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Abstract— Software testing is a critical activity in increasing 
our confidence of a system under test and improving its quality. 
The key idea for testing a software application is to minimize the 
number of faults found in the system. The higher the testability of 
software, the better our chances to reveal these faults. We 
introduce a new type of testing harness called GannonJVM that 
improves the testability of software components. GannonJVM 
enhances the Java Virtual Machine (JVM) with a predicate 
analyzer and a bytecode interpreter. Our automated test 
framework is able to extract and visualize paths from the control 
flow graph of a given component. We also observe and analyze the 
predicates in a given a path during runtime.  

Keywords— Software testing, test harness, bytecode, testing tool, 
visualization.  

I.  INTRODUCTION  

Testability is a measure of how complex it is to test a 
software application. The lower the testability of a software, the 
lower the quality of the generated test cases.  On the other hand, 
the higher the testability of software the better the test cases are.  
Two major factors that contribute to the testability of software 
are controllability and observability.  Controllability is the ability 
to access, and the ease of testing the features and functionalities 
of an application. Observability is the extent to which the output 
or the observable states of the system assist in the verification of 
the test results. 

A test harness typically refers to a testing framework. It is 
used to execute test cases and to check whether the actual results 
match the expected ones. Junit is a popular test harness. For 
example, the assertion assertEquals(“Isosceles”, new 
Trianlge (7,7,6).getTriType()) in JUnit checks 
whether a triangle object reports the correct triangle type, which 
is an isosceles for the given three side values: 7, 7 and 6. 
Although JUnit and other similar unit testing frameworks are 
capable of executing test cases and checking their results 
automatically, they usually do not focus on improving the 
testability (i.e., testing observability and controllability) of 
software components. For example, JUnit does not provide any 
feedback that helps the testers to redesign test inputs. It also does 
not provide useful runtime states for debugging when the test 
case fails. 

To deal with these limitations, we introduce a novel approach 
to develop a test harness directly on top of the Java Virtual 
Machine (JVM). We call this approach GannonJVM. Its aim is to 
improve the testability of Unit Under Test (UUT). Fig. 1 shows 
the three main components of GannonJVM: (1) a predicate 
analyzer that is designed to improve the testing observability of 
UUT. The analyzer defines how the internal states of UUT are 
monitored and inferred by the knowledge of its external input. It 
checks the predicate values and monitors their execution paths in 
terms of the test inputs. (2) a Bytecode interpreter that improves 
the testing controllability of UUT.  The interpreter defines how to 
stabilize an execution path based on its observation. It is used to 
adjust the original test input (i.e., seed value) to create additional 
input that forces the UUT to execute a designated path. (3) 
Control Flow Graph (CFG) visualizer. It is responsible for 
automatically determining the layout of a CFG.  

   

Fig. 1. Overview of the test harness 

The rest of this paper is organized as follows: Section II 
introduces the basic concepts through a running example. Section 
III and IV describe the predicate analyzer and inference engine. 
Section V describes the CFG visualizer. Section VI reviews the 
related work. Section VII concludes the paper. 

II. A RUNNING EXAMPLE 

We use the classical Triangle Problem [1] as a running 
example to illustrate the test harness with embedded features for 
observability and controllability to generate test input without 
fitness functions. Given three positive integers that represent the 
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lengths of the three sides of a triangle, the Triangle program 
reports the triangle type: Equilateral (type 1), Isosceles (type 2), 
Scalene (type 3), or NotATriangle (type 4). The source code for 
this problem is shown below: 

int getTriType (a,b c) { 

if ((a<b+c) && (b<a+c) && (c<a+b) ){ 

if (a==b && b==c)    return 1; 

else if (a!=b && a!=c &&b!=c) return 3; 

else  return 2;} 

else  return 4;} 

Java bytecode is a stack-oriented language, which pops data 
(operands) from the top of the stack and pushes data back on the 
top of the stack. The stack is commonly referred to as an operand 
stack [2]. For example, the bytecode instruction iadd pops two 
integer values from the stack and pushes their sum back to the 
stack. Two integer values are pre-loaded from a local variable 
table using two iload instructions. To facilitate the discussion, 
the bytecode of Triangle instructions are divided (see dashed 
lines) into 20 blocks shown below [3].  

