
A JVM-based Testing Harness for Improving
Component Testability

Weifeng Xu
Department of Computer Science

Bowie State University, Bowie, USA
frank.w.xu@gmail.com

Omar El Ariss
Department of Computer Science & Mathematical Science,

Penn State Harrisburg, PA, USA
oue1@psu.edu

Abstract— Software testing is a critical activity in increasing
our confidence of a system under test and improving its quality.
The key idea for testing a software application is to minimize the
number of faults found in the system. The higher the testability of
software, the better our chances to reveal these faults. We
introduce a new type of testing harness called GannonJVM that
improves the testability of software components. GannonJVM
enhances the Java Virtual Machine (JVM) with a predicate
analyzer and a bytecode interpreter. Our automated test
framework is able to extract and visualize paths from the control
flow graph of a given component. We also observe and analyze the
predicates in a given a path during runtime.

Keywords— Software testing, test harness, bytecode, testing tool,
visualization.

I. INTRODUCTION

Testability is a measure of how complex it is to test a
software application. The lower the testability of a software, the
lower the quality of the generated test cases. On the other hand,
the higher the testability of software the better the test cases are.
Two major factors that contribute to the testability of software
are controllability and observability. Controllability is the ability
to access, and the ease of testing the features and functionalities
of an application. Observability is the extent to which the output
or the observable states of the system assist in the verification of
the test results.

A test harness typically refers to a testing framework. It is
used to execute test cases and to check whether the actual results
match the expected ones. Junit is a popular test harness. For
example, the assertion assertEquals(“Isosceles”, new
Trianlge (7,7,6).getTriType()) in JUnit checks
whether a triangle object reports the correct triangle type, which
is an isosceles for the given three side values: 7, 7 and 6.
Although JUnit and other similar unit testing frameworks are
capable of executing test cases and checking their results
automatically, they usually do not focus on improving the
testability (i.e., testing observability and controllability) of
software components. For example, JUnit does not provide any
feedback that helps the testers to redesign test inputs. It also does
not provide useful runtime states for debugging when the test
case fails.

To deal with these limitations, we introduce a novel approach
to develop a test harness directly on top of the Java Virtual
Machine (JVM). We call this approach GannonJVM. Its aim is to
improve the testability of Unit Under Test (UUT). Fig. 1 shows
the three main components of GannonJVM: (1) a predicate
analyzer that is designed to improve the testing observability of
UUT. The analyzer defines how the internal states of UUT are
monitored and inferred by the knowledge of its external input. It
checks the predicate values and monitors their execution paths in
terms of the test inputs. (2) a Bytecode interpreter that improves
the testing controllability of UUT. The interpreter defines how to
stabilize an execution path based on its observation. It is used to
adjust the original test input (i.e., seed value) to create additional
input that forces the UUT to execute a designated path. (3)
Control Flow Graph (CFG) visualizer. It is responsible for
automatically determining the layout of a CFG.

Fig. 1. Overview of the test harness

The rest of this paper is organized as follows: Section II
introduces the basic concepts through a running example. Section
III and IV describe the predicate analyzer and inference engine.
Section V describes the CFG visualizer. Section VI reviews the
related work. Section VII concludes the paper.

II. A RUNNING EXAMPLE

We use the classical Triangle Problem [1] as a running
example to illustrate the test harness with embedded features for
observability and controllability to generate test input without
fitness functions. Given three positive integers that represent the

(DOI Reference Number: 10.18293/SEKE2015-043)

lengths of the three sides of a triangle, the Triangle program
reports the triangle type: Equilateral (type 1), Isosceles (type 2),
Scalene (type 3), or NotATriangle (type 4). The source code for
this problem is shown below:

int getTriType (a,b c) {

if ((a<b+c) && (b<a+c) && (c<a+b)){

if (a==b && b==c) return 1;

else if (a!=b && a!=c &&b!=c) return 3;

else return 2;}

else return 4;}

Java bytecode is a stack-oriented language, which pops data
(operands) from the top of the stack and pushes data back on the
top of the stack. The stack is commonly referred to as an operand
stack [2]. For example, the bytecode instruction iadd pops two
integer values from the stack and pushes their sum back to the
stack. Two integer values are pre-loaded from a local variable
table using two iload instructions. To facilitate the discussion,
the bytecode of Triangle instructions are divided (see dashed
lines) into 20 blocks shown below [3].

