one in the sequence (lines 76 and 81).  We 
also allow the definition of sets of rules when a client moves in 
a sequence in the access control policy, e.g. moving from the 
first Business Schema in a given sequence to the second could 
prevent the client application from using the first one again.  

This implementation of the CRUD sequencer has a couple 
of problems, however. First, to make sure that it can adapt to a 
large number of scenarios the sequence definition  model  must 

 

Figure 6. S-DRACA CRUD sequence usage. 

be flexible. Secondly, when the same Business Schema is used 
in more than one sequence it can potentially have a “next” 
method for each sequence it belongs to. Work is being done to 
address these problems. 

Figure 6 shows the interface made available to the 
developers to use the CRUD sequencer. The factory class (lines 
74 and 80) allows to obtain the first Business Schema in a 
sequence. When all the operations on that Business Schema are 
performed, the next   Business Schemas can be requested using 
the “next” method (lines 76 and 81). These Business Schemas 
can be used normally as shown in Figure 5. 

C. Performance Assessment 

In order to evaluate the overhead induced by our access 
control stack solution, a performance assessment was carried 
out. Basically, we compared the initialization, instantiation and 
response time between the traditional solution using JDBC and 
the solution proposed in this paper (pushing the CRUD 
expressions to the server). We measured the time it took for the 
system to be ready to be used (obtain the connection object in 
JDBC or a Business Schema in S-DRACA), to execute a single 
Select expression when the server has 500 CRUD expressions 
stored, and for changes on the access control policy to be 
applied on the clients, along with the bandwidth used. We did 
not time the network security and authentication features, since 
they should always be implemented if the use case requires it, 
whether the proposed stack is used or not. For the adaptation 
process, we modified the access control policies 1000 times 
and measured the time it took for the changes to take effect on 
the clients and the bandwidth used. 

The two solutions were implemented and tested in a PC 
with Windows 7 Enterprise and no network connection to 
prevent delays. The data was stored using SQL Server 2010 
and all unnecessary processes were shut down. We verified the 
time it took for both solutions 10.000 times. Additionally, the 
select statement was executed on a table with 100 and on 
another with 100.000 records. We also cleared the DBMS 
cache between each execution. 

For the initialization, the JDBC solution only took about 12 
ms to provide a connection object, while the S-DRACA 
solution took 2905 ms. This time is explained with the initial 
configuration that is needed: requesting the access control 
policies, generate the access control mechanisms and 
instantiate them. Although this process takes a significant 
amount of time, it is only required once per session at the start. 
Regarding the execution of the select statement, the table with 
100 rows showed an average increase of 4 ms when using the 



solution proposed in this paper, from 1ms to 5ms. When 
targeting the table with 100.000 rows, the select statement took, 
on average, 1745ms to execute the CRUD statement directly 
while the solution proposed in this paper took 1750ms, 
showing a 5ms increase. The dynamic adaptation process took 
10 ms on average to complete and around 350 bytes of 
bandwidth per Business Schema authorized, which also has the 
associated CRUDs information, and only 50 bytes if revoked. 
We can conclude, then, that the overhead introduced with our 
proposal is very small and can in most cases be neglected. 

VI. CONCLUSION AND FUTURE WORK 

In this paper we presented an access control stack that aims 
at providing distributed and dynamic access control 
mechanisms that enforce the access control policies on the 
client side while maintaining the system secure. The main 
drawbacks of current solutions were identified: scalability, 
maintainability costs and security gaps. Scalability issues were 
overcome by deploying most of the access control mechanisms 
in client-side systems. Maintainability issues were overcome by 
providing automated processes to dynamically update the 
distributed access control mechanisms at runtime. The security 
gaps were overcome by: 1) implementing Sequence 
Controllers, 2) preventing client applications from directly 
using CRUD expressions and, finally, 3) by using secure 
connections between clients and DBMS. We also provided a 
proof of concept to empirically demonstrate that the presented 
solution is feasible.  

A performance assessment has also been carried out to 
evaluate the impact of our proposal. The collected results show 
that its impact is unnoticeable when executing CRUD 
expressions or changing the access control policies. In 
opposite, the establishment of secure connections induced a 
significant overhead. Nevertheless, we cannot forget that this 
process is executed only once in each session. As a final 
conclusion, the stack herein presented shows to be a promising 
approach to overcome the identified drawbacks of most of the 
current approaches to enforce access control policies. 

VII. REFERENCES 

[1] P. Samarati and S. D. C. di Vimercati, “Access Control: Policies, 
Models, and Mechanisms,” in Foundations of Security Analysis and 
Design (LNCS), vol. 2171, Springer, 2001, pp. 137–196. 

[2] S. D. C. di Vimercati, S. Foresti, and P. Samarati, “Recent Advances in 
Access Control - Handbook of Database Security,” in Handbook of 
Database Security, M. Gertz and S. Jajodia, Eds. Springer, 2008, pp. 1–
26. 

[3] R. S. Sandhu and P. Samarati, “Access Control: Principle and Practice,” 
Commun. Mag. IEEE, vol. 32, no. 9, pp. 40–48, 1994. 

[4] Ó. M. Pereira, D. D. Regateiro, and R. L. Aguiar, “Extending RBAC 
Model to Control Sequences of CRUD Expressions,” in 26th Intl. Conf. 
on Software Engineering and Knowledge Engineering, 2014. 