1. iload 1 
2. iload 2 
3. iload 3 
4. iadd 
------------[1] 
5. if_icmpge 37 
------------[2] 
6. iload 2 
------------[3] 
7. iload 1 
8. iload 3 
9. iadd 
10.if_icmpge 37 
------------[4] 
11. iload 3 
------------[5] 
12. iload 1 
13. iload 2 
14. iadd 
15.if_icmpge 37 
-----------[6] 

16. iload 1 
------------[7] 
17. iload 2 
18.if_icmpne 24 
------------[8] 
19.  iload 2 
20.  iload 3 
------------[9] 
21. if_icmpne 24 
------------[10] 
22. iconst_1 
-----------[11] 
23. ireturn 
24. iload 1 
------------[12] 
25. iload 2 
26.if_icmpeq 35 
-----------[13] 
27. iload 1 
------------[14] 

28. iload 3 
29. if_icmpeq 35 
------------[15] 
30. iload 2 
------------[16] 
31. iload 3  
32. if_icmpeq 35 
------------[17] 
33. iconst_2 
------------[18] 
34. ireturn 
35. iconst_3 
------------[19] 
36. ireturn 
37. iconst_4 
38. ireturn 
------------[20] 

Bytecode instructions have unique properties. First, they have 
an implicit effect on the stack as each instruction has no explicit 
named operands.  For example, iadd (instruction 4) in block 1 
does not specify the two operands that will be fetched for integer 
addition. These values are determined by iload 2 and iload 
3 (instructions 2 and 3) as they are the top two values on the 
current operand stack.  Note that the operand of iload points to 
the index of the local variable table [2]. The local variable table 
contains bytecode instructions and input parameters after 
initializing the method invocation. For example when the method 
is invoked, the three input variables a, b, and c of the triangle 
program are stored in the first three spots of the local variable 
table. During execution, iload 1, iload 2, and iload 3 
push the values stored in the indices 1, 2, and 3 to the operand 
stack. Second, predicates with multi-conditions in Java source 
code are represented by multi-level conditions in bytecode. For 
example, the multi-condition (a<b+c)&&(b<a+c)&& 

(c<a+b) in the Triangle source code is decomposed into three 
block sets, i.e., blocks 1 and 2, blocks 3 and 4, as well as blocks 5 
and 6. Blocks 2, 4, and 6 are three identical if_icmpge 
statements. They are depicted in Fig. 2 by the CFG of Triangle 
bytecode. This property facilitates observability and 
controllability by decomposing component conditions into 
several simple conditions.  

A path that is generated from a CFG consists of a sequence of 
blocks. For example, p1=[1]→[2]→[3]→[4]→[5]→ 
[6]→[7]→[8]→[9]→[10]→[11] is a path for testing if a triangle 
is equilateral. To execute all the blocks in p1, the values that 
participate in the evaluation of predicates [2] [4] [6] [8] and [10] 
need to be adjusted so that the predicates produce the desired 
outcomes to reach the last block. Thus, the desired outcome for 
each predicate in p1 should be achieved as p1: 

[1]→[2] 	
୊
→ [3]→[4]

୊
→ [5]→[6] 

୊
→ [7] →[8] 

୊
→ [9]→[10] 

୊
→ [11], 

where F (False) is the expected outcome of the corresponding 
predicate. Such a path is called a tagged path.  A tagged path is a 
sequence of edges that have at least one tagged edge, where a 
tagged edge is defined as v

	௢

	
>u.  The variable v is the source 

block that represents a predicate in a statement, o is a tagged 
value for v, which represents the desired outcome of v (i.e., true 
or false), and u is the reachable block if the assertion 
asserEquals(o, runtime(v)) returns true.  