1. iload 1
2. iload 2
3. iload 3
4. iadd
------------[1]
5. if_icmpge 37
------------[2]
6. iload 2
------------[3]
7. iload 1
8. iload 3
9. iadd
10.if_icmpge 37
------------[4]
11. iload 3
------------[5]
12. iload 1
13. iload 2
14. iadd
15.if_icmpge 37
-----------[6]

16. iload 1
------------[7]
17. iload 2
18.if_icmpne 24
------------[8]
19. iload 2
20. iload 3
------------[9]
21. if_icmpne 24
------------[10]
22. iconst_1
-----------[11]
23. ireturn
24. iload 1
------------[12]
25. iload 2
26.if_icmpeq 35
-----------[13]
27. iload 1
------------[14]

28. iload 3
29. if_icmpeq 35
------------[15]
30. iload 2
------------[16]
31. iload 3
32. if_icmpeq 35
------------[17]
33. iconst_2
------------[18]
34. ireturn
35. iconst_3
------------[19]
36. ireturn
37. iconst_4
38. ireturn
------------[20]

Bytecode instructions have unique properties. First, they have
an implicit effect on the stack as each instruction has no explicit
named operands. For example, iadd (instruction 4) in block 1
does not specify the two operands that will be fetched for integer
addition. These values are determined by iload 2 and iload
3 (instructions 2 and 3) as they are the top two values on the
current operand stack. Note that the operand of iload points to
the index of the local variable table [2]. The local variable table
contains bytecode instructions and input parameters after
initializing the method invocation. For example when the method
is invoked, the three input variables a, b, and c of the triangle
program are stored in the first three spots of the local variable
table. During execution, iload 1, iload 2, and iload 3
push the values stored in the indices 1, 2, and 3 to the operand
stack. Second, predicates with multi-conditions in Java source
code are represented by multi-level conditions in bytecode. For
example, the multi-condition (a<b+c)&&(b<a+c)&&

(c<a+b) in the Triangle source code is decomposed into three
block sets, i.e., blocks 1 and 2, blocks 3 and 4, as well as blocks 5
and 6. Blocks 2, 4, and 6 are three identical if_icmpge
statements. They are depicted in Fig. 2 by the CFG of Triangle
bytecode. This property facilitates observability and
controllability by decomposing component conditions into
several simple conditions.

A path that is generated from a CFG consists of a sequence of
blocks. For example, p1=[1]→[2]→[3]→[4]→[5]→
[6]→[7]→[8]→[9]→[10]→[11] is a path for testing if a triangle
is equilateral. To execute all the blocks in p1, the values that
participate in the evaluation of predicates [2] [4] [6] [8] and [10]
need to be adjusted so that the predicates produce the desired
outcomes to reach the last block. Thus, the desired outcome for
each predicate in p1 should be achieved as p1:

[1]→[2] 	
୊
→ [3]→[4]

୊
→ [5]→[6]

୊
→ [7] →[8]

୊
→ [9]→[10]

୊
→ [11],

where F (False) is the expected outcome of the corresponding
predicate. Such a path is called a tagged path. A tagged path is a
sequence of edges that have at least one tagged edge, where a
tagged edge is defined as v

	௢

	
>u. The variable v is the source

block that represents a predicate in a statement, o is a tagged
value for v, which represents the desired outcome of v (i.e., true
or false), and u is the reachable block if the assertion
asserEquals(o, runtime(v)) returns true.

Fig. 2. CFG of the Triangle Problem in bytecode

Table 1 shows some representative tagged paths of the
Triangle program based on decision coverage. In tagged path

p12, the tagged edge [2]
୘
→ [20] indicates that block 2 is a

predicate if_icmpge and its outcome must be true in order to
reach block 20.

Table 1. Tagged paths for Triangle problem

Goal ID Path
Equilateral 1 [1]→[2]	

୊
→	[3]→[4]

୊
→ [5]→[6]

୊
→[7]→[8]

୊
→[9]→[10]

୊
→[11]

Isosceles 2 [1]→[2]	
୊
→	[3]→[4]

୊
→

[5]→[6]
୊
→[7]→[8]

୊
→[9]→[10]

୘
→[11]→[12]→[13]

୘
→[19]

…
Scalene 8 [1]→[2]

୊
→	[3]→[4]

୊
→ [5]→[6]

୊
→[7]→[8]

୘
→[12]

→[13]
୊
→[14]→[15]

୊
→[16] →[17]

୊
→[18]

..
NotATriangle ..