[5] Ó. M. Pereira, D. D. Regateiro, and R. L. Aguiar, “Role-Based Access 
Control Mechanisms Distributed, Statically Implemented and Driven by 
CRUD Expressions,” in ISCC’14 - 9th. IEEE Symposium on Computers 
and Communications, 2014. 

[6] Oracle, “Using Oracle Virtual Private Database to Control Data Access,” 
2011. [Online]. Available: 
http://docs.oracle.com/cd/B28359_01/network.111/b28531/vpd.htm#CI
HBAJGI. 

[7] K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan, Y. Xu, and D. 
DeWitt, “Limiting disclosure in hippocratic databases,” 30th Int. Conf. 

on Very Large Databases. VLDB Endowment, Toronto, Canada, pp. 
108–119, 2004. 

[8] Q. Wang, T. Yu, N. Li, J. Lobo, E. Bertino, K. Irwin, and J.-W. Byun, 
“On the correctness criteria of fine-grained access control in relational 
databases,” 33rd Int. Conf. on Very Large Data Bases. VLDB 
Endowment, Vienna, Austria, pp. 555–566, 2007. 

[9] S. Barker, “Dynamic Meta-level Access Control in SQL,” 22nd Annual 
IFIP WG 11.3 Working Conf on Data and Applications Security. 
Springer-Verlag, London, UK, pp. 1–16, 2008. 

[10] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy, “Extending Query 
Rewriting Techniques for Fine-grained Access Control,” ACM SIGMOD 
Int. Conf. on Management of Data. ACM, Paris, France, pp. 551–562, 
2004. 

[11] J. Eder, “View Definitions with Parameters,” 2nd Intl Workshop on 
Advances in Databases and Information Systems. Springer-Verlag, pp. 
170–184, 1996. 

[12] Y.-J. Hu and J.-J. Yang, “A semantic privacy-preserving model for data 
sharing and integration,” Proceedings of the International Conference 
on Web Intelligence, Mining and Semantics. ACM, Sogndal, Norway, 
pp. 1–12, 2011. 

[13] L. E. Olson, C. A. Gunter, and P. Madhusudan, “A formal framework 
for reflective database access control policies,” 15th ACM Int. Conf. on 
Computer and Communications Security. ACM, Alexandria, Virginia, 
USA, pp. 289–298, 2008. 

[14] L. E. Olson, C. A. Gunter, W. R. Cook, and M. Winslett, “Implementing 
Reflective Access Control in SQL,” 23rd Annual IFIP WG 11.3 Working 
Conference on Data and Applications Security. Springer-Verlag, 
Montreal, P.Q., Canada, pp. 17–32, 2009. 

[15] A. Roichman and E. Gudes, “Fine-grained access control to web 
databases,” 12th ACM symposium on Access Control Models and 
Technologies. ACM, Sophia Antipolis, France, pp. 31–40, 2007. 

[16] Canfora, G.; Visaggio, C.A.; Paradiso, V., “A Test Framework for 
Assessing Effectiveness of the Data Privacy Policy’s Implementation 
into Relational Databases,” in Intl. Conf. on Availability, Riliability and 
Security, 2009, pp. 240–247. 

[17] J. Malenfant, M. Jacques, and F. Demers, “A tutorial on behavioral 
reflection and its implementation,” Proc. Reflect., 1996. 

[18] B. Hicks, S. Rueda, D. King, T. Moyer, J. Schiffman, Y. Sreenivasan, P. 
McDaniel, and T. Jaeger, “An architecture for enforcing end-to-end 
access control over web applications,” 15th ACM symposium on Access 
Control Models and Technologies. ACM, Pittsburgh, Pennsylvania, 
USA, pp. 163–172, 2010. 

[19] A. Chlipala, “Static checking of dynamically-varying security policies in 
database-backed applications,” in 9th USENIX Conf. on Operating 
Systems Design and Implementation, 2010, pp. 1–14. 

[20] L. Caires, J. A. Pérez, J. C. Seco, H. T. Vieira, and L. Ferrão, “Type-
based access control in data-centric systems,” 20th European conference 
on Programming Languages and Systems: part of the joint European 
conferences on theory and practice of software. Springer-Verlag, 
Saarbrucken, Germany, pp. 136–155, 2011. 

[21] S. Chaudhuri, T. Dutta, and S. Sudarshan, “Fine Grained Authorization 
Through Predicated Grants,” IEEE 23rd ICDE - Int. Conf. on Data 
Engineering. Istanbul, Turkey, pp. 1174–1183, 2007. 

[22] J. Zarnett, M. Tripunitara, and P. Lam, “Role-based Access Control 
(RBAC) in Java via Proxy Objects Using Annotations,” in Proceedings 
of the 15th ACM Symposium on Access Control Models and 
Technologies, 2010, pp. 79–88. 

[23] Y. Zhu, H. Hu, G.-J. Ahn, M. Yu, and H. Zhao, “JIF: Java + information 
flow,” 2012. . 

[24] H. Garcia-Molina, Database Systems: The Complete Book, 2nd E. 2008. 

[25] S. Weil, S. Brandt, and E. Miller, “Ceph: A scalable, high-performance 
distributed file system,” Proc. 7th …, pp. 307–320, 2006. 

[26] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,” 
in Proceedings of the Nineteenth ACM Symposium on Operating 
Systems Principles, 2003, pp. 29–43. 

[27] M. Kerzner, “Hadoop Illuminated.” 

[28] IETF, “RFC 6101: The Secure Sockets Layer (SSL) Protocol Version 
3.0.” 