 

Fig. 2. CFG of the Triangle Problem in bytecode 

Table 1 shows some representative tagged paths of the 
Triangle program based on decision coverage. In tagged path 



p12, the tagged edge [2]
୘
→ [20] indicates that block 2 is a 

predicate if_icmpge  and its outcome must be true in order to 
reach block 20.  

Table 1. Tagged paths for Triangle problem 

Goal ID Path 
Equilateral 1 [1]→[2]	

୊
→	[3]→[4]

୊
→ [5]→[6]

୊
→[7]→[8]

୊
→[9]→[10] 

୊
→[11] 

Isosceles 2 [1]→[2]	
୊
→	[3]→[4]

୊
→ 

[5]→[6]
୊
→[7]→[8]

୊
→[9]→[10]

୘
→[11]→[12]→[13] 

୘
→[19] 

…  
Scalene 8 [1]→[2]

୊
→	[3]→[4]

୊
→ [5]→[6]

୊
→[7]→[8]

୘
→[12] 

→[13]
୊
→[14]→[15] 

୊
→[16] →[17]

୊
→[18] 

..  
NotATriangle ..  

12 [1]→[2]
୘
→	[20] 

III. PREDICATE ANALYZER        

The predicate analyzer is designed to improve the 
observability of UUT. It examines bytecode instructions to 
discover relationships between input variables and variables used 
in predicates. Discovering relationships relies on variable binding 
and variable dependency analysis.  

The process of binding explicit variables to bytecode 
instructions is called variable binding. As bytecode instructions 
have an implicit effect on the evaluation stack, an effective 
approach is to use instruction tree unit (ITU) as an intermediate 
representation of instructions. Each ITU is a binary tree, which 
consists of three nodes, one parent node and two child nodes, as 
well as an operator (i.e., the opcode of the instruction) between 
the two children. The child nodes are the explicit named 
operands.  The root is a named intermediate result of the 
operation. An ITU can be simply represented by a four-tuple 
(opcode, root, leftNode, rightNode). One of the essential 
characteristics is that ITUs are restricted to the least number of 
operands (2 in most cases, such as for arithmetic and logic), and 
these operands must either be constants or locals. For example, 
for a given Java expression statement x=a+b+c, the 
corresponding two arithmetic ITUs are shown in Fig. 3. Local 
variables i0, i1, i2 are stored in the local variable table and 
correspond to the variables a, b, c and x in the given Java 
statement. Variables with a “$” sign are intermediate local 
variables, e.g., $i4 is an intermediate variable for holding the 
value of i0 + i1 and $i5 holds the result of $i4 + i2. 
iadd is the opcode of  the instruction iadd #index, where 
#index is the index of the local variable table. 

 

Fig. 3. Two ITUs of Java expression statement x=a+b+c 

Variable binding is a dynamic process, which builds the ITUs 
along with the execution of bytecode. We utilize an additional 
stack, called variable binding stack, and a variable table, called 
variable binding table, to bind variables to instructions. We gave 
them these names to distinguish them from the operand stack and 
the local variable table specified by the JVM specification. The 
variable binding stack and variable binding table work very 
similar to the JVM operand stack and the local variable table 
except that 1) the variable binding stack and variable binding 
table store the names of the bytecode intermediate variables 
instead of the operands for tracking intermediate variables, and 2) 
each element of the variable binding table also has a reference 
point to the root of the ITU containing itself.  

Variable binding during instruction execution in the JVM 
works as follows: 1) whenever an instruction pushes a value into 
the operand stack, and the value is loaded from the local variable 
table, the index of the value in the local variable table is used as 
the intermediate local variable name. This index is pushed into 
the variable binding stack. Otherwise, a new generated unique ID 
is used as the name and is pushed into the variable binding stack. 
2) whenever an instruction pops a value from the operand stack, 
the top of the variable binding stack is removed as well. The 
popped intermediate local variable names are used for 
constructing the ITUs. Note that for the purpose of dependency 
analysis, we build ITUs only for instructions that produce an 
effect on the operand stack and are influenced by the effect, i.e., 
instructions that produce and use intermediate variables. 
Therefore, ITUs are categorized into two groups: expression ITU 
and predicate ITU. Expression ITUs are built from expression 
instructions [4] producing intermediate variables, including load, 
arithmetic, and logic instructions. Predicate ITUs are built from 
predicate instructions using the intermediate variable to compute 
the tagged values, including all if_* Instructions. The algorithm 
can be applied for binding other instructions. Fig. 4 shows the 
variable binding results (i.e., the two ITUs) for the tagged path 