12 [1]→[2]
୘
→	[20]

III. PREDICATE ANALYZER

The predicate analyzer is designed to improve the
observability of UUT. It examines bytecode instructions to
discover relationships between input variables and variables used
in predicates. Discovering relationships relies on variable binding
and variable dependency analysis.

The process of binding explicit variables to bytecode
instructions is called variable binding. As bytecode instructions
have an implicit effect on the evaluation stack, an effective
approach is to use instruction tree unit (ITU) as an intermediate
representation of instructions. Each ITU is a binary tree, which
consists of three nodes, one parent node and two child nodes, as
well as an operator (i.e., the opcode of the instruction) between
the two children. The child nodes are the explicit named
operands. The root is a named intermediate result of the
operation. An ITU can be simply represented by a four-tuple
(opcode, root, leftNode, rightNode). One of the essential
characteristics is that ITUs are restricted to the least number of
operands (2 in most cases, such as for arithmetic and logic), and
these operands must either be constants or locals. For example,
for a given Java expression statement x=a+b+c, the
corresponding two arithmetic ITUs are shown in Fig. 3. Local
variables i0, i1, i2 are stored in the local variable table and
correspond to the variables a, b, c and x in the given Java
statement. Variables with a “$” sign are intermediate local
variables, e.g., $i4 is an intermediate variable for holding the
value of i0 + i1 and $i5 holds the result of $i4 + i2.
iadd is the opcode of the instruction iadd #index, where
#index is the index of the local variable table.

Fig. 3. Two ITUs of Java expression statement x=a+b+c

Variable binding is a dynamic process, which builds the ITUs
along with the execution of bytecode. We utilize an additional
stack, called variable binding stack, and a variable table, called
variable binding table, to bind variables to instructions. We gave
them these names to distinguish them from the operand stack and
the local variable table specified by the JVM specification. The
variable binding stack and variable binding table work very
similar to the JVM operand stack and the local variable table
except that 1) the variable binding stack and variable binding
table store the names of the bytecode intermediate variables
instead of the operands for tracking intermediate variables, and 2)
each element of the variable binding table also has a reference
point to the root of the ITU containing itself.

Variable binding during instruction execution in the JVM
works as follows: 1) whenever an instruction pushes a value into
the operand stack, and the value is loaded from the local variable
table, the index of the value in the local variable table is used as
the intermediate local variable name. This index is pushed into
the variable binding stack. Otherwise, a new generated unique ID
is used as the name and is pushed into the variable binding stack.
2) whenever an instruction pops a value from the operand stack,
the top of the variable binding stack is removed as well. The
popped intermediate local variable names are used for
constructing the ITUs. Note that for the purpose of dependency
analysis, we build ITUs only for instructions that produce an
effect on the operand stack and are influenced by the effect, i.e.,
instructions that produce and use intermediate variables.
Therefore, ITUs are categorized into two groups: expression ITU
and predicate ITU. Expression ITUs are built from expression
instructions [4] producing intermediate variables, including load,
arithmetic, and logic instructions. Predicate ITUs are built from
predicate instructions using the intermediate variable to compute
the tagged values, including all if_* Instructions. The algorithm
can be applied for binding other instructions. Fig. 4 shows the
variable binding results (i.e., the two ITUs) for the tagged path

p12: [1]→[2]
୘
→ [20] in Table 1. The block list is a variable

binding table. The first three variables, i0, i1, and i2, are the
names of the input parameters. $i10 and $i11 are intermediate
variables pointing to the root of the two ITUs shown in Fig. 4.
The letter “i” is added before the generated ID as part of variable
name for readability.