p12: [1]→[2]
୘
→ [20] in Table 1. The block list is a variable 

binding table. The first three variables, i0, i1, and i2, are the 
names of the input parameters. $i10 and $i11 are intermediate 
variables pointing to the root of the two ITUs shown in Fig. 4. 
The letter “i” is added before the generated ID as part of variable 
name for readability.  



   

Fig. 4. Variable binding for path P12 

Variable dependency analysis is the process of backtracking 
input variables for a given intermediate bytecode variables for 
making the assertion asserEquals(o, runtime(v)) to 
be true. Again, considering the simple tagged path p12: the goal 
is to find a test input to execute this path (i.e., find a triangle 
type of “NotATriangle”). As [2]

୘
→	[20] is the only tagged edge, 

the path will be covered if a test input forces the constraint in the 
instruction if_icmpge to be true (statement 5 is the only 
instruction in block [2]). The predicate ITU (if_icmpge, 
$i11, $i1, $i10) indicates that to generate a test input to 
cover p12, however, we need to determine the input variables 
that are associated with $i10. The association will allow the 
proposed system to backtrack the input variables so that they can 
be adjusted to meet the constraint. It is not difficult to see that 
$i10 (shown in the expression ITU iadd on the left of Fig. 4) 
is associated with input variables i1 and i2 by backtracking 
$i10 in the predicate ITU on the right. Variable dependency 
can be graphically captured using a Variable Dependency Tree 
(VDT). A VDT consists of a set of ITUs, where the root and 
each intermediate node are intermediate variables, and all leaves 
are the bytecode input variables.  The algorithm below describes 
the procedure for building VDTs from ITUs. The algorithm 
recursively expands child nodes containing intermediate 
variables with ITUs. The red dashed line shown in Fig. 4 
indicates a backtracking relation of $10. 

Algorithm: Building VDTs 

Inputs: VBT: A variable binding table 

Outputs: VDT: A variable dependency tree 

procedure buildVDTs(VBT) 

for each element  E of VBT 

  (opeCode, root, leftNode, rightNode) ⟵ 

E.getITU()  

if leftNode/rightNode of the ITU containing 

intermediate variable 

newITU ⟵ find a new ITU based on leftNode or 

rightNode 

Point from leftNode/rightNode to newITU  

end if 

end for 

end procedure 

IV. BYTECODE INTERPRETER 

Bytecode interpreter aims to improve testing controllability of 
UUT, i.e., how to control the predicate evaluation results to force 
a given path to be executed at run-time. Note that the evaluation 
results are determined by the input, where the rule-based 
inference engine provides input changing guidelines.  

Bytecode interpreter controls the order of which bytecode 
instruction will be fetched and executed. It reads each bytecode 
instruction and returns the evaluation result. It mainly consists of 
a program counter, which points to the next instruction to be 
fetched and executed, a local variable table, and an operand 
stack. In addition, a Java stack is needed for method invocations. 
Each element of the Java stack is a Java frame, which stores 
execution status. To make the interpreter more flexible, we utilize 
a factory design pattern to encapsulate instruction creation and a 
strategy pattern to encapsulate the execution algorithm in each 
instruction. A snapshot of the implementation of BIFicmpge 
instruction is shown below. The execution method implements 
the abstract method defined in the Instruction class. This 
comparison instruction pops two values from the operand stack 
and returns the predicate result. It is worth noting that the 
bytecode input parameters are stored at the beginning of the local 
variable table. They will be fetched for UUT interpretation. It is 
not difficult to overwrite them with new generated input in order 
to make the input generating process automatic. Along with the 
predicate analyzer and rule inference engine, this overwriting 
mechanism makes the UUT running until a given path is 
executed.  