Fig. 4. Variable binding for path P12

Variable dependency analysis is the process of backtracking
input variables for a given intermediate bytecode variables for
making the assertion asserEquals(o, runtime(v)) to
be true. Again, considering the simple tagged path p12: the goal
is to find a test input to execute this path (i.e., find a triangle
type of “NotATriangle”). As [2]

୘
→	[20] is the only tagged edge,

the path will be covered if a test input forces the constraint in the
instruction if_icmpge to be true (statement 5 is the only
instruction in block [2]). The predicate ITU (if_icmpge,
$i11, $i1, $i10) indicates that to generate a test input to
cover p12, however, we need to determine the input variables
that are associated with $i10. The association will allow the
proposed system to backtrack the input variables so that they can
be adjusted to meet the constraint. It is not difficult to see that
$i10 (shown in the expression ITU iadd on the left of Fig. 4)
is associated with input variables i1 and i2 by backtracking
$i10 in the predicate ITU on the right. Variable dependency
can be graphically captured using a Variable Dependency Tree
(VDT). A VDT consists of a set of ITUs, where the root and
each intermediate node are intermediate variables, and all leaves
are the bytecode input variables. The algorithm below describes
the procedure for building VDTs from ITUs. The algorithm
recursively expands child nodes containing intermediate
variables with ITUs. The red dashed line shown in Fig. 4
indicates a backtracking relation of $10.

Algorithm: Building VDTs

Inputs: VBT: A variable binding table

Outputs: VDT: A variable dependency tree

procedure buildVDTs(VBT)

for each element E of VBT

 (opeCode, root, leftNode, rightNode) ⟵

E.getITU()

if leftNode/rightNode of the ITU containing

intermediate variable

newITU ⟵ find a new ITU based on leftNode or

rightNode

Point from leftNode/rightNode to newITU

end if

end for

end procedure

IV. BYTECODE INTERPRETER

Bytecode interpreter aims to improve testing controllability of
UUT, i.e., how to control the predicate evaluation results to force
a given path to be executed at run-time. Note that the evaluation
results are determined by the input, where the rule-based
inference engine provides input changing guidelines.

Bytecode interpreter controls the order of which bytecode
instruction will be fetched and executed. It reads each bytecode
instruction and returns the evaluation result. It mainly consists of
a program counter, which points to the next instruction to be
fetched and executed, a local variable table, and an operand
stack. In addition, a Java stack is needed for method invocations.
Each element of the Java stack is a Java frame, which stores
execution status. To make the interpreter more flexible, we utilize
a factory design pattern to encapsulate instruction creation and a
strategy pattern to encapsulate the execution algorithm in each
instruction. A snapshot of the implementation of BIFicmpge
instruction is shown below. The execution method implements
the abstract method defined in the Instruction class. This
comparison instruction pops two values from the operand stack
and returns the predicate result. It is worth noting that the
bytecode input parameters are stored at the beginning of the local
variable table. They will be fetched for UUT interpretation. It is
not difficult to overwrite them with new generated input in order
to make the input generating process automatic. Along with the
predicate analyzer and rule inference engine, this overwriting
mechanism makes the UUT running until a given path is
executed.

public class IFicmpge extends Instruction {

@Override

public Object execute(JavaFrame frame) {

 Stack<Integer> opStack =

frame.getOperandStack();

 Integer rightValue = (Integer) opStack.pop();

 Integer leftValue = (Integer) opStack.pop();

 boolean result=rightValue>= leftValue;

return result;

}

The Bytecode interpreter then collaborates with the Bytecode
generator. Compiled Java class files are in the form of
hexadecimal. Therefore, ASM [5] is utilized to convert
hexadecimal numbers to readable bytecode instructions. ASM is
a very small and very fast Java bytecode manipulation
framework supported by Open Solutions Alliance.

V. CONTROL FLOW GRAPH VISUALIZER

A directed graph G = {V, E} consists of two types of
elements V and E, where V is a set of vertices and E is a set of
edges. A Control Flow Graph (CFG) is a graph with some special
vertices and edges: 1) it has source and sink vertices and 2) it
consists of loops and jumps. Control Flow Graph (CFG)
visualizer is responsible for determining the layout of a CFG

automatically. CFG visualizer needs to solve three challenges: 1)
how to calculate the layout of graph if we treat CFG is a general
type of graph, 2) how to handle with two special vertices, i.e.,
source and sink, and 3) how to determine two special edges of
CFG, i.e., loops and jumps.