public class IFicmpge extends Instruction { 

@Override 

public Object execute(JavaFrame  frame) { 

    Stack<Integer> opStack = 

frame.getOperandStack(); 

    Integer rightValue = (Integer) opStack.pop(); 

    Integer leftValue = (Integer) opStack.pop(); 

    boolean result=rightValue>= leftValue; 

return result; 

}  

The Bytecode interpreter then collaborates with the Bytecode 
generator. Compiled Java class files are in the form of 
hexadecimal. Therefore, ASM [5] is utilized to convert 
hexadecimal numbers to readable bytecode instructions. ASM is 
a very small and very fast Java bytecode manipulation 
framework supported by Open Solutions Alliance.  

V. CONTROL FLOW GRAPH VISUALIZER 

A directed graph G = {V, E} consists of two types of 
elements V and E, where V is a set of vertices and E is a set of 
edges. A Control Flow Graph (CFG) is a graph with some special 
vertices and edges: 1) it has source and sink vertices and 2) it 
consists of loops and jumps. Control Flow Graph (CFG) 
visualizer is responsible for determining the layout of a CFG 



automatically. CFG visualizer needs to solve three challenges: 1) 
how to calculate the layout of graph if we treat CFG is a general 
type of graph, 2) how to handle with two special vertices, i.e., 
source and sink, and 3) how to determine two special edges of 
CFG, i.e., loops and jumps. 

A. Visualizing CFG as A Normal Graph 

Force-directed algorithms are the most flexible and popular 
algorithms for calculating layouts of simple undirected graphs. 
These algorithms calculate the layout of a graph using only 
information contained within the structure of the graph itself. For 
a given directed graph G = {V, E}, a force-directed algorithm 
models edges as springs and vertices as charged particles. 
Springs represent attractive forces based on Hooke’s law, which 
are used to attract pairs of connected vertices towards each other. 
Charged particles represent repulsive forces based on Coulomb’s 
law, which are used to separate all pair of vertices. Force is 
represented as a vector, which includes a magnitude and 
direction. In a force-directed algorithm, we start with assigning a 
random position for each vertex. Then each vertex applies the 
attractive and repulsive forces. This will cause the vertex to move 
to a new position. The calculating and moving activities repeat 
until the graph reaches equilibrium states. In equilibrium states 
for a given graph, edges tend to have uniform length because of 
the spring forces, and nodes that are not connected by an edge 
tend to be drawn further apart because of the electrical repulsion.  

Fig. 5 shows the automated layout calculation using the 
attractive and repulsive forces on the Triangle problem CFG. 
Vertices in Fig. 5  (a) are assigned random positions. Fig. 5  (b) 
shows the equilibrium states of the CFG.  

 

The force-directed algorithm is defined below and is based on 
Eades’ idea [6]: 

Algorithm SPRING(G: graph) 

  Place vertices of G in random locations 

  Repeat M times 

  Calculate the force FሬԦሺvሻ on each vertex 

  Move the vertex based on force on vertex 

  Draw graph on screen 

End of Algorithm  

The force ܨԦ (v) is defined as: 

ሻݒԦሺܨ ൌ 	∑ ሬሬԦ௨௩ܪ ൅ሺ௨,௩ሻ∈௏ൈ௏ ∑ Ԧ௨௩ሺ௨,௩ሻ∈ாܥ  (1) 

Where ܪሬሬԦ௨௩   represents the attractive force between two 
connected vertices, u and v, calculated based on Hooke’s law. 
 Ԧ௨௩ represents the repulsive force between vertices u and v, andܥ
is  calculated based on Coulomb’s law.  

B. Positioning Source and Sink Vertices 

The control flow graph G(f) = {V, E, vin, vout} of a 
function f has two additional vertices, source and sink vertices, 
referred as vin and vout, respectively. A source vertex is a vertex 
with indegree zero, while a sink vertex is a vertex with outdegree 
zero. The control flow graph of an empty function, i.e., a function 
without any statements consists of V = {vin, vout} and E = 
{(vin, vout)}.  