A. Visualizing CFG as A Normal Graph

Force-directed algorithms are the most flexible and popular
algorithms for calculating layouts of simple undirected graphs.
These algorithms calculate the layout of a graph using only
information contained within the structure of the graph itself. For
a given directed graph G = {V, E}, a force-directed algorithm
models edges as springs and vertices as charged particles.
Springs represent attractive forces based on Hooke’s law, which
are used to attract pairs of connected vertices towards each other.
Charged particles represent repulsive forces based on Coulomb’s
law, which are used to separate all pair of vertices. Force is
represented as a vector, which includes a magnitude and
direction. In a force-directed algorithm, we start with assigning a
random position for each vertex. Then each vertex applies the
attractive and repulsive forces. This will cause the vertex to move
to a new position. The calculating and moving activities repeat
until the graph reaches equilibrium states. In equilibrium states
for a given graph, edges tend to have uniform length because of
the spring forces, and nodes that are not connected by an edge
tend to be drawn further apart because of the electrical repulsion.

Fig. 5 shows the automated layout calculation using the
attractive and repulsive forces on the Triangle problem CFG.
Vertices in Fig. 5 (a) are assigned random positions. Fig. 5 (b)
shows the equilibrium states of the CFG.

The force-directed algorithm is defined below and is based on
Eades’ idea [6]:

Algorithm SPRING(G: graph)

 Place vertices of G in random locations

 Repeat M times

 Calculate the force FሬԦሺvሻ on each vertex

 Move the vertex based on force on vertex

 Draw graph on screen

End of Algorithm

The force ܨԦ (v) is defined as:

ሻݒԦሺܨ ൌ 	∑ ሬሬԦ௨௩ܪ ൅ሺ௨,௩ሻ∈௏ൈ௏ ∑ Ԧ௨௩ሺ௨,௩ሻ∈ாܥ (1)

Where ܪሬሬԦ௨௩ represents the attractive force between two
connected vertices, u and v, calculated based on Hooke’s law.
 Ԧ௨௩ represents the repulsive force between vertices u and v, andܥ
is calculated based on Coulomb’s law.

B. Positioning Source and Sink Vertices

The control flow graph G(f) = {V, E, vin, vout} of a
function f has two additional vertices, source and sink vertices,
referred as vin and vout, respectively. A source vertex is a vertex
with indegree zero, while a sink vertex is a vertex with outdegree
zero. The control flow graph of an empty function, i.e., a function
without any statements consists of V = {vin, vout} and E =
{(vin, vout)}.

Unlike the layout solution shown in Fig. 5, traditionally, all
vertices of a CFG are arranged in the form of top-to-bottom
where vin and vout are placed on the top and bottom positions,
respectively. In order to rearrange vin and vout in Fig. 5, the
third force, named Earth Gravitational Force, is added to
formula (1). The gravity of Earth, denoted as ሬܶԦ , refers to the
acceleration that the Earth imparts to objects on or near its
surface.

The Earth Gravitational Force is defined as:

ሬܶԦሺݒሻ ൌ ݉݃  

Where, m is the mass of the vertex and g is the gravitational
content.

The new formula for handling source and sink vertices is now
defined as:

ሻݒԦሺܨ ൌ 	∑ ሬሬԦ௨௩ܪ ൅ሺ௨,௩ሻ∈௏ൈ௏ ∑ Ԧ௨௩ܥ ൅	∑ ሬܶԦ
௨ሺ௨ሻ∈ாሺ௨,௩ሻ∈ா 

Fig. 6 shows the automated calculated Triangle CFG layout
with the additional Earth gravitational force. Fig. 6 (a) (b) (c) (d)
illustrates the evaluations of the CFG layout.

(a) Initial state (c) Iteration 20

(a) Initial state (b) Equilibrium states

Fig. 5. Triangle CFG layout with two forces

(b) Iteration 10 (d) Equilibrium states

Fig. 6. Triangle CFG layout with Earth gravitational force

C. Positioning Loops and Jumps Edges

There are two types of special edges, loops and jumps (i.e.,
loop and if-else statements) in a CFG. For example, v2 in Fig. 6
is a predicate node containing an if-else statement. Without an
appropriate positioning algorithm, the edge (v2, v20) will be a
straight line. Positioning such special edges need (1) Identifying
dominator relationships: In a CFG graph, a vertex v dominates
another node w if and only if every directed path from vin to w
in the CFG contains v. The dominators of node w is defined as
dom (w) = {v | v dominates w}. For example, dom
(v20) = {v0, v1, v2}. (2) Identifying special edges: The node
vshortest = v ∈ dom (w) has the shortest path from v to w,
where v is the start node and w is the end node, i.e., the special
edge is defined as (vshortest, w), and (3) Adding invisible
vertices to special edges: The number of invisible vertices equals
to the number of vertices from vshortest to w.