Unlike the layout solution shown in Fig. 5, traditionally, all 
vertices of a CFG are arranged in the form of top-to-bottom 
where vin and vout are placed on the top and bottom positions, 
respectively. In order to rearrange vin and vout in Fig. 5, the 
third force, named Earth Gravitational Force, is added to 
formula (1). The gravity of Earth, denoted as ሬܶԦ , refers to the 
acceleration that the Earth imparts to objects on or near its 
surface.  

The Earth Gravitational Force is defined as:  

ሬܶԦሺݒሻ ൌ ݉݃  

Where, m is the mass of the vertex and g is the gravitational 
content. 

The new formula for handling source and sink vertices is now 
defined as: 

ሻݒԦሺܨ ൌ 	∑ ሬሬԦ௨௩ܪ ൅ሺ௨,௩ሻ∈௏ൈ௏ ∑ Ԧ௨௩ܥ ൅	∑ ሬܶԦ
௨ሺ௨ሻ∈ாሺ௨,௩ሻ∈ா 

Fig. 6 shows the automated calculated Triangle CFG layout 
with the additional Earth gravitational force. Fig. 6 (a) (b) (c) (d) 
illustrates the evaluations of the CFG layout. 

(a) Initial state (c) Iteration 20

(a) Initial state (b) Equilibrium states 

Fig. 5. Triangle CFG layout with two forces 



(b) Iteration 10 (d) Equilibrium states 

Fig. 6. Triangle CFG layout with Earth gravitational force  

 

C. Positioning Loops and Jumps Edges 

There are two types of special edges, loops and jumps (i.e., 
loop and if-else statements) in a CFG. For example, v2 in Fig. 6 
is a predicate node containing an if-else statement. Without an 
appropriate positioning algorithm, the edge (v2, v20) will be a 
straight line. Positioning such special edges need (1) Identifying 
dominator relationships: In a CFG graph, a vertex v dominates 
another node w if and only if every directed path from vin to w 
in the CFG contains v. The dominators of node w is defined as 
dom (w) = {v | v dominates w}. For example, dom 
(v20) = {v0, v1, v2}. (2) Identifying special edges: The node 
vshortest = v ∈ dom (w) has the shortest path from v to w, 
where v is the start node and w is the end node, i.e., the special 
edge is defined as (vshortest, w), and (3) Adding invisible 
vertices to special edges: The number of invisible vertices equals 
to the number of vertices from vshortest to w.  

VI. RELATED WORK 

Various testing harnesses have been explored to monitor the 
runtime state of UUT. These tools mainly fall into two 
categories: aspect-oriented approaches and symbolic execution 
based approaches. MOP [7] is a Monitoring-Oriented 
Programming (MOP) framework, which automatically generates 
monitors from the specified properties and then integrates them 
together with the user-defined code into the original system. In 
the implementation, parametric specifications are translated into 
AspectJ [8] code, and then weaved into the application using off-
the-shelf AspectJ compilers. Tracematches [9] is another aspect-
oriented trace-matching tool to observe the execution of a base 
program; when certain actions occur, the aspect runs some extra 
code of its own. Java Pathfinder (JPF) [10][11] is a system to 
verify executable Java bytecode programs. It is based on 
symbolic execution for test case generation. The core of JPF is a 
Java Virtual Machine that is also implemented in Java. JPF 
executes normal Java bytecode programs and can store, match 
and restore program states. KLOVER [12] is similar to JPF. It 
executes and monitors the states of running C++ program in the 
form of LLVM bytecode. GannonJVM implements the features 
of testing observability and controllability, which monitors, 
interpreters and controls the Java bytecode instructions directly 
using a stack-based approach.  

VII. CONCLUSION 

This paper presents a novel approach to embed two testability 
features, including testing observation and testing control 
features. We also introduce a CFG visualization in Java Virtual 
Machine (JVM) for building a new testing harness to facilitate 
software testing. The implementation of GannonJVM, a demo 
video, and the triangle example are publicly available1. 
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