VI. RELATED WORK

Various testing harnesses have been explored to monitor the
runtime state of UUT. These tools mainly fall into two
categories: aspect-oriented approaches and symbolic execution
based approaches. MOP [7] is a Monitoring-Oriented
Programming (MOP) framework, which automatically generates
monitors from the specified properties and then integrates them
together with the user-defined code into the original system. In
the implementation, parametric specifications are translated into
AspectJ [8] code, and then weaved into the application using off-
the-shelf AspectJ compilers. Tracematches [9] is another aspect-
oriented trace-matching tool to observe the execution of a base
program; when certain actions occur, the aspect runs some extra
code of its own. Java Pathfinder (JPF) [10][11] is a system to
verify executable Java bytecode programs. It is based on
symbolic execution for test case generation. The core of JPF is a
Java Virtual Machine that is also implemented in Java. JPF
executes normal Java bytecode programs and can store, match
and restore program states. KLOVER [12] is similar to JPF. It
executes and monitors the states of running C++ program in the
form of LLVM bytecode. GannonJVM implements the features
of testing observability and controllability, which monitors,
interpreters and controls the Java bytecode instructions directly
using a stack-based approach.

VII. CONCLUSION

This paper presents a novel approach to embed two testability
features, including testing observation and testing control
features. We also introduce a CFG visualization in Java Virtual
Machine (JVM) for building a new testing harness to facilitate
software testing. The implementation of GannonJVM, a demo
video, and the triangle example are publicly available1.

VIII. ACKNOWLEDGMENT

We thank Syed Aqeel Raza and Bader Aldawsari for
assistance with the implementation of the system.

REFERENCES

[1] P. C. Jorgensen, Software Testing: A Craftman's Approach, 3rd ed.,
Auerbach Publications, 2008.

[2] T. Lindholm, F. Yellin, G. Bracha and A. Buckley, Java Virtual Machine
Specification, Java SE 7 Edition, Boston, USA: Addison-Wesley
Professional, 2013.

[3] J. Zhao, "Analyzing Control Flow in Java Bytecode," in 16th Conference
of Japan Society for Software Science and Technology, Japan, 1999.

[4] R. Vallee-Rai and L. J. Hendren, "Jimple: Simplifying Java Bytecode for
Analyses and Transformations," Sable Research Group, School of
Computer Science, McGill University, Montreal, Canada, 1998.

[5] O. Consortium, "ASM," [Online]. Available: http://asm.ow2.org/.
[Accessed 23 08 2013].

[6] P. Eades, "A heuristic for Graph Drawing," Congressus Numerantium, vol.
160, no. 42, p. 149, 1984.

[7] F. Chen and G. Rosu, "MOP: An Efficient and Generic Runtime
Verification Framework," in Object-Oriented Programming, Systems,
Languages & Applications, Nashville, Tennessee, 2007.

[8] "AspectJ," Eclipse Foundation, [Online]. Available:
http://eclipse.org/aspectj/. [Accessed 10 Sep 2013].

[9] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, O.
Lhotak, O. d. Moor, D. Sereni, G. Sittampalam and J. Tibble, "Adding
Trace Matching with Free Variables to AspectJ," in Object-Oriented
Programming, Systems, Languages & Applications, San Diego, California,
2005.

[10] N. A. R. Center, "Java Pathfinder," NASA Ames Research Center ,
[Online]. Available: http://babelfish.arc.nasa.gov/trac/jpf. [Accessed 27 1
2014].

[11] C. S. Pasareanu, et al., "Symbolic PathFinder: Integrating Symbolic
Execution with Model Checking for Java Bytecode Analysis," Automated
Software Engineering, vol. 20, no. 3, p. 391-425, 2013.

[12] G. Li, I. Ghosh and S. P. Rajan, "KLOVER: A Symbolic Execution and
Automatic Test Generation Tool for C++ Programs," in 23rd International
Conference on Computer Aided Verification, Snowbird, Utah, 2011.

1 Implementation and example:http://perceval.gannon.edu/xu001/research/GannonJVM/.
Source code: git@github.com:Gannon-University/GannonJVM.git. Demo video:

https://www.youtube.com/watch?v=Ey4JfVhhHQg.

